
HYDRA: A Hyper Agent for Dynamic

Compositional Visual Reasoning

Fucai Ke⇤1,2 , Zhixi Cai⇤2 , Simindokht Jahangard⇤2 ,
Weiqing Wang2 , Pari Delir Haghighi2 , and Hamid Rezatofighi2

1 Building 4.0 CRC, Melbourne 3145, Australia
2 Faculty of Information Technology, Monash University, Melbourne 3800, Australia

{fucai.ke1,zhixi.cai,simindokht.jahangard,teresa.wang,

pari.delir.haghighi,hamid.rezatofighi}@monash.edu

https://hydra-vl4ai.github.io/

Abstract. Recent advances in visual reasoning (VR), particularly with
the aid of Large Vision-Language Models (VLMs), show promise but
require access to large-scale datasets and face challenges such as high
computational costs and limited generalization capabilities. Composi-
tional visual reasoning approaches have emerged as effective strategies;
however, they heavily rely on the commonsense knowledge encoded in
Large Language Models (LLMs) to perform planning, reasoning, or both,
without considering the effect of their decisions on the visual reasoning
process, which can lead to errors or failed procedures. To address these
challenges, we introduce HYDRA, a multi-stage dynamic compositional
visual reasoning framework designed for reliable and incrementally pro-
gressive general reasoning. HYDRA integrates three essential modules:
a planner, a Reinforcement Learning (RL) agent serving as a cognitive
controller, and a reasoner. The planner and reasoner modules utilize
an LLM to generate instruction samples and executable code from the
selected instruction, respectively, while the RL agent dynamically in-
teracts with these modules, making high-level decisions on selection of
the best instruction sample given information from the historical state
stored through a feedback loop. This adaptable design enables HYDRA
to adjust its actions based on previous feedback received during the rea-
soning process, leading to more reliable reasoning outputs and ultimately
enhancing its overall effectiveness. Our framework demonstrates state-
of-the-art performance in various VR tasks on four different widely-used
datasets.

Keywords: Visual reasoning · Large language Models (LLMs) · Rein-
forcement learning

1 Introduction

Visual reasoning (VR) involves constructing a detailed representation of a visual
scene and reasoning through it in steps, similar to human cognition, often in re-
sponse to textual queries or prompts [2]. It encompasses various tasks, including
* These authors contributed equally to this work
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but not limited to Visual Question Answering (VQA) [2], Visual Commonsense
Reasoning (VCR) [50], and Visual Grounding (VG) [47]. In recent years, ad-
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Fig. 1: Comparison of ViperGPT [38], IdealGPT [46], and HYDRA: ViperGPT em-
ploys a single feed-forward process approach, IdealGPT breaks down questions into
sub-questions using a loop, while HYDRA utilizes diverse instructions and an RL agent
in an incremental loop for feedback, showcasing its superior adaptability and efficiency
in handling complex visual reasoning challenges.

