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Abstract. Data-efficient learning has garnered significant attention, es-
pecially given the current trend of large multi-modal models. Recently,
dataset distillation has become an effective approach by synthesizing
data samples that are essential for network training. However, it remains
to be explored which samples are essential for the dataset distillation
process itself. In this work, we study the data efficiency and selection for
the dataset distillation task. By re-formulating the dynamics of distilla-
tion, we provide insight into the inherent redundancy in the real dataset,
both theoretically and empirically. We propose to use the empirical loss
value as a static data pruning criterion. To further compensate for the
variation of the data value in training, we find the most contributing
samples based on their causal effects on the distillation. The proposed
selection strategy can efficiently exploit the training dataset, outperform
the previous SOTA distillation algorithms, and consistently enhance the
distillation algorithms, even on much larger-scale and more heteroge-
neous datasets, e.g ., full ImageNet-1K and Kinetics-400. We believe this
paradigm will open up new avenues in the dynamics of distillation and
pave the way for efficient dataset distillation. Our code is available
on https://github.com/silicx/GoldFromOres-BiLP.

Keywords: Dataset Distillation · Data Pruning

1 Introduction

Data is the core of deep learning. In the era of large data and models [22,36,42]
as their size and complexity continue to grow, data-efficient learning is increas-
ingly crucial for achieving high performance with a limited computing budget.
Techniques such as pruning, quantization, and knowledge distillation have been
developed to reduce model size without sacrificing performance. Recently, dataset
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Fig. 1: (1) Left: Severe data redundancy in the dataset distillation process. Taking
CIFAR10 and DC [53] as an example, pruning 90% of the real data does not reduce
the performance. With our proposed empirical loss criterion, only 0.04% real samples
are sufficient for distillation and 10% samples outperform the full real dataset. (2)
Right: Building upon the empirical loss, we propose to dynamically select samples by
their ITE value, which is the difference of meta gradient with/without the sample.

distillation [44] has emerged as a promising approach toward data-efficient AI,
where a small and condensed dataset (namely synthetic dataset) is learned from
the whole large dataset (namely real dataset), to maximize the performance of
models trained on distilled synthetic data.

Currently, the existing distillation algorithms focus on the evolution of the
matching strategies for real and synthetic data [3, 35, 39, 52, 53] or refining and
accelerating the bi-level optimization [26, 27, 32, 44]. However, preliminary ex-
periments show that the real dataset could be so redundant during the dataset
distillation itself that pruning part of the dataset will not reduce the distillation
performance (as shown in Fig. 1). Therefore, an appropriate approach to finding
the most valuable real data would help the distillation algorithms to learn the
most key data patterns and knowledge. Currently, it is still under-explored how
to analyze the samples’ value on the dataset distillation task and efficiently select
the real dataset. Recently, YOCO [10] proposes an interesting task of pruning
the synthetic dataset. DREAM [24] prunes the real data within each batch from
the aspect of feature distribution. In comparison, we would principally analyze
the intrinsic worth of each real data sample and its relevance to the distillation
optimization process from a more holistic perspective.

In this work, we revisit the selection and utilization of real datasets for dataset
distillation. We first describe the dataset distillation as the matching of training
dynamics on real and synthetic data, where the dynamics are formulated with
the neural tangent kernel (NTK) [12]. Further analysis shows that the small
scale of synthetic data motivates pruning those real data samples with large
empirical loss values. The stability of NTK for wide neural networks also allows
for dropping these real samples at the beginning of dataset distillation, which
indicates redundancy in real data and offers efficiency. To support the the-
oretical analysis, we conduct comprehensive experiments of pruning real data
before distillation. In most scenarios, pruning some real data does not reduce
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the distillation performance. For instance, with CIFAR10 for DC [53] and sin-
gle instance-per-class (IPC=1), removing over 99.9% of the real data does not
affect its performance. We argue that leveraging redundancy in dataset distilla-
tion is more significant than regular machine learning applications since synthetic
datasets usually possess low capacity, as shown in Fig. 1.

However, pruning real data before distillation does not consistently enhance
the distillation performance, which implies that the value or utility of the real
samples could vary during the training process. To identify the importance of
real samples, we measure their contribution to the learning of the synthetic
data from the perspective of causal effect. We compare the synthetic gradient
with or without each real sample, which is essentially the individual treatment
effect (ITE) of the real samples for the dataset distillation task. Based on the
principles, we propose a new and concise real data sampling algorithm, which
can be implemented as a plug-and-play for most dataset distillation methods.
In comprehensive experiments, our approach can thus efficiently use the key
samples and consistently enhance the base algorithm.

