
HYDRA 19

HYDRA: A Hyper Agent for Dynamic

Compositional Visual Reasoning

Supplementary Material

We provide additional details about our framework, HYDRA, as supplementary
material. We provide more details about the number of instruction samples, our
approach to training RL agents, the templates used in the textualizer module,
additional qualitative analysis examples, and prompts employed in the LLMs,
in further detail below.

A Number of Instruction Samples

As outlined in approach section 3, the LLM in our planner generated a set of N
instruction samples. We conducted an experiment using the OK-VQA dataset to
determine the optimal number, which is detailed in Figure 6. In our experiment,
we tested various sample sizes, namely N = 1, 3, 5, 7, and 10. Upon examining
the results presented in Figure 6, we observed that employing 10 samples posed
challenges for the RL agent’s training and alignment with the complete set of
actions. This challenge is particularly pronounced due to the modest size of the
neural network composing the RL agent, essentially consisting of an MLP. As
the number of instruction samples grows, and taking into account the limited
dataset and the modest scale of the RL agent, incorporating a larger quantity
of instruction samples becomes increasingly difficult for the small RL agent,
consequently leading to a decline in performance. Conversely, with a very low
number of actions (e.g., 1), the agent can request more instruction samples if
it finds the current ones invalid, eventually obtaining a good sample. While a
small number of actions makes it easier for a small RL agent to converge on
meaningful decisions, it also increases the likelihood of rejecting all instruction
samples compared to having five samples. Therefore, in terms of performance

Fig. 6: Experimenting with different instruction sample sizes on the OK-VQA dataset.
The vertical axis represents accuracy, while the horizontal axis denotes the number of
instruction samples.

20 F. Ke et al.

and efficiency, using five samples appears more promising, as depicted in the
figure, which yielded an accuracy of 48.63%.

B RL Agent Training

As described in the approach section 3, the controller module comprises an RL
agent implemented as an MLP utilizing the DQN algorithm [27]. Below, we offer
a more detailed explanation of the RL agent training process and its interaction
with the environment, State Memory Bank and Meta Information, throughout.

B.1 Embedding

In the training phase, RL agent needs to interact with an environment, State
Memory Bank and Meta Information, which contains the current state and com-
prehensive information from the previous iteration. Meta information may en-
compass the system’s own skills, its functionalities, and a description of a task
(e.g. query). In HYDRA, we utilize a text-to-embedding template along with
embedding models from the OpenAI API to obtain environmental information.
This approach enables the learning of effective control policies from textual data
within complex RL environments tailored for visual reasoning tasks.

B.2 Training process

We will detail the training process of the RL agent in this part. Initially, we
configure a multi-layer perceptron with dimensions {1536, 512 and N + 1} with
the use of text-embedding-3-small model from the OpenAI API (N is the number
of instruction samples, mentioned in section 3). The learning start threshold is
set to 1000, indicating that the controller will make decisions randomly during
the first 1000 observation processes. We denote observation counts as !. The ex-
ploration epsilon is set at 0.2, with an exploration epsilon decay rate of 0.02, and
the epsilon decay interval is established at 200 steps. Therefore, the exploration
threshold value is as:

T =
0.2

0.02⇥ !
200

(5)

To enhance learning in visual tasks, the controller occasionally opts for random
exploration over following the learned policy when a randomly generated value
falls below the exploration threshold T within the range [0, 1]. As explained
in the training phase in our approach, rewards for each action are calculated
across a variety of environmental scenarios, with all corresponding rewards and
situations stored in a reward buffer. We have optimized the batch size to 128,
and the learning rate is established at 1⇥10�4. During each weight update cycle,
a batch of samples, matching the batch size, is randomly drawn from the reward
buffer to update the MLP’s weights. For further details on the DQN updating
process employing stochastic gradient descent and reward buffer, please refer
to [27].

HYDRA 21

C Ablation Study

ViperGPT. In this experiment, we follow the original ViperGPT official GitHub
repository for all datasets. Note, however, that ViperGPT uses Codex, which
is deprecated. Therefore, in our experiment, we replace Codex with GPT-3.5
Turbo-0613.
HYDRA-IR-S. The RL agent has been integrated to ViperGPT, providing it
with the ability to make decision on keeping or re-generating the instruction
from LLM. This integration aims to enhance the model’s decision-making capa-
bilities by allowing it to learn optimal policies through trial and error. With this
addition, the ViperGPT achieved 5.77% improvement on its results as shown in
Table 5 (row 2).
HYDRA-RL-IR. In this experiment, unlike the ViperGPT model, we asked
the LLM to generate more than one instruction sample. As shown in Table 5 (row
3), the performance increased by 2.5% in terms of accuracy, reaching 39.84%.
HYDRA-IR. In this experiment, we removed Incremental Reasoning, which
means the model no longer processes information incrementally or adaptively
over multiple steps. This removal likely impacts the model’s ability to reason
and solve complex tasks that require multi-step reasoning or context-dependent
decision-making. Consequently, the accuracy decreased slightly to 45.98% as
shown in Table 5 (row 4).
HYDRA-RL-S. In this experiment, we removed sampling, meaning the model’s
LLM only generates one instruction sample, and the RL agent has been elim-
inated from our framework. As shown in Table 5 (row 5), the model benefited
from this adjustment, achieving an accuracy of 41.08%.
HYDRA-S. In this experiment, we removed sampling, meaning the model’s
LLM only generates one instruction sample. As shown in Table 5 (row 6), the
removal of sampling negatively impacts the model’s performance.
HYDRA-RL. Similar to the previous experiment, the RL agent has been elim-
inated from our framework. This removal removes the model’s ability to learn
from rewards and adjust its behavior accordingly, potentially limiting its capa-
bility to perform tasks that require adaptive decision-making or exploration of
the environment. Despite this, the model still achieved an accuracy of 46.93%
as shown in Table 5 row 7.