vancements in Large Language Models (LLMs) [3,6,28,31] and their derivatives,
such as VLMs [18,35,43,53] have sparked hope for their effectiveness in solving
visual reasoning tasks. While these models have shown promising results in cer-
tain tasks like VQA and VCR [52], their training as single monolithic end-to-end
models necessitates large-scale datasets, imposing significant computational re-
source requirements. Additionally, while these models excel within their training
domain, they may require further adaptation to achieve reliable performance
when applied to diverse datasets or domains [35,38,46].
In recent advancements, compositional approaches [9,24,38,42] have emerged as
effective strategies for addressing VR challenges. These approaches break down
complex tasks into simpler sub-components, employing a divide-and-conquer
methodology. They employ LLMs alongside Visual Foundation Models (VFMs)
without requiring extensive training. LLMs can function as planners, code gener-
ators, or reasoner, while VFMs act as visual perception components, facilitating
structured analysis and task-specific plan generation to enhance adaptability
and improve generalization across diverse scenarios. A recent SoTA composi-
tional model is ViperGPT [38], which utilizes LLMs to generate code programs
for visual queries and solve the task in a single feed forward process. Ideal-
GPT [46] proposed an enhanced framework by utilising LLMs as both question-
ers and reasoners, with a pre-trained Vision-Language Model (VLM) serving as
the answerer, Figure 1. In this model, LLM decomposes main questions into
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sub-questions, with the reasoner determining whether further sub-question gen-
eration is required through iterations or if the final output has been reached.
However, these models come with certain limitations. Primarily, the outputs gen-
erated by LLMs may sometimes lack meaning, and when these outputs proceed
to subsequent steps without verification, they can impact the outputs of other
components, thus adversely affecting overall performance. Moreover, LLMs uti-
lized in the planner or questioner during the initial step lack information from
visual content (perception module) in later states to adjust their outputs [9,13].
Additionally, the process of generating subsequent questions often begins from
scratch without storing information from previous steps, potentially leading
to more iterations. Furthermore, these approach heavily rely on commomsense
knowledge encoded in LLMs to do planning and reasoning for VR tasks.
In this paper, we present HYDRA, a HYper agent for Dynamic compositional vi-
sual ReAsoning, an innovative framework designed to address the aforementioned
challenges. HYDRA is composed of three main modules planner, controller (Re-
inforcement Learning-based agent (RL)) and reasoner. Notably, in the planner,
upon receiving textual queries, unlike prior compositional approaches, we em-
ployed LLM to generate some instruction samples with varying depths based on
a distribution, instead of relying on a single instruction sample. Furthermore,
we integrate a hyper RL agent to dynamically interact with some modules to
make an high-level decision on the instruction samples generated by LLM in the
planner to evaluate their validity. If the RL agent detects any invalid instruction
samples, a request is sent back to the planner for alternative suggestions. Con-
versely, if the instruction samples are considered valid, the chosen instruction
sample is forwarded to the reasoner. In the reasoner, the selected instruction
sample undergoes analysis by LLM, and the resulting tailored code is sent to
the code generator. The code generator employs Python API code to utilize
VFMs for additional visual content processing. If the reasoner output is incom-
plete or fails, the output is converted to textual format in the textualizermodule
and then stored in State Memory Bank. Afterwards, another request is then sent
back to the planner to generate new instructions, which are again fed to the con-
troller module to select an instruction sample. This iterative process continues
incrementally until the final desired output is achieved. The design of HYDRA
integrates not only the incremental storage of information from previous states
(incremental reasoning), considered by the RL agent, but also the capability to
utilize feedback from VFMs acquired from earlier perception processes. This en-
ables dynamic adjustment of actions and responses based on feedback from visual
perception modules. This innovative design facilitates hyper decision-making by
the hyper RL agent, thereby refining reasoning capabilities and overall effective-
ness. The overall design of HYDRA compared with the previous compositional
approach is shown in Figure 1. We evaluated our framework on several popular
VR datasets and compared it with the advanced models, showing state-of-the-art
performance. In sum, the key contributions of this work are as follows:

1. Integrating a cognitive reinforcement learning-based agent as a controller
into a framework to foster hyper decision-making and behavior across di-
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verse environments, enhancing system cohesion, performance, and reasoning
capabilities.

2. Employing LLM as a natural language planner that enables the dynamic
generation of valid instruction samples for iterative processing. The samples
are vary in both the complexity and scope of perception tasks assigned with
validity probabilities.

3. Applying incremental reasoning, storing information from previous states
aids both the LLM and RL agent in acquiring fine-grained visual information
through VFMs and the visual-perception-to-text module, thereby refining
their reasoning processes.