Overall, our contributions are: 1) In-depth insight on data redundancy for
dataset distillation. 2) Two core principles for real sample selection, supported
both theoretically and empirically. 3) A plug-and-play selection strategy for prac-
tical dataset distillation to enhance SOTA methods.

2 Related Work

Dataset Distillation is a process of condensing a large dataset into a smaller
and more representative dataset while maintaining the performance, which has
been applied to various domains including images, text [28, 29], videos [45],
graph [13, 14], time series [9, 25], medical [20, 21] and multimodal data [46, 47],
etc. Existing approaches can be roughly classified into: 1) Meta-Model Matching
maintains the transferability of the synthetic data, by optimizing the loss on
the original dataset of models trained on the synthetic data. In [44] the task of
data distillation and the meta-model matching framework was first proposed.
In [32] kernel ridge regression was exploited to reduce computational cost and
is further extended to infinite wide networks [33]. In [55] the optimization of
synthetic data/classifier and feature extractor was separated. In [27] the meta-
gradient was computed by exploiting implicit gradients. 2) Gradient Matching
aligns the gradients of the synthetic and real datasets. It was proposed in [53]
and further improved in [51] to perform the same image augmentations on both
the real and synthetic data. 3) Distribution Matching, where [52] matches feature
distributions of the synthetic and real data, which is simple but effective. In [43]
layer-wise feature alignment and early exit conditions are used to promote it.
In [54] it was further enhanced with regularizers and model pool. 4) Trajectory
Matching: In [3] the authors proposed MTT to match the training trajectory of
the model parameters and in [6] the memory consumption of MTT was reduced
and label learning was used. 5) Factorization of synthetic data can reduce the
storage burden and share knowledge among instances. For example, [16] uses a
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strategy of putting multiple images on one synthetic sample. [8] decomposes the
synthetic data to the linear network hallucinators and bases, while [23] uses a
convolutional network. [19] maintains a smaller base space to further reduce the
storage. [38] employs frequency domain factorization. 6) Bayesian Pseudocore-
set is a family of algorithms that learn the synthetic data with Bayesian infer-
ence [15, 30, 40]. Beyond these categories, SRe2L [49] utilizes a 3-stage learning
paradigm to decouple the segregation of inner-loop and outer-loop optimization.

Data Selection/Pruning reduces the training data without significantly
affecting performance. Classic data selection often calculates a scalar utility score
for each sample based on predefined criteria [2, 37, 41] and filters samples based
on scores. Some data pruning methods also consider the interaction between
samples. For example, [48] examines generalization influence to reduce training
data, which aims to identify the smallest subset to satisfy the expected general-
ization ability. In comparison, data distillation [44] synthesizes new and smaller
data, and significantly outperforms data pruning with the same data storage.

3 Preliminaries

3.1 Formulation of Dataset Distillation

Before delving deeper into the real data selection, we would investigate the train-
ing dynamics of dataset distillation. Given a real dataset Dr = {x(i)

r , y
(i)
r }Mr

i=1,
dataset distillation is to learn a synthetic dataset Ds = {x(i)

s , y
(i)
s }Ms

i=1 that has
smaller size (Ms ≪ Mr) and could train a network to similar performance to
full real dataset on specific task. More formally, let u = f(x;θ) be a scalar
output network 4 and L(D,θ) =

∑M
i=1 ℓ(u

(i), y(i)) be the loss function that mea-
sures the model empirical risk on a dataset D. The dynamics of gradient descent
optimization are described by differential equations:

θ̇r = −∂L(Dr,θ)

∂θ
= −

Mr∑
i=1

∂ℓ(u
(i)
r , y

(i)
r )

∂u
(i)
r

∂u
(i)
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∂θ
,

θ̇s = −
∂L(Ds,θ)

∂θ
= −
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∂ℓ(u
(i)
s , y

(i)
s )

∂u
(i)
s

∂u
(i)
s

∂θ
,

(1)

where θr(t) and θs(t) are functions of timestamp t which describe the training
trajectory of parameters on the real or synthetic dataset. We omit “(t)” for
clarity. θ̇ indicates its derivative w.r.t t: ∂θ

∂t , θ̇s =
∂θs

∂t , and as a common process,
the learning rate of gradient descent is absorbed to timestamp t for simplicity.
The outputs of both networks on the real dataset are computed for evaluation:

u(i)
r = f(x(i)

r ;θr), u(i)
s = f(x(i)

s ;θs). (2)

Note that u
(i)
r and u

(i)
s are also function of t.

