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Abstract. Graphic layout designs play an essential role in visual com-
munication. Yet handcrafting layout designs is skill-demanding, time-
consuming, and non-scalable to batch production. Generative models
emerge to make design automation scalable but it remains non-trivial
to produce designs that comply with designers’ multimodal desires, i.e.,
constrained by background images and driven by foreground content. We
propose LayoutDETR that inherits the high quality and realism from
generative modeling, while reformulating content-aware requirements as
a detection problem: we learn to detect in a background image the rea-
sonable locations, scales, and spatial relations for multimodal foreground
elements in a layout. Our solution sets a new state-of-the-art performance
for layout generation on public benchmarks and on our newly-curated
ad banner dataset. We integrate our solution into a graphical system
that facilitates user studies, and show that users prefer our designs over
baselines by significant margins. Code, models, dataset, and demos are
available at GitHub.

1 Introduction
Graphic layout designs are at the foundation of communication between me-
dia designers and their target audience [41, 54, 69]. Multimodal elements, i.e.,
foreground images/texts, are framed by layout bounding boxes and reasonably
arranged on a background image. This relies on a thoughtful understanding of
the semantics of each element and their harmony as a whole. Therefore, hand-
crafting such layout designs is skill-demanding, time-consuming, and requires
experienced professionals. In practice, it has been impossible to batch-produce
them in massive quantities [9].

Growing demands of automating graphic layout designs have motivated re-
searchers to adapt deep generative models [10, 16, 37, 42, 63] to this task [5, 11,
17, 18, 25, 28, 36, 59, 82, 84], but few of them investigate generation conditioned
on multimodal inputs and their fusion for layout designs.

Conditioning on multimodal inputs is critical to enrich designers’ control and
to command the aesthetics of layout designs. In this paper, we focus on them.
We propose to equip designers with an AI-empowered system that allows multi-
modal input: arbitrary background images, foreground images, and foreground

https://github.com/salesforce/LayoutDETR
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Fig. 1: Left: LayoutDETR takes a background image and a set of multimodal fore-
ground elements (images/texts) as input, and outputs an aesthetically appealing lay-
out. Right: we show a few banner samples with rendered texts using our auto-designed
layouts. “C” is the composition and “R” the rendering process.

copywriting texts from varying categories. Fig. 1 depicts the functionality and
resulting design samples of our solution. We learn a generative model of condi-
tional layout distribution that is constrained by background images and driven
by foreground elements. This requires our model to (1) learn the prior distribu-
tion from large-scale realistic layout samples, (2) understand the appearance and
semantics of background images, (3) understand the appearance and semantics
of foreground elements, and (4) fuse background and foreground information to
generate the layout bounding box parameters of each foreground element.

To tackle (1), we inherit and explore the high realism from three types of
generative learning paradigms: generative adversarial networks (GANs) [16,35],
variational autoencoders (VAEs) [37], and VAE-GAN [42]. To handle (2), we re-
formulate the background conditioned layout generation as a detection problem,
considering both problems require visual understanding and optimize for bound-
ing box parameters. We integrate these two seemingly irrelevant techniques and
train a DETR-flavored detector [6] as a layout generator. Specifically, we em-
ploy the visual transformer encoder and bounding box transformer decoder ar-
chitectures of DETR and jointly optimize its supervision loss with generative
adversarial loss. We hence name our solution LayoutDETR. To handle (3), we
incorporate a CNN-based image encoder [8] and a BERT-based text encoder [13]
for the multimodal foreground inputs, and feed the features as input tokens to
DETR transformer decoder. (4) is naturally handled by DETR thanks to its
transformer nature: foreground elements interact with each other through the
self-attention in the decoder, while background features interact through the
cross-attention between the image encoder and layout decoder.

We summarize our contributions as: (1) Method. We bridge two seem-
ingly irrelevant research domains, layout generation and visual detection, into
one framework that solves multimodal graphic layout design constrained by back-
ground images and driven by foreground image/text elements. No existing meth-
ods can handle all these modalities at once. (2) Dataset. We establish a large-
scale ad banner dataset with rich semantic annotations including text bounding
boxes, text categories, and text content. We benchmark this dataset for graphic
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layout generation over six recent methods, three of our solution variants, and
conduct ablation study. We will release the dataset. (3) State-of-the-art per-
formance. Our solution reaches a new state-of-the-art performance for graphic
layout generation in a comprehensive set of six evaluation metrics, which mea-
sure the realism, accuracy, and regularity of generated layouts. (4) Graphical
system and user study. We integrate our solution into a graphical system
that scales up layout generation and facilitates user studies. Users prefer our
designs over all baselines by significant margins.

2 Related Work

Deep generative models for layout design. Automating the layout design
with high quality and realism gains increasing attention and achieves substantial
progress, thanks to the revolutionary advancements of deep generative models,
especially generative adversarial networks (GANs) [4,16,35], variational autoen-
coders (VAEs) [37, 42], autoregressive models (ARMs) [10, 58, 64], and diffusion
models [23, 63, 68]. Researchers adopt generative models to learn to generate
bounding box parameters, in the form of center location, height, width, and
optionally depth, for each foreground element in a layout in either graphics
or natural scene domains. Orthogonal to learning paradigms, existing meth-
ods also investigate a variety of generator architectures including multi-layer
perceptron (MLP) [40], convolutional neural networks (CNN) [66], recursive
neural networks (RvNN) [67], long short-term memory (LSTM) [19], graph
convolutional networks (GCN) [38], transformer [72], etc. Some layout design
methods [5, 17, 18, 36, 51, 59, 81, 82, 84] focus on graphics domain only, while
others [14, 18, 32] generalize to natural scenes or even 3D data. Some meth-
ods [18,36,45,47,59,81] allow only bounding box category condition, while oth-
ers [5, 17, 43, 48, 82, 84] allow richer conditions in multi-modalities in the form
of background images, foreground images, or foreground texts, but not all. A
comprehensive taxonomy of layout generation methods is in Table 1.

None of the existing multimodal layout generation methods is designed to
handle all the background and foreground modalities at once: LayoutGAN+ [48],
NDN [43], LayoutDM [28], PLay [11], DLT [45], LayoutDiffusion [81], LDGM [26],
LayoutNUWA [71], Planning and Rendering [50] are unaware of background im-
ages in their designs. CGL-GAN [84], ICVT [5], DS-GAN [25], RALF [24] are
unaware of foreground texts and images in their formulation. ContentGAN [82]
does not take layout spatial information for training and does not even use com-
plete background images as input during training. This does not benefit the
layout representation, layout regularity, or final quality (e.g., text readability)
after rendering foreground elements onto the background. Vinci [17] relies on a
finite set of predefined layout candidates to choose background images from a
pool of food and beverage domains. Their method is unable to design layouts
conditioned on arbitrary backgrounds in open domains, natural or handcrafted,
plain or cluttered, like ours. Considering multimodal layout design persists as a
challenging problem, we focus our scope on graphic layouts: mobile application
UIs and our newly-organized large-scale ad banners.
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Table 1: A taxonomy of existing and our layout generation methods. We tag for each
method its working data domain(s), data modality(ies) of input condition(s), backend
generative model type, as well as implementation architecture. Our method and its
variants are the only ones that enable full control of varying multimodal conditions
and integrate object detection techniques into layout generation.

Method Domain(s) Conditioning modality Generative model Architecture

LayoutGAN [47] Graphics Bbox category GAN MLP, CNN
LayoutGAN+ [48] Graphics Bbox category, attribute vector GAN MLP, CNN
LayoutGAN++ [36] Graphics Bbox category GAN Transformer
DS-GAN [25] Graphics Bbox category, bg images GAN CNN, LSTM
House-GAN [55] Floor plans Bubble diagram GAN CNN, MPN
House-GAN++ [56] Floor plans Bubble diagram GAN CNN, MPN
LayoutVAE [32] Natural scenes Bbox category VAE MLP, LSTM
READ [59] Graphics Bbox category VAE RvNN
Vinci [17] Graphics Bbox category, bg/fg images, text VAE LSTM
NDN [43] Graphics Bbox category, spatial relation VAE GCN
VTN [2] Graphics, natural scenes Bbox category VAE Transformer
CanvasVAE [76] Graphics Bbox category, attribute vector VAE Transformer
C2F-VAE [31] Graphics Bbox category VAE Transformer
DeepSVG [7] Vector graphics Vector paths, attribute vector, command VAE Transformer
ContentGAN [82] Graphics Bbox category, fg image, text VAE + GAN Transformer
TextLogoLayout [74] Graphics Glyph VAE + GAN RNN, CNN
LayoutMCL [57] Graphics Bbox category ARM RNN, CNN
CanvasEmb [75] Graphics Bbox category, attribute vector ARM Transformer
LayoutTransformer [18] Graphics, natural scenes, 3D Bbox category ARM Transformer
BLT [39] Graphics, natural scenes, 3D Bbox category ARM Transformer
UniLayout [29] Graphics Bbox category ARM Transformer
LayoutFormer++ [30] Graphics Bbox category, spatial relation ARM Transformer
Parse-Then-Place [51] Graphics Text ARM LLM, Transformer
LayoutNUWA [71] Graphics Bbox category, HTML code ARM LLM, Transformer
LayoutGPT [14] Natural scenes, 3D Text ARM LLM, Transformer
RALF [24] Graphics Bbox category, bg image, spatial relation ARM CNN, Transformer
LayoutDM [28] Graphics Bbox category, spatial relation Diffusion Transformer
PLay [11] Graphics Bbox category, guideline Diffusion Transformer
DLT [45] Graphics Bbox category Diffusion Transformer
LayoutDiffusion [81] Graphics Bbox category Diffusion Transformer
LDGM [26] Graphics Bbox category, spatial relation Diffusion Transformer
Planning and Rendering [50] Graphics Fg image, text Diffusion Transformer
CGL-GAN [84] Graphics Bg image GAN + DETR Transformer
ICVT [5] Graphics Bg image VAE + DETR Transformer

LayoutDETR-GAN (ours) Graphics Bbox category, bg/fg images, text GAN + DETR Transformer
LayoutDETR-VAE (ours) Graphics Bbox category, bg/fg images, text VAE + DETR Transformer
LayoutDETR-VAE-GAN (ours) Graphics Bbox category, bg/fg images, text VAE + GAN + DETR Transformer

Object detection. The goal of object detection is to predict a set of bound-
ing boxes and their categories for each object of interest in a query image. Mod-
ern detectors address this in one of three ways: Two-stage detectors [15, 21]
predict boxes based on proposals; single-stage detectors predict boxes based on
anchors [52] or a grid of possible object centers [60]; direct detectors [6, 12]
avoid those hand-crafted initial guesses and directly predict absolute parame-
ters of boxes in the query images. Direct detectors [6, 12] inspire us to lever-
age their powerful image understanding capability, and combine it with modern
layout generators, in order to address the problem of multimodal layout gen-
eration. Similar in spirit to CGL-GAN [84] or ICVT [5], we take advantage of
the transformer encoder-decoder architecture and generalized intersection over
union (gIoU) loss [61] in DETR to learn layout distributions from background
image contexts. Unlike prior art, our layout outputs are additionally conditioned
on foreground image/text elements.

3 LayoutDETR
Problem statement. A graphic layout sample L is represented by a set of
N 2D bounding boxes {bi}Ni=1. Each bi is parameterized by a vector with
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four elements: its center location in a background image (yi, xi), height hi,
and width wi. In order to handle background images B with arbitrary sizes
(H,W ), we normalize box parameters by their image size correspondingly, i.e.,
L = {(yi/H, xi/W, hi/H,wi/W )}Ni=1

.
= {b̂i}Ni=1. The multimodal inputs are the

background image B and a set of N foreground elements, in the form of either
text elements T = {ti}Mi=1 = {(si, ci, li)}Mi=1 or image patches P = {pi}Ki=1,
where M ≥ 0, K ≥ 0, M +K = N . si is a text string, ci is the text class from
the set {header text, body text, disclaimer text, button text}, and li is the length
of the text string. Each foreground element corresponds to a bounding box in
the layout, indicating its location and size. In case there are foreground elements
that we are not interested in, e.g., button underlays or embellishments, we leave
them as part of the background. Our goal is to learn a layout generator G that
takes a latent noise vector z and the multimodal conditions as input, and out-
puts a realistic and reasonable layout complying with the multimodal control:
G(z,B, T ∪ P) 7→ Lfake.

3.1 Generative Learning Frameworks

GAN variant. Following the GAN paradigm [4, 16, 33–35, 44, 65, 78–80], the
generator G is simultaneously and adversarially trained against discriminator
D training. We formulate a multimodal-conditional discriminator Dc(L,B, T ∪
P) 7→ {0, 1}, as well as an unconditional discriminator Du(L) 7→ {0, 1}.

It has been observed that the discriminators are insensitive to irregular
bounding box positions [36]. For example, the discriminators tend to overlook
the unusual layout where a header texts is placed at the bottom. As a result,
we follow the self-learning technique in [53] and add position-aware regulariza-
tion to our discriminators. Similar to [36], we add an auxiliary decoder to each
discriminator to reconstruct its input. The decoders F c/F u take the output fea-
tures f c/fu of their discriminators Dc/Du, add them with learnable positional
embeddings Ec = {ec

i}Ni=1 / Eu = {eu}Ni=1, and reconstruct the bounding box
parameters and multimodal conditions that are the input of the discriminators:
F c(f c, Ec) 7→ Lc

dec,Bdec, Tdec ∪ Pdec / F u(fu, Eu) 7→ Lu
dec. Using Ec/Eu is neces-

sary, without which the reconstructed bounding boxes in a layout would have
no variance as they would be conditioned on identical features. The decoders
are jointly trained with the discriminators to minimize the reconstruction loss.
It enforces the discriminators to fully condition on all their inputs for the binary
classification. See Fig. 2 Yellow for the diagram. Thus, our adversarial learning
objective is:

min
G

max
Dc,F c,Ec,Du,Fu,Eu

LGAN = LGAN_fake + LGAN_real (1)

LGAN_fake
.
= Ez∼N (0,I),{B,T ∪P}∼Pdata − logDc(Lfake,B, T ∪ P)− logDu(Lfake) (2)

LGAN_real
.
= E{Lreal,B,T ∪P}∼Pdata logD

c(Lreal,B, T ∪ P) + logDu(Lreal)− Ldec (3)
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Fig. 2: Our unified training framework covers three generator variants: GAN-, VAE-,
and VAE-GAN-based. The layout generator network (darker color and bold) appears
in all variants. Its DETR-based multimodal architecture is at the bottom left. During
inference, only the generator is needed.

Ldec = λlayout
(
Llayout(Lc

dec,Lreal) + Llayout(Lu
dec,Lreal)

)
+ λim

(
||Bdec −B||2 + Lim(Pdec,P)

)
+ Ltext(Tdec, T )

(4)

Llayout(L1,L2) =
1

N

N∑
i=1

||b̂i
1 − b̂i

2||2 (5)

Lim(P1,P2) =
1

N

N∑
i=1

||pi
1 − pi

2||2 (6)

Ltext(T1, T2) =
1

N

N∑
i=1

(
λstrLstr(s1, s2) + λclsLcls(c1, c2) + λlenLlen(l1, l2)

)
(7)

where Lstr, Lcls, Llen are the reconstruction losses for foreground text strings,
text classes, and text lengths respectively. Lstr is the auto-regressive loss ac-
cording to BERT language modeling [13, 49]. Lcls is the standard classification
cross-entropy loss. So is Llen, considering we quantize and classify a string length
integer into one of 256 levels [0, 255]. λlayout = 500.0, λim = 0.5, λstr = 0.1,
λcls = 50.0, and λlen = 2.0.
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VAE variant. VAEs are an alternative paradigm to GANs for generative
models. Following the VAE paradigm [37,62], the generator G is jointly trained
with an encoder E that maps from the layout space to the latent noise distri-
bution space. The output of E are the mean µ and covariance matrix Σ of a
multivariate Gaussian distribution, E(L) 7→ µ,Σ, the samples of which are input
to G: sample(µ,Σ) = zT0 Σ

1
2 z0 + µ, z0 ∼ N (0, I). It represents the differentiable

reparameterization trick in the standard VAE pipeline [37,62]. See Fig. 2 Blue.
The conditional VAE minimizes the reconstruction loss:

min
E,G

LVAE
.
= E{Lreal,B,T ∪P}∼PdataλlayoutLlayout(Lfake,Lreal)+λKLKL

(
E(Lreal)||N (0, I)

)
(8)

KL(·||·) is the Kullback-Leibler (KL) Divergence used in standard VAE [37,62] to
regularize the encoded latent noise distribution.The hyper-parameters λlayout =
500.0 and λKL = 1.0.

VAE-GAN variant. VAEs and GANs are also compatible with each other.
See Fig. 2 Blue plus Yellow. Following [42,82], we jointly optimize Eq. 1 and 8:

min
E,G

max
Dc,F c,Ec,Du,Fu,Eu

LGAN + LVAE (9)

3.2 Additional Objectives

Other losses and regularization terms also play important roles in the generated
layout quality. First, we add bounding box supervision as in DETR [6]. We
use the generalized intersection over union loss gIoU(·, ·) [61] between generated
layout and its ground truth LgIoU(Lfake,Lreal), where:

LgIoU(L1,L2)
.
= λgIoU

1

N

N∑
i=1

gIoU(b̂i
1, b̂

i
2) (10)

where the hyper-parameter λgIoU = 4.0.
Second, we introduce an auxiliary reconstructor R for the generator to en-

hance the controllability of input conditions. R takes the last features of G,
F = {fgi }Ni=1, as input tokens before outputting box parameters, and learns to
reconstruct P and T : R(F) 7→ Prec, Trec.

Jointly with G training, we learn to minimize:

Lrec
.
= λimLim(Prec,P) + Ltext(Trec, T ) (11)

with Lim from Eq. 6 and Ltext from 7. See Fig. 2 Green.
Third, reasonable layout designs typically avoid overlapping between fore-

ground elements. We leverage the overlap loss Loverlap
.
= λoverlapLoverlap(Lfake)

from [48] that discourages overlapping between any pair of bounding boxes in a
generated layout. We set λoverlap = 7.0.

Fourth, aesthetically appealing layouts usually maintain one of the six align-
ments between a pair of adjacent bounding boxes: left, horizontal-center, right,
top, vertical-center, and bottom aligned. We leverage the misalignment loss
Lmisalign

.
= λmisalignLmisalign(Lfake) follow [48] that discourages misalignment.

We set λmisalign = 17.0.
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Finally, our training objective is formulated as follows.

min
E,G,R

max
Dc,F c,Ec,Du,Fu,Eu

LGAN + LVAE + LgIoU + Lrec + Loverlap + Lmisalign (12)

All the λs are trivially set to align the order of magnitude of each loss term.
We use an identical set of λs for all the datasets to validate our performance is
insensitive to λs.

3.3 DETR-based Multimodal Architectures

Architecture design is where we integrate object detection with layout genera-
tion. Detection transformer (DETR) [6] is employed and modified for Layout-
DETR generator G and conditional discriminator Dc.

As depicted in Fig. 2 bottom left, G and Dc contain a background encoder
and a layout transformer decoder. The encoder is the same as in DETR [6]. The
decoder is inherited from the DETR decoder with self-attention and encoder-
decoder-cross-attention mechanisms [72]. Different from DETR, we replace their
freely-learnable object queries with our foreground embeddings as the input to-
kens to the decoder. The decoder then transforms the embeddings to layout
bounding box parameters. Foreground embedding is a concatenation of noise
embedding and text/image embedding. Text embedding is a concatenation of
text string embedding (BERT-pretrained and fixed), text class embedding (via
learning dictionary), and text length embedding (via learning dictionary). See
more clarifications on our design choices in the supplementary material. See the
implementations of the other networks in the supplementary material. In partic-
ular, other networks are transformer-based as well. Only the input and output
formats differ depending on the network functionality. We do not choose a wire-
frame discriminator since its empirical performance is worse, as also observed
in [36].

3.4 Motivations of Using Each Network Component

The generator G and conditional/unconditional discriminators Dc/Du serve as
the fundamental components for the GAN variant of our solution. The use of
conditional discriminator Dc is straightforward due to the nature of our multi-
modal conditions: it encourages foreground elements to be harmonic and reason-
able to the background after being overlaid according to the generated layout.
The unconditional discriminator Du differs from Dc by ignoring background and
foreground elements, and focusing only on the realism of layouts themselves.
Therefore, the use of Du additionally encourages the mutual relations among
bounding boxes in a generated layout to be realistic and reasonable, regard-
less of multimodal conditions. The empirical effectiveness of Du is evidenced in
Table 2 Row 3.

The motivation of using auxiliary decoders F c/F u following Dc/Du is in-
spired by [36]. F c/F u targets to self-reconstruct all the input information of
Dc/Du through the bottleneck discriminator features. It encourages the input
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information to be fully encoded into the discriminator features such that the dis-
criminator classification is fully justified by the input. The empirical effectiveness
of F c/F u has been validated in [36] Table 2 last column.

The layout encoder E and generator G serve as the fundamental components
for the VAE variant of our solution. VAEs and GANs are alternative paradigms
of generative models, and are complementary to each other in terms of data
distribution learning and feature representation learning [42]. Inspired by [82], we
combine the strengths of VAEs and GANs and apply them for layout generation.

The use of auxiliary reconstructor R following G stems from the same mo-
tivation as the use of auxiliary decoders F c/F u. Its empirical effectiveness is
evidenced in Table 2 Row 2.

The motivation of using DETR architecture [6] for background image en-
coding and understanding stems from its state-of-the-art performance for object
detection using the state-of-the-art visual transformer (ViT) encoder architec-
ture [20, 73]. In our scenarios, “detection” is equivalent to “generation” as both
processes output bounding box parameters. Although “detection” lacks the “lay-
out” concept, it is complemented by the layout discriminator and encoder net-
works. “Object” stands for the non-clutter subregions in a background that are
suitable for overlaying foreground elements. ViT tokenizes visual features that
facilitate cross attention with other foreground element features, e.g., tokenized
text features, so that multimodal conditions can synergize jointly.

Incorporating DETR into multimodal layout generation is non-trivial. Di-
rectly applying the DETR architecture in the encoder did not achieve optimal
performance. Tuning around different generator paradigms (Sec. 3.1), loss con-
figurations and conditional embedding configurations (Sec. 5.1) leads us towards
the empirical optimum.

4 New Ad Banner Dataset
Not all existing datasets are suitable for multimodal layout design because they
do not always provide multi-modality information, e.g. natural scene datasets
or Crello graphic document dataset [76]. Other datasets, such as PubLayNet
document dataset [83] and PartNet 3D shape dataset [77] render layouts only on
plain background. Magazine dataset [82] does not provide complete background
images since they have masked out foreground layouts from the background. On
the other hand, ad banner datasets are composed of multimodal elements and
lead to several previous layout design techniques [5, 17, 25, 84]. Unfortunately,
none of their datasets is publicly available, except for CGL dataset [84], PKU
PosterLayout [25], TextLogoLayout dataset [74] which, however, do not contain
the widely used English modality. We therefore collect a new large-scale ad
banner dataset of 7,196 samples containing English characters, which are ready
to release.

Each of our samples consists of a well-designed banner image, its layout
ground truth, foreground text strings, text classes, and background image. The
banner images are filtered from Pitt Image Ads Dataset [27] and crawled from
Google Image Search Engine. Their layouts and text classes are manually an-
notated by Amazon Mechanical Turk (AMT). The text classes are {header text,
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body text, disclaimer text, button text}, with logos categorized as header text. The
text strings are extracted by OCR [1] and removed by image inpainting [70] to
obtain the text-free background image. Examples and more details about data
collection are in the supplementary material.

5 Experiments

Datasets. Ablation study and user study are conducted on our ad banner
dataset with 7,196 samples. Comparisons to baselines are additionally performed
on the CGL dataset with 59,978 valid Chinese ad banner samples [84], and on
the CLAY dataset with 32,063 valid mobile application UI samples [46]. Besides
background image and foreground text conditions, it also involves foreground
image conditions. We apply the same OCR and image inpainting processes to
CGL and CLAY datasets, in order to extract texts as part of input conditions,
and separate apart foreground from background. 90% of the samples are used
for training and 10% for testing.

Baselines. We select six recent methods covering a variety of generative
paradigms and architectures listed in Table 1: LayoutGAN++ [36], READ [59],
Vinci [17], LayoutTransformer [18], CGL-GAN [84], and ICVT [5]. We noted that
LayoutTransformer [18] is empirically superior to the more recent work BLT [39],
the same observation as Row 1 v.s. Row 8 in Table 2 of [29]. We therefore did
not experiment with BLT. Several baselines do not allow background conditions
and/or foreground text/image conditions. We integrate our encoders to their
models for fair comparisons.

Evaluation metrics. (1) For the realism of generated layouts, we calculate
the Fréchet distances [22] and kernel distances [3] between fake and real feature
distributions. All the real testing samples are used, and the same number of
generated samples are used. We consider two feature spaces: the layout features
pretrained by [36], and VGG image features pretrained on ImageNet [22]. We
obtain the output banner images by overlaying foreground image patches and
rendering foreground texts on top of background images according to the gen-
erated layout. The rendering process and examples are in Fig. 4. (2) For the
sample-wise accuracy of generated layouts w.r.t. their ground truth, we calcu-
late the layout-to-layout IoU [36] and DocSim [59]. Box-level matching is trivial
as the correspondences between generated and ground truth boxes are given by
the conditioning input. (3) For the regularity of generated layouts, our metrics
are the overlap loss [48] and misalignment loss [48] in Section 3.2.

5.1 Ablation Study

Loss configurations. We start from the LayoutGAN++ [36] baseline imple-
mentation and additionally enable it to take multimodal foreground and back-
ground as input conditions. We then progressively add on extra loss terms and
report the quantitative measurements in Table 2 top section. We observe: (1)
Row 1 contains the far worse results of randomly generated layouts on real back-
grounds, indicating that the quality of layouts itself matters. (2) Comparing Row
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Table 2: Ablation study w.r.t. loss config (top) or conditional embedding config (bot-
tom) on our ad banner dataset. Each row is progressively ablated from its row
above. Each cell contains mean±std. For FIDs and KIDs, they are the statistics over
10 runs. ⇑/⇓ indicates a higher/lower value is better. Bold/underline font indicates
the top/second best value in the column.

Realism Accuracy Regularity
Layout FID Layout KID Image FID Image KID IoU DocSim Overlap Misalign

Method ⇓ (×10−3) ⇓ ⇓ (×10−5) ⇓ ⇑ ⇑ ⇓ (×10−2) ⇓

Random layout on real bg 58.21±4.04 525.93±45.08 51.01±0.41 582.47±7.53 – – – –

Conditional LayoutGAN++ 11.33±0.10 44.77±0.36 36.06±0.02 115.16±3.37 0.111±0.001 0.121±0.001 0.374±0.006 2.194±0.058

+ Aux. Dec. (Eq. 4-7) 4.25±0.01 16.62±0.05 28.40±0.06 58.5±1.45 0.163±0.002 0.130±0.001 0.104±0.003 0.759±0.021

+ Gen. Rec. (Eq. 11) 3.27±0.01 11.80±0.04 29.56±0.06 11.29±0.20 0.186±0.002 0.148±0.001 0.125±0.003 0.853±0.016

+ Uncond. Dis. Du 3.70±0.05 16.23±0.08 29.21±0.08 25.09±0.02 0.177±0.002 0.140±0.001 0.103±0.003 0.681±0.011

+ gIoU loss (Eq. 10) 3.23±0.01 11.60±0.02 28.20±0.04 10.51±0.09 0.182±0.002 0.138±0.001 0.106±0.003 0.721±0.011

+ Overlap & Misalign loss 3.19±0.01 5.62±0.01 27.35±0.04 8.31±0.80 0.208±0.002 0.151±0.000 0.101±0.003 0.646±0.011.
= LayoutDETR-GAN (ours)

- Text length embeddings 3.24±0.01 9.25±0.05 28.65±0.03 11.42±0.35 0.191±0.002 0.144±0.001 0.117±0.003 0.807±0.012

- Text class embeddings 25.17±0.54 171.88±5.17 29.25±0.25 139.16±4.44 0.166±0.002 0.132±0.001 0.110±0.001 0.000±0.000

2 and 3, all the metrics are improved, as the auxiliary decoder enhances the dis-
criminator’s conditioning and representation. (3) Comparing Row 3 and 4, all
the metrics are improved, thanks to the enhanced controllability through the
reconstruction of conditional inputs. (4) Comparing Row 4 and 5, unconditional
discriminator benefits the layout regularity due to its approximation power be-
tween generated layout parameters and real regular ones. (5) Comparing Row
5 and 6, the supervised gIoU loss boosts the realism and accuracy by a signif-
icant margin, yet seemingly contradicts the regularity. (6) Fortunately, in Row
7, adding overlap loss and misalignment loss optimizes all the metrics. We name
this "LayoutDETR-GAN (ours)" and stick to it for the following experiments.
(7) Error margins after “±” are consistently smaller than value differences across
rows, indicating the differences are statistically significant.

Conditional embedding configurations. We do not consider foreground
images in this ablation study as the embeddings are simply image features.
Whereas for foreground texts, we examine the importance of text length em-
beddings and text class embeddings by progressively removing them from the
training. From Table 2 bottom section we observe: (1) Comparing Row 7 and
8, text length embeddings are beneficial all around. We reason that text length
is a strong indicator of a proper text box size. This validates the strong posi-
tive correlation between text lengths and box sizes. (2) Comparing Row 8 and
9, text label embeddings serve as an essential role in the generation. Layout
FID and Layout KID deteriorate significantly without text label embeddings
(Row 9) as bounding boxes of similar texts tend to collapse to the same regions
(referring to the 0.0 misalignment). This implies that text content itself is not
as discriminative as text labels to differentiate box parameters.

5.2 Comparisons to baselines

Quantitative comparisons are in Table 3. We evaluate three of our alternative
model variants: GAN-, VAE-, and VAE-GAN-based. For intuitive understanding
of the tables, we visualize each row into a radar plot in Fig. 3. Each corner of the
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Table 3: Quantitative comparisons to baselines. Each cell contains mean±std. For
FIDs and KIDs, they are the statistics over 10 runs. ⇑/⇓ indicates a higher/lower value
is better. Bold/underline font indicates the top/second best value in the column.

Realism Accuracy Regularity
Layout FID Layout KID Image FID Image KID IoU DocSim Overlap Misalign

Method ⇓ (×10−3) ⇓ ⇓ (×10−5) ⇓ ⇑ ⇑ ⇓ (×10−2) ⇓

Our ad banner dataset
LayoutGAN++ 4.25±0.01 16.62±0.05 28.40±0.06 58.54±1.45 0.163±0.002 0.130±0.001 0.104±0.003 0.759±0.021

READ 4.45±0.02 15.21±0.21 32.10±0.13 77.53±2.23 0.177±0.002 0.141±0.001 0.093±0.002 2.867±0.040

Vinci 38.97±0.10 231.70±1.22 58.12±0.20 833.00±3.55 0.104±0.001 0.143±0.001 0.243±0.003 0.271±0.010

LayoutTransformer 5.47±0.01 13.87±0.01 39.70±0.01 134.87±1.03 0.080±0.001 0.115±0.001 0.127±0.003 3.632±0.065

CGL-GAN 4.69±0.01 17.58±0.02 30.50±0.02 13.52±1.40 0.154±0.002 0.127±0.001 0.116±0.003 1.191±0.025

ICVT 12.54±0.06 64.49±0.12 30.11±0.05 62.29±2.54 0.163±0.002 0.137±0.001 0.423±0.006 0.682±0.018

LayoutDETR-GAN 3.19±0.01 5.62±0.01 27.35±0.04 8.31±0.80 0.208±0.002 0.151±0.000 0.101±0.003 0.646±0.011

LayoutDETR-VAE 3.25±0.03 11.97±0.26 27.47±0.04 7.70±0.22 0.216±0.002 0.152±0.001 0.119±0.002 1.737±0.037

LayoutDETR-VAE-GAN 3.23±0.02 10.75±0.09 27.88±0.11 4.18±0.24 0.210±0.002 0.151±0.001 0.117±0.002 1.439±0.023

CGL Chinese ad banner dataset
LayoutGAN++ 11.43±0.05 59.02±0.26 11.92±0.05 1082.68±20.71 0.061±0.001 0.083±0.000 0.593±0.007 0.729±0.017

READ 10.51±0.04 107.30±1.24 6.58±0.08 465.96±14.92 0.269±0.002 0.127±0.001 0.145±0.002 0.704±0.098

Vinci 12.06±0.01 80.45±0.43 5.38±0.02 320.99±6.30 0.266±0.002 0.125±0.001 0.093±0.002 0.433±0.042

LayoutTransformer 5.11±0.01 33.72±0.54 4.65±0.01 286.08±2.99 0.186±0.002 0.114±0.001 0.340±0.005 0.276±0.027

CGL-GAN 5.63±0.01 36.99±0.30 7.26±0.09 744.49±12.73 0.107±0.001 0.093±0.001 0.297±0.004 0.538±0.011

ICVT 10.76±0.14 119.10±1.14 4.22±0.05 109.33±3.85 0.169±0.002 0.109±0.001 0.327±0.004 0.340±0.060

LayoutDETR-GAN 2.40±0.01 13.60±0.29 4.11±0.06 22.60±0.79 0.157±0.002 0.106±0.000 0.187±0.003 0.464±0.010

LayoutDETR-VAE 8.57±0.10 94.84±1.09 4.21±0.03 144.27±5.18 0.208±0.002 0.120±0.001 0.288±0.003 0.374±0.064

LayoutDETR-VAE-GAN 2.65±0.05 12.37±0.60 2.66±0.02 19.30±1.04 0.180±0.002 0.110±0.001 0.134±0.002 0.401±0.070

CLAY mobile application UI dataset
LayoutGAN++ 14.12±0.06 60.20±0.52 7.49±0.02 148.33±4.02 0.049±0.001 0.078±0.001 0.817±0.115 1.057±0.028

READ 3.68±0.01 21.98±0.15 5.38±0.02 91.43±3.24 0.312±0.003 0.121±0.001 0.099±0.002 2.045±0.045

Vinci 22.98±0.02 216.90±0.66 13.04±0.05 677.42±7.22 0.178±0.002 0.104±0.001 0.253±0.004 2.526±0.055

LayoutTransformer 2.64±0.01 5.03±0.18 5.27±0.01 55.99±2.49 0.216±0.003 0.106±0.002 0.357±0.006 0.833±0.032

CGL-GAN 47.74±0.02 190.96±1.11 8.96±0.02 226.81±4.65 0.034±0.001 0.066±0.000 1.153±0.141 1.099±0.011

ICVT 4.56±0.04 18.35±0.26 5.26±0.03 69.83±2.24 0.208±0.002 0.105±0.001 0.396±0.006 1.066±0.043

LayoutDETR-GAN 1.84±0.02 3.01±0.15 5.22±0.02 11.19±1.39 0.261±0.003 0.113±0.001 0.083±0.002 0.773±0.016

LayoutDETR-VAE 4.99±0.01 30.18±0.32 5.49±0.03 107.55±3.57 0.327±0.003 0.123±0.001 0.205±0.004 5.119±0.019

LayoutDETR-VAE-GAN 3.98±0.12 18.39±0.98 5.87±0.02 82.31±1.56 0.158±0.002 0.108±0.001 0.148±0.002 0.691±0.030

Fig. 3: Radar plots for Table 3 on our ad banner dataset (top), CGL Chinese ad
banner dataset (middle), and CLAY mobile application UI dataset (bottom).
Each plot corresponds to a row (method) in the table. Each corner in a plot corresponds
to a column (metric) in the table. Values are normalized to the unit range, the higher
the better.

radar plot corresponds to a metric. We observe: (1) On our ad banner dataset,
at least one of our variants outperforms all the baselines in terms of realism and
accuracy. Our LayoutDETR-GAN achieves the second best in terms of regular-
ity. The margin to the best baseline is minor. This evidences the efficacy of our
understanding of multi-modality and sophisticated loss configurations. (2) On
CGL Chinese ad banner dataset, our variants lead in the most important real-
ism metrics by significant margins. Our LayoutDETR-VAE-GAN variant is the
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Fig. 4: Left: comparisons on the testing set of our ad banner dataset. We apply
the same rendering process to all methods: (1) Text font sizes and line breakers are
adaptively determined to tightly fit into their inferred boxes. (2) Text font colors and
button pad colors are adaptively determined to be either black or white whichever
contrasts more with the background. (3) Button text colors are then determined to
contrast with the button pads. (4) Text font is set to Arial. (5) Boxes are enforced
to horizontally center-align with each other. Middle: comparisons on CGL Chinese
ad banner dataset. Image patches that contain foreground text elements are resized
and overlaid on the background following the generated layouts. Right: comparisons
on CLAY mobile application UI dataset.

best overall and outperforms the LayoutDETR-GAN variant. This is because
CGL has more elements per sample and VAE plays a more important role than
GAN for complex layout arrangements. LayoutTransformer achieves a similarly
balanced performance. READ and Vinci lead in the accuracy metrics yet sig-
nificantly underperform in at least one other metric. (3) On CLAY dataset, at
least one of our variants outperforms all the baselines in all metrics. Our efficacy
generalizes in at least these two multimodal foreground domains: texts and im-
ages. (4) Error margins after “±” are consistently smaller than value differences
across rows, indicating the differences are statistically significant.

Qualitative comparisons are in Fig. 4. We observe: (1) For our and CGL
ad banner datasets, our designs understand the background the most effectively.
For example, they never overlay foreground elements on top of clutter back-
ground subregions. If the background looks symmetric, our layouts are placed
in the middle of the banners. (2) For these two datasets, our designs also ap-
proximate the real layout distribution the most closely, in terms of the relative
font sizes (box sizes) and spatial relations (box orders and distances). Even for
samples not close to their ground truth, our design variants still look the most
reasonable and most harmonic together with backgrounds. (3) CLAY dataset is
more challenging in terms of multimodal conditioning, as it has more tiny fore-
ground elements. Still, our layouts appear the best aligned and least overlapping,
with reasonable designs to harmonize with backgrounds, although different from
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Table 4: Pairwise user preferences (column method over row method) on our ad banner
dataset.

Method READ Vinci LayoutTransformer CGL-GAN ICVT LayoutDETR-GAN (ours)

LayoutGAN++ 49.8%p=0.4 45.6%p=3e−3 44.4%p=3e−4 53.9%p=0.01 47.1%p=0.04 55.7%p=2e−4

READ – 45.1%p=1e−3 44.5%p=3e−4 53.8%p=0.01 53.0%p=0.04 54.2%p=5e−3

Vinci – – 51.7%p=0.2 55.8%p=2e−4 56.9%p=1e−5 62.6%p=3e−15

LayoutTransformer – – – 57.1%p=8e−6 56.0%p=2e−4 63.5%p=2e−17

CGL-GAN – – – – 48.9%p=0.2 54.7%p=3e−3

ICVT – – – – – 55.4%p=6e−4

the ground truth. The supplementary material and attached video show more
uncurated results, including the impact of varying texts on layouts and our lim-
itation in challenging scenarios.

5.3 Graphical System Design and User Study

We integrate generators into a graphical system for user-friendly applications
in practice. The UI design and demo video are attached in the supplementary
material. With the graphical system, we can test a massive number of cases
and collect generation results in the wild. This facilitates us to analyze users’
subjective preferences for our designs. In specific, we tested on 308 ad banner
samples by rendering our designs and baseline designs via the graphical system.
We configured a binary comparison task between each pair of designs. In total,
we launched 308 ×

(
7
2

)
= 6, 468 jobs on AMT, and randomly assigned three

workers for each job. We simply asked each worker “Which of the two images
looks better?” We intentionally did not pre-define any criterion for the preference
so as to fully respect their subjective judgments. All workers have an approval
rate history above 90% on AMT. We did not set any restrictions for workers’
gender, race, sexuality, demographics, locations, remuneration rates, etc. Our
user study has been reviewed and approved by our ethical board.

Table 4 lists the ratio of users that prefer one design over another. To quantify
the statistical significance of our user study, we calculate the p-value of a null
hypothesis that the results of binary comparisons are equivalent to tossing a
fair coin. We calculate it via the cumulative distribution function of binomial
distribution, the smaller the more significant. In the last column all ratios are
above 50%: a majority of users prefer our designs over any baseline significantly,
considering all p-values ≪ 0.05. This validates that our layout designs are more
appealing to users. We attribute this to our effective approximation of real layout
distributions and multimodal understanding.

6 Conclusion
We present LayoutDETR for customizable layout design. It inherits the high
quality and realism of generative models, and benefits from object detectors to
understand multimodal conditions. Experiments show that we achieve a new
state-of-the-art performance for layout generation on a new ad banner dataset
and beyond. We implement our solution as a graphical system that facilitates
user studies. Users prefer our designs over several recent works.
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