2 Related Work

Single Monolithic End-to-End Methods. Recent advancements in Large
Language Models (LLMs) [3,6,28,31] have notably improved their ability to un-
derstand and reason visual content. Their derivatives, VLMs, like Video-LLaMA
[52] and NExT-GPT [43] excel in comprehending detailed videos and seamlessly
integrating text, images, videos, and audio for cross-modal reasoning. Otter [18],
Flamingo [1], and Visual ChatGPT [42] further enhance visual reasoning by in-
tegrating visual inputs into their language understanding processes, enabling
contextually relevant responses. Initiatives like InstructBLIP [8], M3IT [20], and
VisionLLM [41] emphasize instruction tuning, multilingual datasets, and vision-
centric tasks, advancing language understanding and nuanced video comprehen-
sion through a blend of language and visual cues. These developments signal a
significant shift towards AI systems proficient in reasoning across textual and
visual domains. However, these single monolithic end-to-end models suffer from
reduced interpretability, require significant computational power and extensive
training data resources. Besides, these models exhibit limited generalization ca-
pabilities due to the vast scale of the trained neural networks [35]. Various vi-
sion challenges often necessitate distinct models, typically involving the manual
selection and assembly of specific models tailored to each particular scenario.
Given the exponentially large long tail of compositional tasks, the proposed
data-intensive and compute-intensive single monolithic end-to-end models may
fall short in solving these types of tasks [40, 45]. Consequently, compositional
reasoning, generalization, fine-grained spatial reasoning abilities, and counting
capabilities remain significant challenges for even the most advanced, large-scale
single monolithic end-to-end models [5, 12,38,49].
Compositional Visual Reasoning Methods. The compositional approach
introduces a strategy aimed at addressing the challenges faced by end-to-end
VLMs [9, 24, 35, 38, 46]. These models tackle complex tasks by breaking them
down into multiple subtasks, solving each one individually, and then utilizing
the intermediate outcomes to address the overarching task. These models uti-
lize the potent chain-of-thought (CoT) functionality of LLMs acting as planners,
reasoner, etc. This capability facilitates the breakdown of intricate problems into
manageable and individually solvable intermediate steps through the provision
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of instructions [4, 7, 14, 17]. The instructions may take the form of Python ex-
ecution code that embodies logical operations [9, 38]. For example, Visprog [9]
and ViperGPT [38] seek to eliminate the requirement for task-specific training
in both programming logic and perception modules by employing code genera-
tion models. These strategies facilitate the assembly of VLMs into subroutines,
thereby enabling the production of results. An alternative strategy, emblematic
of the divide-and-conquer methodology, is exemplified by IdealGPT [46]. This
approach harnesses a captioning model for the acquisition of elementary visual
data and engages a LLM to serve as a planner. The high-level inquiries are me-
thodically deconstructed into three distinct sub-questions, which are processed
concurrently. Following this, perception tools (VFMs) are employed to individu-
ally address each sub-question. The outcomes are then aggregated and analyzed
by the reasoning mechanism to deduce the comprehensive final response. More-
over, the activation status and the sequential order of VFMs, as utilized by visual
perception tools, constitute a form of instruction [24]. The system implements
predefined functionalities based on these instructions to systematically activate
perception tools in a specified sequence. This process culminates in the aggre-
gation of data, which is subsequently analyzed by the reasoning mechanism to
formulate the ultimate conclusion.
All these compositional processing heavily depends on the capability of LLMs
to perform commonsense reasoning and make decisions. However, despite their
capabilities, LLMs have certain limitations. Primarily, the outputs they generate
may lack meaningfulness, and if these outputs proceed to subsequent steps with-
out verification, they can adversely affect the performance of other components.
Additionally, LLMs used in planning or questioning lack access to visual content
information in later stages, which hinders their ability to adjust outputs accord-
ingly. Moreover, the process of generating subsequent questions often starts anew
without retaining information from previous steps, potentially leading to more
iterations. Furthermore, these methodologies heavily rely on the common-sense
knowledge encoded in LLMs for planning and reasoning within virtual reality
tasks. In this paper, we introduce a new framework that utilizes a cognitive re-
inforcement learning-based agent to address these challenges. This framework
enhances decision-making, system performance, and reasoning across different

Table 1: Summary of compositional models, including HYDRA. IR: Incremental Rea-

soning. VQA: Visual Question Answering. VG: Visual Grounding. HF: HuggingFace.