The current dataset distillation can be categorized into two types:
4 The analysis covers scalar functions, but can also generalize to vector functions.
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(1) Empirical Risk Minimization includes DD [44], KIP [32, 33] and their
variants [26,27], which minimize the empirical risk on the real dataset of the
network trained on synthetic data:

S = argmin
S

Mr∑
i=1

ℓ(u(i)
s |t=+∞, y(i)r ). (3)

(2) Training Dynamics Matching is a simpler agent task for dataset distilla-
tion since the converged network θ(i)

s |t=+∞ is usually intractable for bi-level
optimization. Its ultimate target is to match the whole training trajectory
on the real and synthetic datasets:

S = argmin
S

D(u(i)
s (t), u(i)

r (t)), (4)

where D is a distance metric. The strategies include gradient trajectory
matching [3, 16,24,53], feature matching [43,52,54], loss matching [39], etc.

The generation-based methods [4, 49] are exceptions since they do not involve
the network dynamics.

3.2 Redundancy in Dataset Distillation

Currently, the intrinsic value of each real sample under the dataset distillation
scenario has not been thoroughly investigated, yet we observe the redundancy
within the real dataset which underscores the potential significance of this re-
search area. We randomly drop some portions of the real data to find their
maximum pruning ratio that could maintain the distillation accuracy. Com-
prehensive experiments are conducted on various datasets, networks, distilla-
tion algorithms, initialization methods, and synthetic data sizes (represented by
instance-per-class, IPC). We use the default parameters of each method, which
are detailed in the supplementary material. As shown in Tab. 1, severe data
redundancy widely exists in various dataset distillation settings. We will analyze
and propose selection criteria dedicated to dataset distillation in the following.

4 Methodology

4.1 Empirical Loss Pruning

We study the real data selection of dataset distillation based on the previous
formulation. Considering that u̇ = ⟨∂u∂θ , θ̇⟩, the dynamics of outputs can be
depicted by differential equations:

u̇(i)
r = −

Mr∑
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(j)
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(5)
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Table 1: Maximum pruning ratio with random selection among different datasets,
algorithms and synthetic data size.

Dataset IPC DC [53] DSA [51] DM [52] MTT [3] IDC [16] IDM [54]

CIFAR10 [17]
1 90% 85% 85% 60% 50% 40%
10 70% 70% 60% 10% 30% 10%
50 50% 70% 50% 20% 40% 20%

CIFAR100 [17] 1 50% 40% 70% 20% 60% 50%
10 50% 40% 50% 10% 50% 20%

SVHN [31] 1 60% 60% 85% 90% 60% 30%
10 80% 70% 95% 80% 30% 5%

TinyImageNet [18] 1 40% 30% 60% 50% 40% 60%
10 50% 50% 50% 20% 30% 50%

where Kr and Ks are neural tangent kernels [12] (NTK), and matching the
derivatives u̇r and u̇s is a sufficient and necessary condition of target Eq. (4).

Based on the formulation of dataset distillation dynamics, we notice that
K(ij)

r is rank-deficient since synthetic data is much smaller than the real dataset.
Since u̇i is the linear combination of kernel matrix K, the rank-deficiency of
K(ij)

r leads to the mismatch of complexity of u̇i
s and u̇i

r, making synthetic dy-
namics u̇i

s hard to approximate to u̇i
r. So we argue that the real dataset has

significant redundancy for dataset distillation. To reduce the optimization
difficulty for a more stable distillation process, and also for a more data-efficient
distillation algorithm, the dataset distillation needs to select the most valuable
real data samples. A more intuitive explanation is that the small synthetic data
cannot memorize the larger scale real dataset, so selecting the important but
easy samples will help the algorithm.

Furthermore, Eq. (5) also reveals that samples with small gradient value
∥∂ℓ(ur,yr)

∂ur
∥ are more important for distillation, since pruning the samples with

large gradient is equivalent to reduce the kernel rank of real data. Note that for
common loss functions like MSE or cross-entropy, the ∥∂ℓ(ur,yr)

∂ur
∥ has the same

monotonicity to ℓ(ur, yr), so we directly adopt the empirical loss ℓ(ur, yr)
as our real data selection criterion to avoid additional computation. Please
refer to the supplementary for the proofs.