D Fail Rate Analysis

To analyse model stability, following the protocol suggested by [9] we manu-
ally reviewed ⇠ 100 samples per dataset and categorized error sources into four
groups as shown in Fig. 7. When the LLM can not provided any valid instruction,
HYDRA’s performance suffers as the controller can not select good instructions.
This error type is the most common in GQA. Moreover, code generator prob-
lems like calling non-existent APIs can also impact stability, as seen in RefCOCO
datasets. Therefore, using a more powerful LLM, e.g. GPT-4, can mitigate the
impact of planner constraints and code generator issues and improve HYDRA’s

22 F. Ke et al.

Refcoco

Refcoco+

OKVQA

GQA

0% 25% 50% 75% 100%

Planner Constraints

Foundation Model Precision

Code Generator Issues

Wrong/Multiple Labels

No error

Fig. 7: HYDRA Fail rate on each dataset.

Table 6: HYDRA Performance on GQA Dataset

Model GQA ACC(%) A-OKVQA ACC(%)

BLIP2 [19] 45.5 53.7

HYDRA w BLIP2 47.9 56.4

LLaVA1.5 (7B) [22] 62.0 61.6

HYDRA w LLaVA1.5 (7B) 64.5 62.5

performance. Additionally, insufficient precision of the foundation models also
leads to errors, as shown in OKVQA, indicating the need to employ SoTA foun-
dation models.

E Plug and Play in HYDRA

HYDRA enhances visual reasoning tasks by leveraging its inherent capability to
employ any foundation model as a VFM API. Intuitively, HYDRA’s performance
can be further improved by integrating the recent and larger foundation models,
thus surpassing the performance of using a sole foundation model for the same
task as shown in Table 6. This is because HYDRA has the ability to determine
the appropriate API and utilize it at the correct step in the reasoning process.
The experiment result Shows an improved accuracy of 62.5% on the A-OKVQA
dataset and 64.5% on the GQA dataset when employing LLaVA-1.5. These re-
sults underscore the benefits of integrating cognitive agents for enhanced visual
reasoning tasks and emphasize the advantages of the autonomy mechanism in-
herent in the compositional approach.

F Textualizer Module Templates

In the approach Section 3, it is mentioned that when the perceptual output
from the reasoner module is incomplete or unsuccessful, it undergoes conver-
sion to textual format within textualizer module, as depicted in Figure 2. The
perceptual output from the reasoner, which may consist of bounding boxes, veri-
fications, or captions, is transformed into a textual format using some templates.
These templates are provided in Template C which demonstrates the conversion

HYDRA 23

of visually grounded fine-grained information into textual format. For instance,
when the perception function find is activated, the name of the target object is
recorded in the detection results and the number of detected target objects is
documented. Moreover, the bounding box coordinates for each target object are
also recorded. The number of target objects and their locations, such as bound-
ing box coordinates, provide crucial information to the planner and controller
for their subsequent actions. Similarly, upon activating the perception function
exists, the system records the name of the object being checked, the name of the
image, and the outcome of the check.

Template C: Feedback Summarizer Examples

find

Detection result: Only one {object_name} has been detected in {image_name}.
Detection result: {num} {object_name} have been detected in {image_name}.
Detection result: no {object_name} has been detected.
Detected bounding box [x1,y1,x2,y2]: {object_name}_{current_img_no} in {im-
age_name} is {bd_box_prediction};
existence

The existence of {object_name} in image patch {image_name} is: {exist_result}.
verify

The verification of {category} in {image_name} is: {verification_result}
caption

The caption for image patch {image_name} is: {caption}.
simple question answer

The answer for image patch {image_name} in response to the question ‘{question}’
is: {query_answer}
depth calculation

The median depth for image patch {image_name} is: {median_depth}
LLM answer

The obtained answer from LLM to the question, {query} with the additional con-
text of {context} is: {return_answer}
sort

The patches list has been sorted from left to right (horizontal). Now, the first patch
in the list corresponds to the leftest position, while the last one corresponds to the
rightest position.
get middle patch

The {name} is the middle one in the list.
get the closest patch

The {name} is the closest one to {anchor_name}.
get the farthest patch

The {name} is the farthest one to {anchor_name}.
variables

{variable_name}: {variable_value}

24 F. Ke et al.

Fig. 8: More qualitative result examples from HYDRA.