Model Module Task

Planner Perception Reasoner Controller IR VQA VG

Visprog [9] 7 VFMs GPT-3 7 7 3 3
Chameleon [24] ChatGPT VFMs ChatGPT 7 7 3 7
IdealGPT [46] ChatGPT BLIP2 ChatGPT 7 7 3 7
HuggingGPT [34] ChatGPT HF-VFMs ChatGPT 7 7 3 3
ViperGPT [38] 7 VFMs Codex 7 7 3 3

HYDRA ChatGPT VFMs ChatGPT RL-Agent 3 3 3
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Fig. 2: The HYDRA detailed design includes key modules: planner, controller, rea-
soner, textualizer, State Memory Bank (st�1), and meta information (⌘). Input Q is
given to the planner to generate instructions Dt using st�1 and ⌘. The controller re-
ceives Dt, and if invalid, requests alternative samples from the planner. Otherwise, it
sends chosen instruction dt⇤ to the reasoner, which generates perceptual output using
Python APIs and VFMs. Incomplete output is converted to textual format, f t, by the
textualizer and stored in State Memory Bank. This process iterates until the desired
final output, Ŷ , is achieved.

scenarios. Moreover, we effectively harness LLM knowledge to generate instruc-
tional samples and facilitate incremental reasoning for acquiring detailed visual
information. A comparison between recent compositional VR models and our
approach is presented in Table 1.

3 Approach

The design of HYDRA are provided Figure 2 in detail, comprising several key
modules: planner (FP ), controller (F✓

C), reasoner(FR), textualizer (FT ), a State
Memory Bank and meta information (⌘). The framework’s input comprises
query-image pairs, denoted as X = {Q, I}, and the final output, Ŷ , can be tex-
tual answers or bounding boxes for the visual grounding task. The planner FP ,
utilizing LLM, generates some instruction samples based on the input query Q
using some information from meta information and State Memory Bank. Then,
the generated instruction samples are fed to controller FC which is composed of
GPT embedding and RL agent that evaluate the validity of instruction samples.
If the RL agent detects invalid instruction samples, it forwards a request to the
planner for alternative instruction samples; conversely, an instruction sample is
picked as the chosen sample, d⇤, and sent to the reasoner. The chosen instruc-
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Algorithm 1 HYDRA Inference
Require: X,FP ,FC ,FR,FT , ⌘, ✓
1: {Q, I} X; t 1; f  {}; d {} . Initialize the inputs and state
2: while not final do

3: s0:t�1  {f, d}
4: Dt  FP (Q, s, ⌘) . Generate instructions
5: dt⇤  argmaxdti2Dt F✓

C(D
t, s0:t�1, ⌘) ⇤ PP (d

t
i) . Select the optimal instruction

6: if Dt is rejected then go to 4
7: end if

8: f t  FT (FR(Q, dt⇤, s, ⌘)) . Execute code and textualize perception results
9: if execution error then go to 8