Early Pruning. A principal property of the neural tangent kernels is they tend
to be constant for wide neural networks. So in Eq. (5), the NTK for real data
Kr is stable during training. So the empirical loss can be regarded as a static
criterion which does not vary during training. In practice, to maximize the
efficiency, we prune the real data in one time before the beginning of the
distillation algorithm rather than select different samples at each iteration. The
empirical loss of each sample is computed by training the network on the real
dataset for multiple trials and taking the average loss value.
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Table 2: Maximum pruning ratio with empirical loss selection among different
datasets, algorithms and synthetic data sizes.

Dataset IPC DC [53] DSA [51] DM [52] MTT [3] IDC [16] RFAD [26] IDM [54]

CIFAR10 [17]
1 99.5% 99.5% 99.5% 60% 85% 70% 30%
10 30% 60% 50% 20% 50% 20% 10%
50 70% 85% 40% 20% 30% 20% 30%

CIFAR100 [17] 1 95% 97% 99.5% 60% 80% 80% 70%
10 90% 80% 90% 20% 60% 80% 20%

SVHN [31] 1 80% 95% 99% 99% 40% 20% 60%
10 20% 60% 85% 95% 50% 5% 10%

TinyImageNet [18] 1 97% 99% 99.5% 70% 40% - 95%
10 80% 70% 97% 30% 40% - 60%
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Fig. 2: The comparison of maximum pruning ratio between random selection and
empirical loss-based selection: the arrows point from random to the loss-based method.
Green: selection by loss is superior; Red: selection by loss is inferior to random.

Empirical Justification Besides the theoretical analysis, we conduct extensive
experiments to support our selection strategy. To examine the effectiveness of
pruning, we compare the maximum pruning ratio that maintains the distillation
performance, and a larger maximum pruning ratio indicates a larger redundancy.

Comprehensive comparison experiments on various datasets, networks, dis-
tillation algorithms, initialization methods, and synthetic data sizes (represented
by instance-per-class, IPC) are given in Tab. 2. We take the mean and standard
deviation of the accuracy of 5 random removal trials. We use the default pa-
rameters of each method, which are detailed in the supplementary. The results
show that severe data redundancy widely exists in various dataset distillation
settings. For many datasets and algorithms, less than 30% samples are sufficient
for dataset distillation. We also visualize the comparison between random se-
lection and empirical loss selection in Fig. 2. Pruning with empirical loss
consistently outperforms random selection. We also find dropping data
does not drop the cross-architecture transferability in supplementary.

Surprisingly, we also observe that dropping real data can sometimes
improve performance. We show the best performance during data pruning in
Tab. 3. In almost all cases, the data selection can notably promote distillation
accuracy. This implies that some samples may be “detrimental” to the distillation
and the empirical loss is a proper criterion to cancel these negative impacts. This
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Table 3: Best performance with data dropping. The performance difference between
the full real dataset and pruned dataset are shown in parentheses (†: compare to our
reproduced accuracy).

Dataset IPC DC [53] DSA [51] DM [52] MTT [3] RFAD [26] IDM [54]

CIFAR10
[17]

1 30.0±0.2 (+1.7) 30.9±0.1 (+2.6) 29.7±0.3 (+3.7) 46.3±0.8 (+0.2) 53.7±0.9 (+0.1) 46.3±0.4 (+0.7)
10 44.9±0.4 (+0.0) 52.4±0.2 (+0.2) 50.0±0.2 (+1.1) 65.7±0.3 (+0.4) 66.7±0.2 (+0.4) 58.9±0.3 (+0.3)
50 54.9±0.5 (+1.0) 61.5±0.7 (+0.9) 63.4±0.2 (+0.4) 72.0±0.4 (+0.4) 71.9±0.2 (+0.8) 67.8±0.2 (+0.3)

CIFAR100
[17]

1 14.1±0.1 (+1.3) 15.6±0.1 (+1.7) 14.9±0.5 (+3.5) 24.6±0.4 (+0.3) 30.4±0.6 (+4.1) 25.9±0.3 (+5.8)
10 26.5±0.3 (+1.3) 32.5±0.4 (+0.2) 32.4±0.3 (+2.7) 40.1±0.5 (+0.0) 38.4±0.2 (+6.4) 45.9±0.1 (+0.8)

SVHN [31] 1 32.2±0.5 (+1.0) 28.9±1.3 (+0.1) 29.8±0.5 (+6.3†) 43.0±1.1 (+3.2†) 53.0±0.2 (+0.8†) 71.9±1.0 (+1.6)
10 76.2±0.6 (+0.1) 80.0±0.8 (+0.8) 74.6±0.3 (+0.9†) 78.1±0.5 (+0.9†) 74.2±0.2 (+0.1†) 81.9±0.5 (+0.1)

