
LayoutDETR: Detection Transformer Is a Good
Multimodal Layout Designer
(Supplementary Material)

Ning Yu, Chia-Chih Chen, Zeyuan Chen, Rui Meng, Gang Wu, Paul Josel,
Juan Carlos Niebles, Caiming Xiong, and Ran Xu

Salesforce Research
{ning.yu, chiachih.chen, zeyuan.chen, ruimeng, gang.wu, pjosel,

jniebles, cxiong, ran.xu}@salesforce.com

1 Implementation Details
Architecture design is where we integrate object detection with layout genera-
tion. Detection transformer (DETR) architecture [6] is employed and modified
for LayoutDETR generator G and conditional discriminator Dc. It targets to
boost the understanding of background from the perspective of visual detection,
and enhance the controllability of background on the layout.

As depicted in Fig. 2 bottom left in the main paper, G and Dc contain a visual
transformer encoder for background understanding and a transformer decoder
for layout generation or discriminator feature representation. The encoder part
is the same as in DETR [6], and is identical in G and Dc. It consists of a CNN
backbone that extracts a compact feature representation from a background
image, as well as a multi-head ViT encoder [9, 17] that incorporates positional
encoding inputs [5, 14]. It outputs tokenized visual features for cross-attention
in the following layout transformer decoder.

The layout decoder is also inherited from the DETR transformer decoder
with self-attention and encoder-decoder-cross-attention mechanisms [16]. In G,
it transforms each of the N input embeddings (corresponding to N foreground el-
ements) into layout bounding box parameters, whereas in Dc, it transforms each
of the N bounding box embeddings into discriminator features. Our architec-
ture differs from DETR where we have foreground elements as inputs to drive
the transformation, while DETR does not. Therefore, we replace their freely-
learnable object queries with our foreground embeddings as the input tokens to
the decoder, which are detailed below.

In G, foreground elements are composed of texts T = {ti}Mi=1 = {(si, ci, li)}Mi=1

and image patches P = {pi}Ki=1. Thence, each foreground embedding is a con-
catenation of noise embedding and either text embedding or image embedding.
To calculate the text embedding, we separately encode text string s, text class
c, and text length l, and concatenate the features together. The text string is
encoded by the pretrained and fixed BERT text encoder [8]. The text class and
quantized text length are encoded by learning a dictionary. To calculate the
image embedding, we use the same ViT as used for background encoding. The
weights are shared and initialized by the Up-DETR-pretrained model [7]. Note



2 Ning Yu et al.

that the font color is not considered in the modeling because it is trivial infor-
mation. According to our empirical observation, font colors are dominated by
two and only two modes: black and white. As indicated in Fig. 4 caption in the
main paper: Text font colors and button pad colors are adaptively determined
to be either black or white whichever contrasts more with the background.

For the other networks F c, Du, F u, E, and R that do not take background
images as an input condition, we simply use the above transformer decoder ar-
chitecture as their implementations. Following transformers, for each foreground
image reconstruction in F c and R, we employ the StyleGAN2 image generator
architecture [11]. For each text string reconstruction, we employ the pretrained
BERT language model decoder [8, 13]. For each text class and text length de-
coding, we use 3-layer MLPs.

We implement LayoutDETR in PyTorch and use Adam optimizer [12] to
train the models on 8 NVIDIA A100 GPUs, each with 40GB memory. Because
bounding box parameters are normalized by image resolutions, during training
and inference we downsize arbitrary images to 256 × 256 without losing gener-
ality. For final rendering and visualization, we resize them back to their original
resolutions. Small and unified image size allows us to train models with a large
enough batch size, e.g., 64 in our experiments. During training, we set the learn-
ing rate constantly as 10−5 and train for 110k iterations in 4 days. Inference is
much more efficient: we load only G into a single NVIDIA A100 GPU and it
consumes only 2.82GB of memory. It takes only 0.38 sec to generate a layout
given foreground and background conditions.

2 Details of Our Ad Banner Dataset Collection

The sources of raw ad banner images consist of two parts. First, we manually
went through all the images in Pitt Image Ads Dataset [10]. We filtered out those
with single modality, low quality, or old-fashioned designs. We then selected 3,536
valid ad banner images. Second, we searched on Google Image Search Engine
with the keywords "XXX ad banner" where "XXX" goes through a list of 2,765
retailer brand names including the Fortune 500 brands. For each keyword search,
we crawled the top 20 results and manually filtered out non-ads, single-modality,
low-quality, or offensive-content images. We then selected 4,321 valid ad banner
images. Combining the two sources, we in total obtained 7,857 valid ad banner
images with arbitrary sizes.