10: end if

11: t t+ 1
12: f.append(f t); d.append(dt⇤) . Update the state
13: end while

14: Ŷ  Extract answer from f . Resolve the final answer
15: return Ŷ

tion sample is fed to the LLM in the reasoning module, and the corresponding
Python code is generated in the code generator submodule. Subsequently, this
Python code is executed in the executing code submodule utilizing Python APIs
and VFMs. If the output is incomplete or unsuccessful, it is converted to textual
format through the textualizer module and stored in the State Memory Bank.
Thereafter, another request is sent to the planner to generate new instruction
samples, which are then provided to the controller module to select a valid in-
struction sample. This iterative process continues incrementally until the desired
final output is obtained.
As HYDRA is a framework that operates through several iterations to simplify
the process, we use s0:t to depict the progression from the initial state to the cur-
rent state 0 : t. Additionally, in the first iteration, there is no information from
the previous iteration, denoted as s0 = {}. Note that all LLMs in the planner,
reasoner, and textualizer are the same, with only their prompts being changed
in different modules, and for enhanced clarity, we present them separately in the
figure. The algorithm of the whole inference process is provided in Algorithm 1.
The technical details for each module, along with further elaboration, are pro-
vided in the following.
State Memory Bank & Meta Information. As HYDRA progresses through
multiple iterations and considers information from previous ones, all data, in-
cluding code, instruction, and the output of the reasoner from former iteration,
are stored in State Memory Bank, represented by a grey cylinder in Figure 2.
Furthermore, meta information encompasses crucial data such as a subset of
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skills ⇡ 2 ⇧ and various task descriptions � 2 � tailored for different tasks that
the LLM needs as a prompt. For simplicity, these are denoted as ⌘ = �,⇡ in the
subsequent equations.
Planner Module. Highlighted in orange in Figure 2, this module receives Q
and other data from the State Memory Bank. It generates N instruction samples
(e.g., "find girls", "verify if the girl is on the right side"), dti of varying depth,
where each instruction sample can have different actions or levels of complexity.
For instance, some instructions may involve simple tasks, while others may en-
tail more intricate actions or multi-step processes. Along with these instruction
samples, corresponding confidence probabilities Pp(dti) are provided, indicating
the likelihood of each instruction being accurately executed. These outputs are
generated by the LLM ChatGPT* and are represented by Dt = {(dti, PP (dti))}Ni=1

in the yellow box. This process is described by the equation:

Dt = FP (Q, s0:t�1, ⌘) (1)

Controller Module. This module serves as the central component of HY-
DRA, dynamically interacting with other modules to facilitate hyper decision-
making and functioning as a cognitive controller.This module integrates embed-
ding, leveraging GPT-3 [4], to extract the features highlighted in a cyan circle
in the Figure 2. It takes Dt, ⌘ and s0:t�1 and embeds them into a vector, V .
Subsequently, it passes through an RL agent, which consists of a trainable MLP
layer followed by a softmax function with an output size of N+1. Through this
module, the instruction samples undergo evaluation and if the RL agent consid-
ers them invalid, a request is sent to the planner to regenerate new instruction
samples, as indicated by the red arrow in Figure 2. Otherwise, the chosen in-
struction sample, dt⇤, is selected and proceeds to the reasoner, depicted by the
green arrow.

dt⇤ = argmax
dt
i2Dt

F✓
C(D

t, s0:t�1, ⌘) ⇤ PP (d
t
i) (2)

Training phase. As mentioned earlier, the RL agent is a trainable MLP layer
based on Reinforcement Learning, employing the DQN algorithm [27]. During
the training phase, the objective of the RL agent is to maximize the expected
cumulative reward. The reward function is designed to favour fewer iterations
and correct output while penalizing more iterations and incorrect output. We
iteratively accumulate the reward function as shown below.

Rt =

8
>>><

>>>:

Rt�1 � t if not final step,
Rt�1 + ↵m if answer is relate
Rt�1 � ↵ if answer is unrelated
R1 if t = 1

(3)

where m is the performance metrics (e.g. accuracy, intersection over union),
*
https://chat.openai.com/
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↵ and R1 are the hyperparameter constants. Additional details regarding this
phase are provided in the supplementary material.
Reasoner Module. Illustrated in light pink in the Figure 2, this module con-
sists of an LLM as code generator and a code executor sub-module. In this setup,
ChatGPT* receives the selected instruction sample dt⇤ from the controller mod-
ule, along with necessary information from the previous iteration, s0:t�1, and
⌘ , to generate Python code. This Python code is then transferred to the exe-
cution sub-module within perception tools, such as VFMs including GLIP [21],
BLIP2 [19], LLaVA-1.5 [22], MiDaS [32], and XVLM [51]. Python interpreter
to execute the code in the Python context loaded with the predefined Python
APIs. In the execution, all the variable values (perceptual output) are collected
and logged and will be sent to the next module via the feedback.