TinyImage-
Net [18]

1 4.9±0.1 (+0.2†) 4.3±0.0 (+0.6†) 4.8±0.1 (+0.9) 9.0±0.4 (+0.2) - 11.4±0.2 (+1.3)
10 12.8±0.0 (+0.2†) 14.8±0.4 (+2.3†) 17.5±0.1 (+4.6) 23.8±0.3 (+0.6) - 22.9±0.4 (+1.0)

observation inspires new approaches that leverage data utility and exploit all
data samples in different quality, enabling future analysis of network dynamics
and dataset distillation.

4.2 Causal Effect on Synthetic Data

However, the pruning lacks availability in some scenarios when IPC is large
on certain algorithms, indicating that sample importance may vary at different
stages of the training process; some initially pruned samples can be beneficial
in the latter stage. So to take a step further, we investigate the real samples’
contribution to the synthetic data during training as compensation for the static
empirical loss criterion.

We first generalize the optimization targets of various dataset distillations
into a meta-loss function Lmeta(Dr,Ds). E.g ., the meta-loss of DC [53] is the
cosine distance between the gradients of real and synthetic; the meta-loss of
DM [52] is the MMD between real and synthetic features. The synthetic data
Ds is learned by gradient descent on the meta-loss function. To examine the
causal effects of real samples on the updating and learning of synthetic data,
we could observe the consequence on the meta gradient after applying causal
intervention on the real dataset, i.e., removing a certain real sample. More
specifically, we regard the presence of real samples xr ∈ Dr as some binary
“treatment” (T ), and the meta gradient of synthetic data ∂Lmeta

∂Ds
as some “effect”

(Y ). Thus for a certain individual Ds, the causal effect of each real sample to
the distillation can be quantized by the individual treatment effect (ITE) [34]:

ITE(xr) = YT=1 − YT=0 =
∂Lmeta(Dr,Ds)

∂Ds
− ∂Lmeta(Dr \ {xr},Ds)

∂Ds
, (6)

which is the difference between the gradient on the synthetic dataset with or
without the real sample xr, and can be obtained on any dataset distillation
algorithm by computing two meta gradients for each real sample. We use the L2-
norm of ITE gradient ∥ITE(xr)∥2 as the causal criterion of a real sample xr. We
remove the samples with both the smallest and the largest ITE criterion values
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since the small ITE value samples contribute little to the synthetic learning,
while the large ITE value samples could be outliers for the distillation, which
enhances the variance and instability during training. The ablation analysis in
Sec. 5.4 also shows the samples with intermediate-level ITE are more important
to the distillation task.

Due to the heavy computation of the meta gradient, we apply three opti-
mization techniques for applicable efficiency.
Taylor Approximation of ITE. The causal criterion needs additional meta
gradient computations for each of the K real samples (the second term in
Eq. (6)), therefore increasing the training time by nearly K times. Thankfully,
we can reduce the computation burden on a special family of meta loss func-
tions that are additive variable separable: Lmeta(G,Ds), G =

∑
x∈Dr

g(x), which
covers most of the meta matching algorithms, e.g ., g(x) indicates per-sample
gradient for DC [53], sample feature vector for DM [52]. In this case, we could
leverage the Taylor approximation for ITE value:

ITE(xr) =
∂

∂Ds
[Lmeta(G,Ds)− Lmeta(G− g(xr),Ds)]

=
∂

∂Ds

[(
∂Lmeta(G,Ds)

∂G

)⊤

g(xr) + h.o.t

]

≈ ∂2Lmeta(G,Ds)

∂Ds ∂G
· g(xr),

(7)

where we vectorize G, g(x), and Ds for clarity. The first term is part of the
Hessian matrix of Lmeta and not related to specific real sample xr so it could be
computed in one backward pass. The second term has to be computed during
the forward pass of meta loss. So we could compute the ITE values for the
real batch with one meta gradient computation and a matrix multiplication,
which significantly reduces the pruning time. We also analyze the error of the
approximation in the supplementary and ignoring high order terms only brings
3% shifting of the sample ranking that is negligible for pruning.
Estimation of Global ITE Distribution. We hope to prune the samples with
small ITE values among the full real dataset, but it is computationally expen-
sive to exhaustively evaluate ITE values of the full dataset at each iteration,
especially with mini-batch optimization methods. Inspired by batch normaliza-
tion [11], we maintain the global running mean µ̂ and variance σ̂2 of ITE values
of the real dataset. For each mini-batch, we compute the mean µB and variance
σ2
B within the batch, and update the global statistics by:

µ̂← (1− η)µ̂+ ηµB , σ̂2 ← (1− η)σ̂2 + ησ2
B . (8)

Then, given a pruning ratio β, we find the two quantile points z β
2

and z1− β
2

of
the normal distribution z ∼ N (µ̂, σ̂2), and select the samples with ITE value
within (z β

2
, z1− β

2
), so that the overall selection rate is 1− β.

Lazy Selection. We prune and update the real data batch every several itera-
tions to reduce the overhead of selection.
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Algorithm 1 Bi-Level Data Pruning (BiLP)
Input: Real dataset Dr, preemptive pruning rate α, adaptive pruning rate β, meta

loss function Lmeta

Output: Synthetic dataset Ds,
1: Train networks on full dataset Dr and record the average per-sample empirical loss

ℓ(xr), ∀xr ∈ Dr with Eq. (2),
2: D′

r ← {xr | ℓ(xr) < τ, xr ∈ Dr}, s.t. |D′
r| = (1−α)|Dr| (preemptive pruning),

3: Initialize synthetic dataset Ds,
4: Initialize running mean µ̂ and variance σ̂2 of ITE,
5: repeat
6: Sample a mini-batch Br from real dataset,
7: Compute meta loss Lmeta(Br,Ds),
8: Compute meta loss after causal intervention Lmeta(Br \ {xr},Ds), ∀xr ∈ Br,
9: Compute ITE values of real data ITE(xr), ∀xr ∈ Br,

10: Update running stats µ̂, σ̂2 with Eq. (8),
11: B′

r ← {xr | z β
2
< ITE(xr) < z

1− β
2
, z ∼ N (µ̂, σ̂2)} (adaptive pruning),

12: Update synthetic data: Ds ← Ds − ∂
∂Ds
Lmeta(B′

r,Ds).
13: until convergence

The three optimizations could reduce the ITE computation to 1/60,000 of
the original time. Overall, our method only increases the training time by 7%.

4.3 Bi-level Data Pruning for Dataset Distillation

In the analysis and discussion above, we propose two levels of data selection:
the preemptive pruning by sample-wise empirical loss which is applied before the
distillation process, and adaptive pruning by causal effect metric which is used
during the distillation. We combine the two levels to propose a plug-and-play
data pruning algorithm whose pseudo-code is shown in Algorithm 1.

5 Experiments

5.1 Datasets and Metrics

In this work, the experiments are conducted on common datasets for dataset
distillation task, including CIFAR10 [17] (60,000 32x32 images in 10 classes),
CIFAR100 [17] (60,000 32x32 images in 100 classes), SVHN [31] (over 99,000
32×32 images in 10 classes) and TinyImageNet [18] (100,000 64x64 images in
200 classes). We report the top-1 classification accuracy.

5.2 Implementation Details

We apply BiLP on gradient-matching based SOTAs DC [53] and IDC [16], so g(x)
in Eq. (7) indicates the per-sample gradient of the classification task. The multi-
formation factor is 2 by default to fairly compare to the IDC baseline, and we also
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Table 4: Dataset distillation performance of state-of-the-art and the proposed BiLP.

Method CIFAR10 [17] CIFAR100 [17] SVHN [31]
IPC 1 10 50 1 10 1 10 50

Full Dataset 84.8±0.1 56.2±0.3 95.4±0.1

Random 14.4±2.0 26.0±1.2 43.4±1.0 4.2±0.3 14.6±0.5 14.6±1.6 35.1±4.1 70.9±0.9
Herding 21.5±1.2 31.6±0.7 40.4±0.6 8.4±0.3 17.3±0.3 20.9±1.3 50.5±3.3 72.6±0.8