Next, we crowdsourced on Amazon Mechanical Turk (AMT) [1] to obtain
human annotations for the bounding box and class of each text phrase in each
image. The class space spans over 11 categories as shown in the AMT interface in
Fig. 1 top. Without losing representativeness, we focus on the top-4 most com-
mon categories in this work: {header, body text, disclaimer / footnote, button}.
We also linked a detailed instructional document with examples for workers to
fully understand the annotation task. See the instruction in Fig. 1 bottom. We
assigned each annotation job to three workers. For the final annotation results,
we averaged over three workers’ submissions and incorporated our judgments



LayoutDETR 3

(a) AMT interface

(b) Instructional example

Fig. 1: Top: AMT interface with instructions on the left for users to annotate the
bounding box and class of each existing copywriting text on each image. Bottom: one
instructional example of the definitions of text bounding boxes and text classes.

for the tie cases. In total there were 67 workers involved in the task. On av-
erage each worker submitted 314 jobs in around 3 minutes per job. All of the
workers have an approval rate history above 90% on AMT. We did not set any
restrictions for workers’ gender, race, sexuality, demographics, locations, remu-
neration rates, etc. Our annotation process has been reviewed and approved by
our ethical board.

After annotation, it is necessary to reverse the design by separating fore-
ground elements from background images to configure the training/testing data.
We apply a modern optical character recognition (OCR) technique [2] to ex-
tract the text inside each bounding box, and adopt a modern image inpainting
technique [15] to erase the texts. The separation of texts from background im-
ages is exemplified in Fig. 2. After filtering out a few samples with undesirable
OCR or inpainting results, we finally obtain 7,196 valid samples for the following
experiments.



4 Ning Yu et al.

Fig. 2: Reverse engineering examples of separating foreground elements from back-
ground images using OCR and image inpainting techniques.

It is worth noting that inpainting clues may leak the layout bounding box
ground truth information and shortcut training. Therefore, during training, we
intentionally inpaint background images at additional random subregions that
are irrelevant to their layouts.

3 Graphical System Step-by-Step Designs

Since we validate that our solution sets up a new state of the art for multimodal
layout design, it is worth integrating it into a graphical system for user-friendly
service in practice. Fig. 3 demonstrates our step-by-step UI designs. In specific:
(1) Fig. 3(a) shows the initial page that allows users to customize their back-
ground images and optionally foreground elements: header text, body text, foot-
note/disclaimer text, button text, as well as button border radius (zero radius
means a rectangular button). Text colors, button pad colors, and text fonts can
also be customized.
(2) Once users upload their background and foreground elements, they are pre-
viewed on the right part of the same page, as shown in Fig. 3(b). The locations



LayoutDETR 5

(a) Initial page (b) Step 1

(c) Step 2 (d) Step 3

Fig. 3: Step-by-step usage of our graphical system for customizable multimodal graphic
layout design.

and sizes of foreground elements in the preview are meaningless: they just con-
ceptually show what contents are going to be rendered on top of the background.
(3) Once users click "Next", it moves on to the next page with our design results,
as shown in Fig. 3(c). Given one layout designed in the backend, we post-process
it by randomly jittering the generated box parameters by 20% while keeping the
original non-overlapping and alignment regularity.
(4) Afterwards, the system renders foreground elements given the layout bound-
ing boxes. Text font sizes and line breakers are adaptively determined so as
to tightly squeeze into the boxes. Considering header texts usually have short
strings yet are assigned with large boxes, their font sizes are naturally large
enough. Text font styles can also randomly vary. This optional feature is shown
in our supplementary video. We showcase six of our rendered results on this
page, and allow users to select one or more satisfactory designs.
(5) Once users make their selection(s) and click "Save Selection", it moves onto
the last page as shown in Fig. 3(d). On this page, users are allowed to manually
customize the size and location of each rendered foreground element. Once they
finish, they click "Save" to exit our system.

More live demonstrations are nested in our supplementary video.

4 More qualitative results

We show in Fig. 4 more uncurated qualitative results of layout designs and
text rendering on background images in the wild and on CGL Chinese ad ban-
ner inpainted background [18]. Conditioned on multiple text inputs in varying
categories, our designs appear aesthetically appealing and harmonic between
foreground and background.



6 Ning Yu et al.

We show in Fig. 5 the impact of varying texts on layouts given the same
background image. We observe: (1) the scales of bounding boxes are adaptively
proportional to the varying lengths of texts such that the font sizes remain
approximately unchanged, and (2) the global and relative locations of bounding
boxes are stable regardless of the changes of texts, which are reliably harmonic
with the background structure.

5 Limitation on Challenging Samples

We show in Fig. 6 a few imperfect layout designs for challenging samples. When
the background images are over-clutter and texts are wordy, none of our render-
ing variants looks very ideal. Our model struggles between (1) placing layouts
in the middle regardless of background and (2) placing layouts over less busy
areas at edges that breaks the spatial balance. A possible workaround could be
introducing gradient blending masks into the rendering post-processing.

References

1. https://www.mturk.com/
2. https://github.com/PaddlePaddle/PaddleOCR
3. https://www.freepik.com/
4. https://www.pmi.com/
5. Bello, I., Zoph, B., Vaswani, A., Shlens, J., Le, Q.V.: Attention augmented convo-

lutional networks. ICCV (2019)
6. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-

to-end object detection with transformers. ECCV (2020)
7. Dai, Z., Cai, B., Lin, Y., Chen, J.: Up-detr: Unsupervised pre-training for object

detection with transformers. CVPR (2021)
8. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidi-

rectional transformers for language understanding. NAACL (2019)
9. He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are

scalable vision learners. CVPR (2022)
10. Hussain, Z., Zhang, M., Zhang, X., Ye, K., Thomas, C., Agha, Z., Ong, N., Ko-

vashka, A.: Automatic understanding of image and video advertisements. CVPR
(2017)

11. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing
and improving the image quality of stylegan. CVPR (2020)

12. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. ICLR (2015)
13. Li, J., Li, D., Xiong, C., Hoi, S.: Blip: Bootstrapping language-image pre-training

for unified vision-language understanding and generation. ICML (2022)
14. Parmar, N., Vaswani, A., Uszkoreit, J., Kaiser, L., Shazeer, N., Ku, A., Tran, D.:

Image transformer. ICML (2018)
15. Suvorov, R., Logacheva, E., Mashikhin, A., Remizova, A., Ashukha, A., Silvestrov,

A., Kong, N., Goka, H., Park, K., Lempitsky, V.: Resolution-robust large mask
inpainting with fourier convolutions. WACV (2022)

16. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
Ł., Polosukhin, I.: Attention is all you need. NeurIPS (2017)

https://www.mturk.com/
https://github.com/PaddlePaddle/PaddleOCR
https://www.freepik.com/
https://www.pmi.com/


LayoutDETR 7

17. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. CVPR
(2018)

18. Zhou, M., Xu, C., Ma, Y., Ge, T., Jiang, Y., Xu, W.: Composition-aware graphic
layout gan for visual-textual presentation designs. IJCAI (2022)



8 Ning Yu et al.

Fig. 4: Left: uncurated layout designs and text rendering on background images in the
wild (extracted from PSD data downloaded from [3] with searching keywords “ad ban-
ner”). Rendering rules: (1) Text font sizes and line breakers are adaptively determined
to tightly fit into their inferred boxes. (2) Text font colors and button pad colors are
adaptively determined to be either black or white whichever contrasts more with the
background. (3) Button text colors are then determined to contrast with the button
pads. (4) Text font is set to Arial. Right: uncurated layout designs and text rendering
on CGL Chinese ad banner background images inpainted by [15]. Image patches that
contain foreground text elements are resized and overlaid on the background following
the generated layouts.



LayoutDETR 9

Fig. 5: Top: ad banner design given the same background image (downloaded from [4])
and varying text combinations. Bottom: ad banner design given the same background
image and varying only the header text component.



10 Ning Yu et al.

Fig. 6: Imperfect layout designs for over-clutter background images and wordy texts.
Image sources are from [4].


	LayoutDETR: Detection Transformer Is a Good Multimodal Layout Designer(Supplementary Material)