perceptual output = FR(Q, dt⇤, s
0:t�1, ⌘) (4)

Textualizer Module. If the perceptual output from the reasoner module is
incomplete or unsuccessful, it undergoes conversion to textual format within
this module, as depicted by the green in Figure 2. The perceptual output from
the reasoner, which may consist of bounding boxes, verifications, or captions, is
transformed into a textual format using a template. This conversion ensures that
the input is understandable for the LLM and ensures that all information stored
in the State Memory Bank has the same format that can be used in the next
iterations. Subsequently, the LLM summarizes the current state information, f t,
and stores it in State Memory Bank. Further details about these templates are
available in the supplementary material.
Technical Details: The iterative process continues incrementally until the de-
sired final output is achieved, which we refer to as the incremental reasoning
mechanism. It’s worth noting that the HYDRA does not always require itera-
tions; by efficiently integrating the RL agent, the final output of the task can be
generated in just a single iteration. That could be due to the simplicity of the
task, or the RL agent may choose to select an instruction that includes all the
necessary steps for generating the final output in a single iteration.

4 Experiments and Results

Implementation Details: To train our framework, we utilized PyTorch [29]
with NVIDIA RTX 4090 GPUs, employing a learning rate of 1 ⇥ 10�4 and a
batch size of 128. The Multi-Layer Perceptron (MLP) used for the RL agent,
consists of three layers with dimensions 1536, 512, and 6. The hyper-parameters
for reinforcement learning are set as R1 = 100 and ↵ = 100. During the
training process, early stopping is applied once the reward converges. For
a fair comparison, we evaluated the state-of-the-art (SoTA) baselines using
configurations from their official code repositories and papers [35]. We utilized
the largest available backbone for the end-to-end VLMs. We also replaced
ChatGPT as the code generator in ViperGPT [38], given the discontinuation
of GPT3 Codex by OpenAI [38]. Supplementary materials provide additional
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Table 2: Performance on External Knowledge-dependent Image Question Answering
and Visual Grounding tasks.

(a) Performance on OK-VQA.

Type Method ACC(%)

E2E

PNP-VQA [39] 35.9

PICa [44] 43.3

BLIP-2 [19] 45.9

Flamingo (9B) [1] 44.7

MiniGPT-4 (13B) [53] 37.5

LLaVA (13B) [23] 42.5

InstructBLIP (13B) [8] 47.9

Comp

IdealGPT [46] 19.4

ViperGPT [38] 40.7

HYDRA 48.6

(b) Performance on RefCOCO and RefCOCO+

IoU(%)
Type Method Ref Ref+

E2E

OWL-ViT [11] 30.3 29.4
OWLv2 [26] 33.5 31.7
GLIP [21] 55.0 52.2
ReCLIP [37] 58.6 60.5
KOSMOS-2 [30] 57.4 50.7

Comp
Code-bison [35] 44.4 38.2
ViperGPT [38] 59.8 60.0
HYDRA 61.7 61.1

details on implementation including instructions and prompts for the planner,
code generator, and controller.
Datasets and Evaluation Metric: We evaluated our framework across three
key tasks in visual reasoning. Firstly, External Knowledge-dependent Image
Question Answering, for which we utilize the OK-VQA dataset [25] and evaluate
performance based on accuracy (ACC) score [38, 46]. Secondly, Compositional
Image Question Answering, where the GQA [15] dataset serves as our bench-
mark, again measured by ACC score [38, 46]. Lastly, Visual Grounding tasks
are addressed using the RefCOCO [48] and RefCOCO+ [48] datasets, with
evaluation based on Intersection over Union (IoU) metrics [11, 21, 26, 30, 37].
These diverse tasks and corresponding datasets offer comprehensive assessments,
collectively contributing to the advancement of our framework’s capabilities in
visual understanding and interpretation.
Visual Reasoning Tasks and Result Analysis: Detailed elaboration and
both quantitative and quantitative results for each task, External Knowledge-
dependent Image Question Answering, Visual Grounding, and Compositional
Image Question Answering, respectively, are provided below.
External Knowledge-dependent Image Question Answering involves
using external sources of information, such as databases, to provide context
and answer questions about images that cannot be inferred solely from visual
content [38]. Following previous works [38], we additionally employ the LLM [4]
knowledge with the module llm-query. The quantitative results from Table 2a
highlight the comparison between end-to-end models and compositional models,
including HYDRA, on the OK-VQA dataset. HYDRA surpasses previous
models by 48.6%, showcasing a remarkable improvement. The incorporation of
advanced techniques in HYDRA, such as incremental reasoning mechanisms
and leveraging LLM for generating different instructions, greatly contributes to
its outstanding performance.
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Table 3: Performance on GQA Dataset

Type Method ACC(%)

E2E

BLIP-2 [19] 45.5
MiniGPT-4 (13B) [53] 30.8
LLaVA (13B) [23] 41.3
PandaGPT (13B) [36] 41.6
ImageBind-LLM (7B) [10] 41.2

Comp
IdealGPT [46] 41.7
ViperGPT [38] 37.9
HYDRA 47.9

Visual Grounding involves predicting bounding boxes based on the in-
put prompt. HYDRA are equipped with reasoner module which contain
grounding-related VFM APIs such as find, exists, and verify-property, similar
to ViperGPT. Our method, as shown in Table 2b, surpasses the state-of-the-art
baselines for IoU on RefCOCO [48] and RefCOCO+ [48] datasets. Among the
end-to-end methods, grounding-specialized approaches like GLIP [21] and Re-
CLIP [37] achieve superior performance compared to the VLM KOSMOS-2 [30].
Considering that KOSMOS-2 can also handle other text-based tasks. When
comparing methods between end-to-end and compositional approaches, we
observe that both compositional visual reasoning approaches (ViperGPT [38]
and HYDRA) achieve better performance than end-to-end baselines. This
indicates that the compositional approach design is more adept at solving the
VG task.
Compositional Image Question Answering contains complex questions.
These questions require the decomposition into simpler steps for answering.
Similar to previous works [38], we utilize the BLIP2 [19] API simple-query
to enhance our understanding of image content. As demonstrated in Table 3
with implementation on the GQA dataset, among the end-to-end models, the
30.8% performance of MiniGPT underscores the importance of instruct tuning.
IdealGPT surpasses ViperGPT in performance by leveraging a planner to
enhance reasoning capability. Notably, ViperGPT’s performance is impeded by
the generation of non-executable code snippets, while HYDRA enhances code
quality through the integration of multiple sampling and a RL agent controller
for code validation, leading to superior performance compared to ViperGPT.
Additionally, it highlights that HYDRA achieves an impressive accuracy of
47.9%, underscoring its robustness and effectiveness in handling the GQA
dataset. Further results can be found in the supplementary materials.

Generalization Analysis: Generalization abilities play a crucial role in adapt-
ing approaches to unseen data distributions without necessitating re-training.
Given that the RL agent in HYDRA is the sole component requiring training,
we conducted generalization experiments on the OK-VQA and A-OK-VQA [33]
dataset, as presented in Table 4, to assess the module’s capacity to operate
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Table 4: Generalization performance for the RL-Agent. The Train column is the
training data for training the RL agent, and the Test column is the test data for
evaluating the method.

Method Train Test ACC(%)

ViLT [16] GQA OK-VQA 32.13
ViperGPT [38] – OK-VQA 40.74
HYDRA GQA OK-VQA 48.17
HYDRA OK-VQA OK-VQA 48.63
HYDRA OKVQA A-OKVQA 55.94
HYDRA A-OKVQA A-OKVQA 56.35

Table 5: An ablation study for HYDRA on GQA.

Models RL-Agent IR Sampling ACC

ViperGPT 7 7 7 37.94
3 7 7 43.71
7 7 3 39.84
3 7 3 45.98
7 3 7 41.08
3 3 7 47.07
7 3 3 46.93

HYDRA 3 3 3 47.88

effectively on unseen data without explicit training. ViLT [16] is chosen as the
baseline end-to-end method, which does not require expensive computational
resources. Notably, the performance of our model, HYDRA, in the cross-dataset
experiments (i.e., training on GQA and testing on OK-VQA, and training on
OK-VQA and testing on A-OK-VQA) closely matches intra-dataset performance
as shown in Table 4. Furthermore, this cross-dataset performance surpasses that
of the baseline ViLT [16], which achieved an accuracy of 32.13%. Additionally,
ViperGPT [38] exhibits superior performance compared to ViLT, showcasing
the superiority of compositional over end-to-end methods in generalizability.
Comparison with ViperGPT also reveals superior performance, as HYDRA
trained on alternative datasets achieved accuracies of 48.17%. These findings
underscore the generalizability of the RL agent controller within HYDRA.

Qualitative Analysis: Figure 3 demonstrates intermediate processes of HY-
DRA for two examples, one for visual question-answering and one for visual
grounding tasks. We show detailed examples with multiple steps in the first
example in each figure, and the brief examples only show the last iteration in
the loop. It is observed that the meaningful perception results are summarized
as useful feedback for the next iteration of planning and reasoning. Figure 4
includes more qualitative examples of the results using HYDRA on these tasks.
Failure Analysis. While HYDRA has achieved SoTA performance, there is still
room for further improvement in its design. In complex cases, as illustrated in
Figure 5, HYDRA may fail due to potential mistakes made by the LLMs within
the reasoner and textualizer module. In future iterations, we plan to enhance the
complexity of the RL agent, enabling it to exert greater control over the output
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Fig. 3: Detailed result examples from HYDRA. The first example describes the inter-
mediate results of the full two iterations in the loop for question answering, whereas
the second example is about the grounding task.

of LLMs, whether functioning as code generators or summarizers. Additional fail
rate analysis can be found in the supplementary materials.

4.1 Ablation Study

In this section, we provide an ablation study on suggested key components of
HYDRA demonstrating their contributions to the final results.
Component Analysis. As previously mentioned, there are three main con-
tributions in HYDRA: the RL agent, Sampling (involving instruction sampling
numbers), and Incremental Reasoning (IR). Through this experiment, the ef-
ficacy of each component is evaluated and presented in Table 5. As depicted
in Table 5, the first column displays the models and their variants, while the
following three columns represent each key component: RL agent, Incremental
Reasoning (IR), and Sampling respectively. The last column, denoted as ACC,
represents the accuracy achieved by each model on the GQA dataset. As shown
in Table 5, the RL-Agent significantly improves the overall architecture, achiev-
ing an average enhancement of 4.71% in accuracy compared to the variants with
the same settings on IR and sampling but without the RL-Agent. Additionally,
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Fig. 4: More result examples from HYDRA for question answering and visual ground-
ing tasks.

Fig. 5: Failure result examples from HYDRA. The left two samples are due to wrong
generating codes. The right two failure cases are due to wrong annotation.

both IR and Sampling further boost the framework’s performance by 3.87%
and 2.70% on average, compared with the corresponding variant without IR or
sampling. Further implementation details can be found in the supplementary.

5 Conclusion

In this paper, we introduced HYDRA, a multi-step dynamic compositional vi-
sual reasoning framework designed to improve reasoning steadily and reliably.
HYDRA combines three key parts: a planner, a RL agent acting as a cognitive
controller, and a reasoner. The planner and reasoner modules use an LLM to
create instruction samples and executable code from chosen instructions, while
the RL agent interacts with these modules to make decisions based on past
feedback, adjusting its actions as needed. This flexible setup allows HYDRA to
learn from previous experiences during the reasoning process, resulting in more
dependable outcomes and overall better performance. In future, our goal is to
enhance our framework by fostering greater interaction between the LLM in the
reasoner and the texturizer module to mitigate potential errors.
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