DC [53] 28.3±0.5 44.9±0.5 53.9±0.5 12.8±0.3 25.2±0.3 31.2±1.4 76.1±0.6 82.3±0.3
KIP [32] 49.9±0.2 62.7±0.3 68.6±0.2 15.7±0.2 28.3±0.1 57.3±0.1 75.0±0.1 80.5±0.1
MTT [3] 46.3±0.8 65.6±0.7 71.6±0.2 24.3±0.3 40.1±0.4 - - -
FRePo [55] 46.8±0.7 65.5±0.4 71.7±0.2 28.7±0.1 42.5±0.2 - - -
HaBa [23] 48.3±0.8 69.9±0.4 74.0±0.2 33.4±0.4 40.2±0.2 69.8±1.3 83.2±0.4 88.3±0.1
IDC [16] 50.6±0.4 67.5±0.5 74.5±0.1 - 45.1±0.4 68.5±0.9 87.5±0.3 90.1±0.1
RFAD-NN [26] 53.6±1.2 66.3±0.5 71.1±0.4 26.3±1.1 33.0±0.3 52.2±2.2 74.9±0.4 80.9±0.3
IDM [54] 45.6±0.7 58.6±0.1 67.5±0.1 20.1±0.3 45.1±0.1 - - -
Zhang et al . [50] 49.2 67.1 73.8 29.8 45.6 - - -
DREAM [24] 51.1±0.3 69.4±0.4 74.8±0.1 29.5±0.3 46.8±0.7 69.8±0.8 87.9±0.4 90.5±0.1
PDD [5] - 67.9±0.2 76.5±0.4 - 45.8±0.5 - - -

BiLP+DC 30.5±0.3 45.2±0.4 54.9±0.3 13.7±0.7 26.0±0.5 32.2±0.3 76.4±0.5 82.8±0.6
BiLP+IDC 51.5±0.3 69.4±0.5 75.4±0.2 30.1±0.4 47.2±0.6 70.3±0.6 88.3±0.1 90.8±0.4
BiLP+IDC (x3) 55.9±0.5 69.8±1.1 76.9±0.9 34.0±0.7 48.0±1.0 77.2±0.6 88.7±0.4 91.0±0.7

show the results with factor 3 (BiLP+IDC(x3) in Tab. 4). All the experiments
including the efficiency analysis are conducted on one single RTX4090. For more
details please refer to the supplementary.

5.3 Results

We compare our BiLP to various baselines in Tab. 4. Our selection strategy could
notably enhance the current distillation algorithms. On average, BiLP consis-
tently enhances DC and IDC by 0.8% and 1.2% (BiLP+DC and BiLP+IDC),
especially on more diversified dataset CIFAR100. Moreover, with a larger multi-
formation factor (BiLP+IDC x3), our method could surpass most of the state-
of-the-art. Note that our method is also efficient due to the preemptive pruning,
e.g ., BiLP on CIFAR100 only required 50% samples of the real dataset. This
experiment shows the feasibility of embedding the data selection mechanism into
the current distillation paradigm to boost performance and enhance efficiency,
especially the preemptive pruning before the distillation.

5.4 Ablation Study

Pruning Criteria We analyze the impact of different pruning criteria in Ta-
ble 5, involving the preemptive pruning by empirical loss and adaptive pruning
with causal effects in two directions (prune the samples with large ITE or small
ITE). The results indicate that across all datasets and IPC settings, the full
BiLP consistently achieves the highest accuracy. In addition, both preemptive
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Table 5: Ablation study on the pruning criteria on CIFAR10 and CIFAR100.

Preemptive Pruning ✗ ✓ ✓ ✓ ✓
Prune Small ITE ✗ ✗ ✗ ✓ ✓
Prune Large ITE ✗ ✗ ✓ ✗ ✓

CIFAR10, IPC=1 50.6±0.4 51.0±0.3 51.2±0.3 51.0±0.3 51.3±0.3
CIFAR10, IPC=10 67.5±0.5 68.5±0.1 68.9±0.5 68.7±0.4 69.2±0.1
CIFAR100, IPC=1 28.2±0.6 29.1±0.8 29.8±0.2 29.4±0.2 30.1±0.4

Table 6: Comparison of training time with ITE computation methods. We report the
training seconds per iteration (s/iter) on CIFAR10 and IPC=10.

Running Stats Estimation ✗ ✓ ✓ ✓
Taylor Approximation ✗ ✗ ✓ ✓
Lazy Selection ✗ ✗ ✗ ✓

ITE Computation (s/iter) 1799.22 23.03 0.27 0.03
Total Iteration (s/iter) 1799.53 23.38 0.65 0.47

and adaptive pruning brings performance gain. Interestingly, pruning large ITE
values demonstrates a slightly better performance than pruning small ITE val-
ues, achieving the highest accuracy of 69.2%. This could imply that removing
larger ITE may be more beneficial in scenarios where the synthetic data’s com-
plexity is limited. But overall, applying pruning of both large and small ITE
would outperform any pruning in a single direction.