G More Qualitative Analysis Examples

In this section, we offer a more qualitative analysis showcasing the output of
each step in HYDRA, as illustrated in Figure 8. As depicted, the input image
and query in the blue box are presented. Yellow boxes display the instructions
step by step, while the green one shows their corresponding intermediate results.

HYDRA 25

H LLM’s Prompts

In HYDRA, we utilized LLMs in three distinct modes, as outlined in Section 3:
as an instruction sample generator in the planner, a code generator in the
reasoner, and for summarizer in the textualizer module. For each mode, the
prompt used is defined herein, and we provide detailed information on each
prompt. Prompts H.1, H.2, and H.3 illustrate the abstract format of correspond-
ing prompts for the instruction sample generator, code generator, and summa-
rizer, respectively.

– Prompt H.1: An instruction prompt is a crucial tool that informs the planner
about the available perception skills, ⇡ 2 ⇧ demonstrates the utilization
of these skills, and describes how an instruction can leverage various skills
for effective execution. Within the meta information, the skills are directly
conveyed to the planner, informing it of HYDRA’s capabilities and guiding
it towards generating appropriate subsequent instructions. Otherwise, the
planner might generate instructions that cannot be executed.

– Prompt H.2: A code prompt serves as a vital instrument, briefing the rea-
soner on the available perception skills along with templates for Python
classes and functions. It includes a Python class and outlines several func-
tions, showcasing the methodology for formulating Python code in response
to the received instructions.

– Prompt H.3: A prompt functions as a guiding template, enabling the LLM
to assess the adequacy of fine-grained information provided, based on the
current state stored in State Memory Bank. If the detailed grounding infor-
mation is adequate to address the query, the LLM will directly produce the
answer, thus eliminating the need for further sequential responses.

Prompt H.1: Instruction Generation

[META_INFO]
How to Use these Skills ideally: [EXAMPLE]
Now the demonstration has ended. The following information are provided to you
for recommending next-step instructions.
About Query: [QUERY_TYPE]
Current Step: [CURRENT_STEP_NUM]
All Previously Taken Instruction:
[INSTRUCTION_HISTORY]
Executed Python Code:
image_patch = ImagePatch(image)
[CODE_HISTORY]
Each variable details: [VARIABLE_AND_DETAILS]
Execution Feedback (Details of the known visual information in the image): [FEED-
BACK_HISTORY]
The question is ‘[QUERY]’
Please, provide [NUMBER_OF_SAMPLES] alternative instructions and associate
each with a probability value indicating its likelihood of leading to the final answer.

26 F. Ke et al.

If available information is sufficient for answering question, please directly provide
final answer as response.
Your response is here:

Prompt H.2: Code Generation

[META_INFO]
Provided Python Functions/Class:
[PYTHON_API_CODE]
Please only return valid python code: If a Python variable is not found in the
‘Executed Python Code’ section, it means that variable does not exist, and you
cannot use any variable that has not been defined in the ‘Executed Python Code’.
[EXAMPLE]
Now the demonstration has ended. An instance (image_patch = Im-
agePatch(image)) of the ImagePatch class is provided.
Please translate only the ‘Current Instruction’ into Python code. If the ‘Current
Instruction’ mentions the final process, assign the result to the variable named
final_answer for the concluding statement. If there is no mention of a final process
in the current instruction, refrain from using final_answer. If a Python variable is
not found in the ‘Executed Python Code’ section, it means that variable does not
exist, and you cannot use any variable that has not been defined in the ‘Executed
Python Code’. About Query: [QUERY_TYPE]
Query: [QUERY]
Current Step: [CURRENT_STEP_NUM]
All Previously Taken Instruction:
[INSTRUCTION_HISTORY]
Executed Python Code: image_patch = ImagePatch(image)
[CODE_HISTORY]
Each variable details:[VARIABLE_AND_DETAILS]
Execution Feedback (Details of the known visual information in the image): [FEED-
BACK_HISTORY]
Current Instruction: [CURRENT_INSTRUCTION]
Generated Python Code for Current Instruction [CURRENT_INSTRUCTION]
here:

Prompt H.3: Summarizer

[META_INFO]
Below is the information related to the question along with known visual details
About Question: [QUERY_TYPE]
All Previously Taken Instruction:
[INSTRUCTION_HISTORY]
Executed Python Code:
image_patch = ImagePatch(image) [CODE_HISTORY]
Each variable details: [VARIABLE_AND_DETAILS]
Execution Feedback (Details of the known visual information in the image): [FEED-
BACK_HISTORY]
The question is ‘[QUERY]’

HYDRA 27

You need to base on details of the known visual information in the image to answer
question. Respond concisely with key terms or names related to the question. Base
your deductions solely on the Execution Feedback, which provides details of the
known visual information in the image. Avoid making any random guesses if the
available evidence does not sufficiently support your answer. For example, When
provided with limited information that only identifies an object as a fruit with-
out further details, it’s crucial to avoid making arbitrary guesses about the fruit’s
identity. Instead, the response should acknowledge the insufficiency of the data for a
definitive identification. If available information is insufficient for a definitive answer,
reply with ‘continue’.
Your answer is here:

