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Abstract. Blind deblurring is an ill-posed inverse problem involving
the retrieval of a clear image and blur kernel from a single blurry im-
age. The challenge arises considerably when strong noise, where its level
remains unknown, is introduced. Existing blind deblurring methods are
highly susceptible to noise due to overfitting and disturbances in the
solution space. Here, we propose a blind deblurring method based on
a noise-robust kernel estimation function and deep image prior (DIP).
Specifically, the proposed kernel estimation function effectively estimates
the blur kernel even for strongly noisy blurry images given a clear image
and optimal condition. Therefore, DIP is adopted for the generation of a
clear image to leverage its natural image prior. Additionally, the multiple
kernel estimation scheme is designed to address a wide range of unknown
noise levels. Extensive experimental studies, including simulated images
and real-world examples, demonstrate the superior deblurring perfor-
mance of the proposed method. The official code is uploaded in https:
//github.com/csleemooo/BD_noise_robust_kernel_estimation.
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1 Introduction

Optical imaging systems such as brightfield microscopes, fluorescence micro-
scopes, or scanning electron microscopes (SEM) have a crucial role in histopathol-
ogy, inspection, and clinical or biological research by providing complicated
structural information of target imaging samples with high-resolution images.
However, perturbation or misalignment (e.g. defocus or aberrations) of the imag-
ing system due to its instability or systemic error brings blurry effects on the
captured image. Furthermore, additive Gaussian Noise severely degrades the
captured image quality. Such degradation process can be described as follows:

𝑦𝑚 = 𝑥 ∗ ℎ + 𝑛𝑔 (1)
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, where 𝑦𝑚 ∈ R𝑁 is measured blurry and noisy image, 𝑥 ∈ R𝑁 is a clear im-
age, ∗ denotes the convolution operator, ℎ ∈ R𝑀 is blur kernel or point spread
function (PSF) of the imaging system, and 𝑛𝑔 is additive noise. Retrieving clean
and focused image 𝑥 as well as blur kernel ℎ from a single degraded image 𝑦𝑚
is well known as blind deconvolution or blind image deblurring and has been
actively investigated for decades due to its ill-posedness. Although many previ-
ous approaches such as edge-selection-based method [5,16,37,38] or MAP-based
approach [4, 15, 18, 23, 29–31, 41, 44] show promising results, deblurring perfor-
mances significantly drop as the noise level increases.

In general, there is a trade-off when simultaneously trying to eliminate both
the blur effect and noise. For example, when focusing on removing the blur effect,
the estimated image may be severely corrupted by noise or other high-frequency
artifacts. On the other hand, when focusing on noise removal, there is a tendency
to overly emphasize smoothness, compromising the fine details of the image. So,
balancing the strength of deblurring and noise suppression is important to suc-
cessfully reconstruct 𝑥 and ℎ. Moreover, in cases where the noise level cannot
be accurately determined, the difficulty of the deblurring task increases signifi-
cantly.

This paper aims to address the challenge of blind deblurring in the presence
of strong and an unknown noise level. Instead of relying on sharp edge-selective
maps or prior information to estimate the blur kernel, we introduce a novel
kernel estimation function. This function analytically computes the blur kernel
when provided with a clear image, blurry image, and noise suppression factor.
The first characteristic of the proposed function is its ability to estimate the blur
kernel effectively even in scenarios with strong noise. Specifically, the noise sup-
pression factor included in the kernel estimation function is pivotal in mitigating
noise, and its optimal condition is derived accordingly. To further ameliorate this
characteristic, we designed a multiple kernel estimation scheme, which effectively
handles a wide range of noise levels, to perform blind deblurring even in situ-
ations where the noise level is unknown. The second characteristic is that the
estimation of only the clear image is sufficient for estimating a blur kernel. In
other words, the amount of information required for solving a blind deblurring
problem is much less than that needed by conventional methods, and we vali-
dated this through maximum a posteriori (MAP) analysis. This characteristic is
fully leveraged by employing DIP, known as one of the most effective methods for
capturing priors of natural images and solving inverse mapping problems [39].
The inherent robustness of DIP to noise, combined with the noise-robust multi-
ple kernel estimation scheme, enables superior performance in blind deblurring
tasks.

The main contributions of this paper can be summarized as follows:

1. We propose a noise-robust kernel estimation function along with its optimal
conditions, enabling the analytical acquisition of an ideal blur kernel when
provided with a clear image and a blurry image.

2. We design a multiple kernel estimation scheme to address a wide range of
unknown noise levels.
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3. We adopt DIP to leverage the natural image prior captured by the hand-
crafted neural network for the generation of both a clear image and inter-
mediate images which are used for estimating blur kernels.

4. The experimental results and detailed analysis with simulation and experi-
mental data consistently demonstrate that the proposed method outperforms
in blind deblurring tasks, particularly in scenarios where strong noise exists.

2 Related works

MAP-based method The Blind deblurring problem has been actively inves-
tigated for decades as a blurred image can be explained as many pairs of clear
images and blur kernels. One of the prevalent approaches involves addressing
the problem within the MAP framework consisting of priors of clear image and
blur kernel. For example, Krishnan et al . [18] proposed the normalized sparsity
regularization 𝑙1/𝑙2 to maximize the prior of clear image. Pan et al . [30] adopted
the dark channel on the premise that the dark channel of a clean image exhibits
much sparsity compared to the blurred image. Other sparsity constraints such
as TV-regularization [31], 𝑙0 norm [29], 𝑙𝑝 norm [15, 44] have been proposed to
regularize the solution space of a clear image. Also, there have been some prior
works to regularize the blur kernel estimation such as sparsity priors [23, 44].
Also, equality constraint

∑
ℎ = 1 and non-negativity ℎ ≥ 0 are imposed to blur

kernel estimation for the stability of convergence.
Recently, DIP has been incorporated into the MAP framework for blind de-

blurring problems. Specifically, the inherent capacity of a well-designed neural
network to capture image statistics is leveraged by substituting the regulariza-
tion function with the neural network itself. For example, Ren et al . [33] adopts
double-DIP [11] to infer the latent information of clear image and blur kernel.
The elaborately designed generators have shown state-of-the-art blind deblur-
ring performance without requiring explicit knowledge of clear image and blur
kernel. Bredell et al . [3] incorporates the Wiener filter as a guide during the
training of the DIP, effectively improving deblurring performance.

Noise-blind deblurring The deblurring problem becomes more challenging
when the noise level is not accurately known. One expected approach is to es-
timate the noise level first and then apply state-of-the-art deblurring methods.
However, the estimation of the noise level in blurry images has not yet been
reported, making it difficult to apply. To remedy this problem, methods such
as adopting Bayesian estimator [1,14], variational expected maximization-based
method [28], and other few training-based methods [9,19,35] have been proposed
and shown state-of-the-art deblurring performances.
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3 Method

3.1 Wiener deconvolution method

The core idea of the Wiener deconvolution method is to find an inverse filter
𝑤ℎ→𝑥 that can estimate true signal 𝑥. The optimal inverse filter can be derived
from error minimization of the difference between the inverse filtered image 𝑥

and target image 𝑥: 𝜖 = E[|𝑋 − 𝑋 |2], where E denotes expectation, 𝑋 and 𝑋

is Fourier transform of 𝑥 and 𝑥, respectively. The estimated true signal can be
acquired from the following equation:

𝑋 =
𝐻

|𝐻 |2 + 𝜂
𝑌𝑚 (2)

, where ·̄ denotes complex conjugation and 𝜂 is the ratio between the mean
power spectral density (mPSD) of noise and signal. As Eq. (2) is simple but
effective in reducing noise and deblur the degraded image, many of previous
works [3, 10, 24, 42] employed Wiener filter to their deblurring framework. In-
spired by this, we derive the following kernel estimation function.

3.2 Noise-robust kernel estimation function

Claim 1. Given blurry image 𝑦𝑚 and clean image 𝑥, the blur kernel ℎ̂ can be
estimated by 𝐻 = 𝑋

|𝑋 |2+𝑘𝑌𝑚, where 𝐻, 𝑌𝑚, and 𝑋 are Fourier transform of ℎ̂, 𝑦𝑚,
and 𝑥, respectively, and 𝑘 is the ratio between the mean power spectral density
of noise and blur kernel.

Proof. We formulated the following mean squared error to derive a kernel es-
timation function using an inverse filter 𝑤𝑥→ℎ.

𝜖 = E[|𝐻 − 𝐻 |2] = E[|𝐻 −𝑊 [𝐻𝑋 + 𝑁𝑔] |2] = E[| [1 −𝑊𝑋]𝐻 −𝑊𝑁𝑔 |2] (3)

Here, the subscript of an inverse filter 𝑤 is dropped for the sake of simplicity.
As we assume that the noise 𝑛 has zero mean and independent to blur kernel 𝑘,
Eq. (3) can be simplified as

𝜖 = (1 −𝑊𝑋) (1 −𝑊𝑋)𝑆𝐻 +𝑊𝑊𝑆𝑁𝑔
(4)

, where 𝑆𝐻 = E[|𝐻 |2] and 𝑆𝑁𝑔
= E[|𝑁𝑔 |2] are the mPSD of blur kernel and

noise, respectively, and ·̄ denotes complex conjugation. Eq. (4) can be solved by
computing the derivative of 𝜖 with respect to 𝑊 to become zero. Now, we can
calculate the 𝐻 from 𝑋 and 𝑌𝑚 as follows:

𝐻 = 𝑊𝑌𝑚 =
𝑋

|𝑋 |2 + 𝑘
𝑌𝑚 (5)

, where noise suppression factor 𝑘 is the ratio between the mPSD of noise and
blur kernel. The final ℎ̂ can be acquired by applying an inverse Fourier transform



Blind image deblurring with noise-robust kernel estimation 5

σ
=
1
0

σ
=
2
0

K
e

rn
e

l 
e

s
ti
m

a
ti
o

n
 f
u

n
c
ti
o

n

(a)

M
e

a
n

 s
q

u
a

re
d

 e
rr

o
r 

(x
1

0
-5
)

Noise suppression factor

4.5

1.5
10-2 100 102 104

Minimum error

Optimal condition

(b)

Fig. 1: Investigation of the working behavior of the proposed kernel estimation func-
tion. (a) Visualization of the estimated blur kernel from the Eq. (6), with 𝑘= 0.1𝜎2, 𝜎2,
10𝜎2, and 100𝜎2, (b) Estimation error of blur kernel, and visual comparison between
the estimated kernels under the optimal condition (solid line) and with those having
minimum error values (dashed line).

which is followed by absolute and cropping operation, 𝐶 : R𝑁 → R𝑀 to Eq. (5).
The resultant PSF can be described as follows:

ℎ = 𝐶 (W(𝑦𝑚, 𝑥, 𝑘)) = 𝐹 (𝑦𝑚, 𝑥, 𝑘) (6)

, where W represents inverse filtering of 𝑦𝑚 with 𝑤. Although Eq. (6) is a
closed-form solution, the uncertainty of mPSD of noise and blur kernel prevents
computation. In the case of the Eq. (2), noise-to-signal ratio 𝜂 should be carefully
selected for successful reconstruction [8, 12]. Similarly, optimal blur kernel esti-
mation requires the appropriate noise suppression factor 𝑘. The optimal value
for 𝑘 is derived and analyzed in the following.

Claim 2. Given Gaussian noise ∼ N(0, 𝜎2), the optimal noise suppression fac-
tor is given as 𝑘 ≃ 𝐴(𝜎)2, where 𝐴 represents the smoothness of blur kernel.

As we have discussed, the noise suppression factor in Eq. (5) is the ratio be-
tween mPSD of noise and blur kernel which is analytically derived. According to
the Wiener-Khintchine theorem, the power spectral density of a random process
can be expressed as the Fourier transform of auto-correlation [20,21]. In the case
of Gaussian noise ∼ N(0, 𝜎2), the auto-correlation is defined as 𝑅𝑛𝑛 (𝜏) = 𝜎2𝛿(𝜏)
so its Fourier transform, i.e. mPSD, is : 𝑆𝑁𝑔

= 𝜎2. Although the mPSD of the
blur kernel rarely is known, it represents the smoothness of the blur kernel. Here,
we empirically found that 𝐴 ≃ 1 for sparse blur kernel such as motion blur while
𝐴 ≃ 100 for smooth blur kernel such as Gaussian blur.

To see how the noise suppression factor affects the reconstruction quality of
the blur kernel, we reformulate the Eq. (5) as follows:

𝐻 =
𝑋

|𝑋 |2 + 𝑘
(𝐻𝑋 + 𝑁𝑔) = 𝐻 + 𝐻

(
−𝑘 + 𝑋𝑁𝑔/𝐻

|𝑋 |2 + 𝑘

)
(7)
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Fig. 2: (a) Illustration of the mean squared error between the measured blurry image
𝑦𝑚 and the estimated blurry image 𝑦𝑒𝑠𝑡 . (b) Visual comparison of the 𝑦𝑚 and 𝑦𝑚− 𝑦𝑒𝑠𝑡
for different 𝑘. The inset shows the estimated blur kernel.

Fig. 1 (a) shows the reconstructed blur kernel for different noise suppression
factors. When 𝑘 = 𝜎2, the proposed kernel estimation function accurately recon-
structs the kernel even in strong noise. However, when 𝑘 is small compared to
the noise level, i.e. 𝑘 ≪ 𝑋𝑁𝑔

𝐻
, Eq. (7) can be expressed as 𝐻 = 𝐻 + 𝑁𝑔

𝑋
. As shown

in Fig. 1 (a) where 𝑘 = 0.1𝜎2, the Fourier spectrum of noise normalized by the
spectrum of a clear image, i.e. 𝑁𝑔

𝑋
, is added to the blur kernel which leads to

severe degradation of the reconstructed blur kernel. On the other hand, when 𝑘

is too large, i.e. 𝑘 ≫ 𝑋𝑁𝑔

𝐻
, Eq. (7) can be expressed as 𝐻 = 𝐻 (1 − 𝑘

|𝑋 |2+𝑘 ). As
shown in Fig. 1 (a) where 𝑘 = 10𝜎2 and 𝑘 = 100𝜎2, since the high-frequency
spectrum of 𝐻 becomes zero due to the 𝑘

|𝑋 |2+𝑘 ≈ 1, the blur kernel exhibits
as a low-pass filtered. Also, Fig. 1 (b) demonstrates that the proposed optimal
condition closely approximates the minimization of kernel estimation error. The
further analysis for 𝐹 is described in Supplementary S1.

3.3 Multiple kernel estimation for unknown noise level

A classical strategy to solve inverse problems including blind deblurring is min-
imizing penalized least square (PLS) methods. The data-fidelity term in PLS
formulation of the blind deblurring problem is: argmin𝑥,ℎ∥𝑦𝑚 − 𝑥 ∗ ℎ∥22. In our
cases, as ℎ can be estimated through 𝐹, the data-fidelity term can be expressed
as argmin𝑥 ∥𝑦𝑚 − 𝑥 ∗ 𝐹 (𝑦𝑚, 𝑥, 𝑘)∥22, which requires setting of 𝑘 for optimization.
However, because we cannot accurately determine the noise level, setting the
optimal 𝑘 is extremely challenging. Nevertheless, since 𝐹 is a closed-form in-
verse mapping function, which minimizes Eq. (3), deviating from the optimal
condition of 𝑘 results in increased noise or blurriness rather than leading to in-
correct solutions. In other words, even if the 𝑘 value is not strictly set, as long
as it falls within a certain boundary, the data-fidelity term can be minimized.
We verified this by examining the mean squared error (MSE) between 𝑦𝑚 and
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(a) Blur (b) GT (c) 𝑥0 (d) 𝑥1 and ℎ1 (e) 𝑥2 and ℎ2 (f) 𝑥3 and ℎ3

Fig. 3: Visualization of the blind deblurring results using the multiple kernel estimation
scheme. (a) Blurry image degraded with Gaussian noise level of 𝜎 = 20, (b) ground
truth, (c) reconstructed clear image, and estimated intermediate image and blur kernels
with (d) 𝑘 = 52, (e) 𝑘 = 152, and (f) 𝑘 = 252.

𝑦𝑒𝑠𝑡 = 𝑥 ∗ 𝐹 (𝑦𝑚, 𝑥, 𝑘) by changing 𝑘. As shown in Fig. 2 (a), the MSE decreases
as 𝑘 approaches the optimal condition. Also, the lower error value is maintained
over a large range of 𝑘, and there exists a range around the optimal suppression
factor where |𝑦𝑚− 𝑥 ∗𝐹 (𝑦𝑚, 𝑥, 𝑘) | ≤ 𝜀 even if ℎ is not optimally estimated (Fig. 2
(a) red box). Fig. 2 (b) further demonstrates this by visually comparing 𝑦𝑒𝑠𝑡 ,
𝐹 (𝑦𝑚, 𝑥, 𝑘), and differential map 𝑦𝑚 − 𝑦𝑒𝑠𝑡 for different 𝑘 values when noise level
is 𝜎 = 10. Based on this observation, we propose a multiple kernel estimation
scheme that handles a wide range of unknown noise levels by setting multiple
values for 𝑘, rather than a specific value as follows:

ℎ𝑖 = 𝐹 (𝑦𝑚, 𝑥𝑖 , 𝑘𝑖), ∀𝑖 = 1, ..., 𝑁𝑘 (8)

, where ℎ𝑖 is the estimated blur kernel given intermediate image 𝑥𝑖 and 𝑘𝑖 is
noise suppression factors corresponding to different noise levels. The fundamental
concept of this framework lies in managing unknown noise levels by setting 𝑘𝑖
from low to high, thus covering a broad range of noise that exists in nature. Here,
we also introduce intermediate images, which are separately estimated from a
clear image, to compensate for the error term in Eq. (7) caused by a suboptimal
setting of 𝑘, thereby stabilizing the optimization process. Fig. 3 shows an example
of deblurred image 𝑥0, estimated intermediate images 𝑥𝑖 and blur kernels ℎ𝑖. A
detailed analysis for intermediate images and the performance of multiple kernel
estimation scheme, compared to case where noise level is precisely known, are
presented in Supplementary S2. We demonstrate that the proposed multiple
kernel estimation scheme exhibits deblurring performance comparable to cases
where the noise level is precisely known, and see for the detailed analysis.

3.4 MAP approach for blind deblurring

Conventionally, the MAP approach for blind deblurring is described as follows:

𝑝(𝑥, ℎ |𝑦) ∝ 𝑝(𝑦 |𝑥, ℎ)𝑝(𝑥)𝑝(ℎ) (9)

, where 𝑝(𝑦 |𝑥, ℎ), 𝑝(𝑥), and 𝑝(ℎ) correspond to data-fidelity term, clear image
prior, and blur kernel prior, respectively. Many previous works carefully designed
the priors to strictly confine the feasible solution space.

In this work, we show that leveraging the capabilities of DIP allows solving
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Fig. 4: Workflow of the proposed method. A single deep neural network generates the
deblurred image 𝑥0, and the intermediate images 𝑥𝑖 which are used to estimate blur
kernel ℎ𝑖 with the noise suppression factor 𝑘𝑖 .

the blind deblurring problem by estimating solely a clear image even in the pres-
ence of noise. Specifically, as blur kernel can be analytically obtained from Eq. (6)
if clear image 𝑥 and blurry image 𝑦𝑚 are given, Eq. (9) can be reformulated as
follows:

𝑝(𝑥, ℎ |𝑦) = 𝑝(ℎ |𝑥, 𝑦)𝑝(𝑥 |𝑦) ∝ 𝑝(𝑦 |𝑥)𝑝(𝑥) (10)
As shown in Eq. (10), it is evident that the blind deblurring problem can be
addressed by solely focusing on estimating a clear image, while also effectively
handling noise owing to the robustness of the proposed kernel estimation func-
tion. Therefore, we aim to utilize DIP, one of the optimal methods for estimating
natural images.

3.5 Blind deblurring based on noise-robust kernel estimation

We formulate the noise-robust blind deblurring method as follows:

min
𝑥0 ,ℎ1 , · · · ,ℎ𝑁𝑘

1

𝑁𝑘

𝑁𝑘∑︁
𝑖=1

| |𝑦𝑚 − 𝑥0 ∗ ℎ𝑖 | |22 + 𝜆𝑅(𝑥0)

𝑠.𝑡. 𝑥0 = 𝑔𝜙0
(𝐺 𝜃 (𝑧)), ℎ𝑖 = 𝐹 (𝑦𝑚, 𝑔𝜙𝑖

(𝐺 𝜃 (𝑧)), 𝑘𝑖)

ℎ
𝑗

𝑖
≥ 0,

∑︁
𝑗

ℎ
𝑗

𝑖
= 1 ∀ 𝑗 = 0, 1, · · · , 𝑀

(11)

, where 𝑧 is fixed tensor randomly sampled from uniform distribution, (·) 𝑗 de-
notes 𝑗-th elements, 𝑔𝜙𝑖

is 𝑖-th group convolution filter convolved with the last
feature layer of 𝐺 𝜃 to generate 𝑥𝑖, 𝑅(·) is regularization function for 𝑥0, and 𝜆

is regularization weight. Although we adopt total variation for 𝑅(·), other regu-
larization functions such as 𝑙0-sparsity or 𝑙1/𝑙2 norm can be used.

As shown in Eq. (11), the blind deblurring problem can be solved by focusing
on estimating 𝑥. Also, it should be noted that the estimation of 𝑥0 and 𝑥𝑖 can
be achieved with a single neural network as 𝑥𝑖 should have a similar appearance
with 𝑥0.
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Algorithm 1 Blind deblurring with the noise-robust kernel estimation function
1: Input: Blurred image 𝑦𝑚, pre-defined 𝜖, 𝜆1, 𝜆2, 𝑘1, 𝑘2, · · · , 𝑘𝑁𝑘

2: Output: clear image 𝑥0 and estimated blur kernels ℎ1, ℎ2, · · · , ℎ𝑁𝑘

3: Sample 𝑧 from uniform distribution
4: for 𝑡 = 1 to 𝑁𝑖𝑡𝑒𝑟 do
5: [ 𝑓0, 𝑓1, ..., 𝑓𝑁𝑘

] = 𝐺 𝜃 (𝑧)
6: 𝑥0 = 𝑔𝜙0

( 𝑓0)
7: L𝑡𝑜𝑡 = 0
8: for 𝑖 = 1 to 𝑁𝑘 do
9: ℎ𝑖 = 𝐹 (𝑦𝑚, 𝑔𝜙𝑖

( 𝑓𝑖), 𝑘𝑖)
10: ℎ𝑖 = |ℎ𝑖 | ⊲ Non-negativity
11: ℎ𝑖 = ℎ𝑖/(

∑
ℎ𝑖 + 𝜖) ⊲ Eqauiltity

12: L𝑡𝑜𝑡 = L𝑡𝑜𝑡 + 1
𝑁𝑘

(
| |𝑦𝑚 − 𝑥0 ∗ ℎ𝑖 | |22 + 𝜆1 | |W(𝑦𝑚, 𝑔𝜙𝑖

( 𝑓𝑖), 𝑘𝑖) | |22
)

13: end for
14: L𝑡𝑜𝑡 = L𝑡𝑜𝑡 + 𝜆2𝑇𝑉 (𝑥0)
15: Update {𝜃, 𝛟} using ∇𝜃,𝛟L𝑡𝑜𝑡

16: end for
17: return 𝑥0, ℎ1, ℎ2, · · · , ℎ𝑁𝑘

3.6 Optimization of the proposed method

The workflow of the proposed method is illustrated in Fig. 4 and the network
parameters 𝜃, 𝛟 = {𝜙0, ...𝜙𝑁𝑘

} are optimized by the following cost function:

min
𝜃,𝜙0 ,...𝜙𝑁𝑘

1

𝑁𝑘

𝑁𝑘∑︁
𝑖=1

( | |𝑦𝑚 − 𝑔𝜙0
(𝐺 𝜃 (𝑧)) ∗ 𝐹 (𝑦𝑚, 𝑔𝜙𝑖

(𝐺 𝜃 (𝑧)), 𝑘𝑖) | |22

+ 𝜆1 | |W(𝑦𝑚, 𝑔𝜙𝑖
(𝐺 𝜃 (𝑧)), 𝑘𝑖) | |22) + 𝜆2𝑇𝑉 (𝑔𝜙0

(𝐺 𝜃 (𝑧)))
𝑠.𝑡. 𝐹 (𝑦𝑚, 𝑔𝜙𝑖

(𝐺 𝜃 (𝑧)), 𝑘𝑖) 𝑗 ≥ 0,∑︁
𝑗

𝐹 (𝑦𝑚, 𝑔𝜙𝑖
(𝐺 𝜃 (𝑧)), 𝑘𝑖) 𝑗 = 1 ∀ 𝑗 = 0, 1, · · · , 𝑀

(12)

, where 𝑇𝑉 is total variation, and 𝜆1 and 𝜆2 are regularization weights. The non-
negativity and equality constraints to the estimated blur kernel are induced by
taking an absolute operation followed by dividing each element by the sum of all
elements. Also, we additionally introduce a sparsity regularization term for the
inverse filtered image, W(𝑦𝑚, 𝑔𝜙𝑖

(𝐺 𝜃 (𝑧)), 𝑘𝑖), as all pixels except for the blur
kernel positioned should have a value of 0. It is important to emphasize that our
proposed multiple kernel estimation scheme, rather than regularization terms, is
the key enabler for robust deblurring (see the ablation study in Supplementary
S7). The optimization of Eq. (12) is formally summarized in Algorithm 1.
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(a) Blur (b) GT (c) 𝑙1/𝑙2 (d) Pure-let (e) WDIP (f) Ours

Fig. 5: Qualitative comparison of blind deblurring results on AFHQ datasets [6]. (row
1): AFHQ-dog motion deblurring with a kernel size of 43×43 and noise level of 𝜎 = 10,
(row 2): AFHQ-cat motion deblurring with a kernel size of 39 × 39 and noise level of
𝜎 = 20. Here, the estimated kernel for 𝑘2 = 152 is presented in (f) while others are
presented in Supplementary S5.

4 Experiments

4.1 Experiments on simulated image

Motion deblur on AFHQ dataset [6]. To demonstrate the deblurring per-
formance on motion blur, we conduct experiments on AFHQ-dog 256 × 256 and
AFHQ-cat 256×256 datasets. Specifically, we select 500 test images as an evalu-
ation dataset. To synthesize motion-blurred images, motion-blur kernels of vary-
ing sizes, ranging from 21 × 21 to 51 × 51, are randomly generated [7], and each
kernel is then convolved with a clear image. Finally, Gaussian noise 𝜎 = 10 and
𝜎 = 20 are added to the synthesized blurry images.

The proposed method (refer Supplementary S3 and S6 for implementation
detail) is compared with other state-of-the-art blind deblurring methods includ-
ing Sanghvi et al . [35], Xu et al . [40], Pure-let [24], Selfdeblur [33], WDIP [3],
𝑙1/𝑙2 [18], Pan-DCP [30], Pan-𝑙0 [29], and Liang et al . [4], and see Supplementary
S4 for implementation details. Note that we exclusively choose blind deblurring
methods that do not utilize any training dataset to ensure a fair comparison.
When optimizing the proposed method, 𝑘1 = 52, 𝑘2 = 152, and 𝑘3 = 252 are set
to accommodate a wide range of unknown noise levels. The representative blind
deblurring results from 𝑙1/𝑙2, Pure-let, WDIP, and the proposed method are
qualitatively compared in Fig. 5. Due to the severe degradation caused by Gaus-
sian noise in blurred images, the deblurring results obtained from the compared
methods are greatly compromised. Even with laborious adjustment of hyperpa-
rameters, these methods tend to overfit strongly to the noise. In contrast, the
deblurring results from the proposed method shown in Fig. 5 (f) demonstrate
noise-robust deblurring by effectively reconstructing clear images and blur ker-
nels simultaneously even in the absence of precise knowledge about the noise
level. Furthermore, quantitative comparison presented in Tab. 1 indicates that
the proposed method achieves state-of-the-art performance in terms of Peak



Blind image deblurring with noise-robust kernel estimation 11

Table 1: Quantitative comparison of blind deblurring results on AFHQ datasets [6]
with different noise levels (𝜎 = 10 and 𝜎 = 20). Bold: best.

AFHQ-dog AFHQ-cat

𝜎 = 10 𝜎 = 20 𝜎 = 10 𝜎 = 20

Method PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

Proposed 24.23 0.632 22.90 0.539 23.33 0.590 22.11 0.497
SelfDeblur [33] 13.54 0.107 12.02 0.063 12.83 0.080 11.44 0.046
WDIP [3] 14.11 0.115 12.43 0.066 13.43 0.086 11.90 0.049
𝑙1/𝑙2 [18] 19.69 0.335 16.03 0.146 19.36 0.308 15.92 0.140
Pan-DCP [30] 10.24 0.060 7.698 0.024 10.17 0.053 7.713 0.022
Pan-𝑙0 [29] 8.311 0.031 6.836 0.016 8.262 0.029 6.922 0.016
Liang et al . [4] 10.68 0.061 7.711 0.023 10.48 0.057 7.694 0.022
Sanghvi et al . [35] 16.84 0.520 16.84 0.522 16.26 0.465 16.38 0.471
Xu et al . [40] 16.51 0.398 15.01 0.295 15.94 0.357 14.34 0.258
Pure-let [24] 21.02 0.534 19.94 0.477 20.78 0.482 19.79 0.429

Signal-to-noise ratio (PSNR) and Structural Similarity Index Measure (SSIM).
See Supplementary S5 for additional qualitative comparisons of deblurring re-
sults and quantiative comparisons at low-noise levels (𝜎 = 2 and 𝜎 = 5).

Sun et al . dataset [38]. To further showcase the capability of the proposed
method, we utilize the Sun et al . dataset, comprising 80 natural images and 8
blur kernels, resulting in the generation of 640 blurry images. The representative
blind deblurring results are presented in Fig. 6. The deblurring results obtained
from compared methods - 𝑙1/𝑙2, Pan-DCP, and WDIP - are catastrophically
corrupted when noise increases. Conversely, the proposed method shows superior
deblurring results regardless of the noise level. Also, as shown in Tab. 2, the
proposed method establishes the state-of-the-art deblurring performance.

4.2 Experiments on scanning electron microsope

Scanning electron microscopes (SEM) provide sub-nanometer resolution images
by detecting the back-scattered or emitted electrons from the sample. However,
the incident electrons, which determine the shape of the PSF of SEM can be eas-
ily distorted when the electron passes through several lenses and coils, see Fig. 7
(a). Additionally, random fluctuations of the incident electrons cause Gaussian
noise, significantly compromising image quality, see Fig. 8 (a). Correcting such
degradation often requires manual adjustment of system parameters, such as
working distance or stigmator, by experts. To automate this correction process
image quality assessment based method [17,25,26], bayesian optimization based
approach [2,34], and feedback-loop based deep learning approach [22,27,36] have
been proposed. Nevertheless, previous methods necessitate iterative measure-
ment of SEM images to determine correction parameters, rendering the process
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(a) Blur (b) GT (c) 𝑙1/𝑙2 (d) Pan-DCP (e) WDIP (f) Ours

Fig. 6: Qualitative comparison of blind deblurring results on Sun et al. datasets [38]
with Gaussian noise level of (row 1): 𝜎 = 10 and (row 2): 𝜎 = 20. Here, the estimated
kernel for 𝑘2 = 152 is presented in (f) while others are presented in Supplementary S5.

Table 2: Quantitative comparison of blind deblurring results on Sun et al . datasets [38]
with different noise levels (𝜎 = 10 and 𝜎 = 20). Bold: best.

𝜎 = 10 𝜎 = 20

Method PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

Proposed 25.94 0.677 24.83 0.608
SelfDeblur [33] 17.12 0.202 15.44 0.136
WDIP [3] 17.60 0.214 12.89 0.103
𝑙1/𝑙2 [18] 18.87 0.173 14.97 0.073
Pan-DCP [30] 11.62 0.059 8.321 0.021
Pan-𝑙0 [29] 9.590 0.030 8.065 0.017
Liang et al . [4] 11.96 0.060 8.522 0.022
Xu et al . [40] 14.10 0.207 13.45 0.128
Pure-let [24] 18.87 0.254 17.31 0.121

time-consuming and energy-inefficient.

Here, we demonstrate the effectiveness of the proposed blind deblurring
method in correcting degraded SEM images. In general, well-focused PSF of
SEM can be approximated to Gaussian shape [32, 43], we set 𝐴 = 100. Addi-
tionally, since the exact noise level of SEM images is rarely known, we set the
noise suppression factor in a broad range, such as 𝑘1 = 10000, 𝑘2 = 20000, and
𝑘3 = 30000. Fig. 7 and Fig. 8 presents visual comparisons of blind deblurring re-
sults. Although methods such as Pan-DCP or WDIP have successfully performed
deblurring on images with weak noise and simple patterns, their performance no-
ticeably deteriorates in cases of strong noise or complex patterns. In contrast,
as shown in Fig. 7 (f) and Fig. 8 (f), the proposed method consistently recon-
structs both the clear image and the PSF, regardless of the complexity of the
image or the level of noise. Especially, as shown in the second row of Fig. 7, when
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(a) Blur (b) GT (c) 𝑙1/𝑙2 (d) Pan-DCP (e) WDIP (f) Ours

Fig. 7: Qualitative comparison of blind deblurring results on SEM image of semicon-
ductor. (row 1): Circular ingredient of a semiconductor with the image size of 512×512,
(row 2): Wire structure of semiconductor with the image size of 512× 512. The ground
truth PSFs are obtained by the Eq. (6) with 𝑘 = 10000.

(a) Blur (b) GT (c) 𝑙1/𝑙2 (d) Pan-DCP (e) WDIP (f) Ours

Fig. 8: Qualitative comparison of blind deblurring results on SEM image severely de-
graded by noise, with an image size of 256 × 256. The ground truth PSFs are obtained
by the Eq. (6) with 𝑘 = 10000.

examining an image with blurred wire patterns, predicting the structure can be
challenging even for human observers. However, the deblurred images from the
proposed method show a remarkable similarity to the ground truth images and
one can effectively investigate the wire structures.

4.3 Experiments on two-photon excitation fluorescence microscope

We further applied the proposed method as one of the real-world applications to
a two-photon excitation fluorescence microscope (2PEF) image. In general, the
imaging model of 2PEF follows Eq. (1) and its effective PSF can be expressed
as the square of illumination PSF [13]. Also, due to the inherent characteristic
of weak signals of fluorescence, the measured signal is often contaminated by
noise. Here, we captured the fluorescence signal of 2mm beads from the custom-
built 2PEF setup. As shown in Fig. 9 (a), the measured image from the 2PEF
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(a) Blur (b) Ours

Fig. 9: Visualization of blind deblurring results of the proposed method on blurry two-
photon excitation fluorescence microscope image with an image size of 384 × 384.

exhibits a blurry appearance, attributed to the diffraction limit of the illumi-
nation PSF, and is further corrupted by noise. However, when the proposed
deblurring method is applied to the measured image, illustrated in Fig. 9 (b), it
effectively reconstructs the sharp edges of beads and facilitates easy discernment
of clustered beads.

5 Conclusions

In this paper, we propose a noise-robust blind deblurring method combining the
multiple kernel estimation scheme and the DIP. The most critical aspect of the
proposed method, the noise-robust kernel estimation function, successfully re-
stores the PSF even in situations of high noise when provided only with clear
and blurry images. This function is developed to the multiple kernel estimation
scheme that can be applied even in scenarios where noise level cannot be ac-
curately predicted. Additionally, by effectively leveraging DIP, which acts as a
powerful prior for natural images, we can estimate a clear image from a single
well-deigned neural network. The discussion of limitations of the proposed work
and ablation study are presented in Supplementary S7. Our proposed method
has been demonstrated to operate effectively in both simulated images and real-
world applications and outperforms compared to the previous state-of-the-art
methods.
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