Time Complexity Since the computation time of ITE would pose a major
bottleneck to the algorithm efficiency of BiLP, we offer a comparative analysis
of the training time per iteration for different optimization levels in Table 6. The
experiment is conducted on the CIFAR10 dataset with IPC=10 on IDC [16].
Without any optimization, the computation of ITE takes 5,800x more time than
the rest steps of the distillation due to its computational intensity on the multiple
meta gradients. The running estimation of global ITE distribution would help
the mini-batch-based optimization. The Taylor approximation could effectively
reduce the computation time by 98.8%. With the lazy selection (update the
data per 10 iterations like [24]), our full optimization techniques could reduce
the training overhead to ignorable 7% of the original algorithm.

Computation of Empirical Loss Criterion For the preemptive pruning,
we train the networks on the full dataset and take the per-sample loss after
convergence as the empirical loss criterion. However, we find that the loss values
in very early classification epochs are also informative enough for data selection,
probably as the early dynamics of samples can reflect their training difficulty
and importance. Moreover, the number of trials to obtain loss values has little
influence on the selection performance.
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Fig. 3: Stratified distillation performance of different classification trials and epochs
numbers. An ideal stratification yields a monotonously increasing performance curve.

We use a stratified experiment to examine the two factors: we sort the samples
from large to small by the loss value and stratify them into 10 partitions S1∼S10,
where S1 contains the samples with the largest loss values. We take the average
loss curves of 1, 5, 10, and 50 trials of classification, and take the mean loss value
for the first 1, 5, 10, and 100 epochs when the training converges at around 100
epochs. As shown in Fig. 3 by the empirical results with DC [53] on CIFAR10,
IPC=1, most loss values produce a good stratification and could distinguish the
important samples unless only train the network for 1 epoch. Therefore we argue
that early epoch loss in very few trials is also accurate for selection,
which can be utilized with reduced computational burden of generating loss
values, and can also be ignored or naturally embedded in the distillation process
itself, extending our paradigm to broader applications.

5.5 Extended Discussion and Limitation

Efficient Distillation of Large-scale Datasets Our data utility paradigm
can be efficiently extended to larger-scale and more heterogeneous datasets. We
apply the data utility selection to the distillation of ImageNet-1K [7] and scale
up to IPC=50, and also the large-scale video dataset Kinetics-400 [1] (detailed
in supplementary). The results are listed in Tab. 7. Most methods struggle with
high IPC due to demanding GRAM, except DM which allows class-separate
training. MTT is extremely expensive for large-scale data due to its expert train-
ing. Our BiLP could mitigate training costs by its preemptive pruning, which
significantly reduces the training time by at most 60% while maintaining or en-
hancing the performance. It is especially suitable for large-scale scenarios when
the size increases, whose signal-to-noise ratio continues to decrease.

Higher-order Interaction of Data Utility Both our proposed preemptive
and adaptive pruning is based on per-sample criteria, i.e. we assume each sam-
ple independently contributes to the distillation process. However, high-order
information and interactions between samples may exist, and they have more
complex causal mechanisms to the data synthesizing than the individual ITE in
our method. In some extreme scenarios, these interactions are not negligible. For
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Table 7: Dataset distillation on large-scale image and video datasets (est.: estimated).

Dataset IPC Algorithm Full Data BiLP Random RealAccuracy Training Time Accuracy Training Time

ImageNet-1K [7]
(1.3M images)

1
DC [53] 1.79±0.04 23.6h 2.02±0.10 17.3h

0.43±0.02DM [52] 1.58±0.11 22.4h 1.95±0.12 9.9h
MTT [3] - 205.0h (est.) 2.10±0.08 31.2h

10 DM [52] 3.86±0.16 24.7h 5.21±0.11 15.3h 1.57±0.21

50 DM [52] 8.22±0.86 35.0h 9.41±0.38 20.6h 5.29±0.70

Kinetics-400 [1]
(300K videos)

1 DM [52] 2.78±0.14 37.3h 2.92±0.15 29.6h 0.90±0.23MTT [3] - 460.8h (est.) 2.77±0.21 76.8h

10 DM [52] 9.48±0.15 43.5h 9.70±0.12 32.2h 3.33±0.43
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Fig. 4: The diversity of each
stratified subgroup. MNIST suffers
from diversity vanishing.

example, data diversity is a higher-order data
utility indicator since it is a property of the
population rather than an individual. We ob-
serve the data selection paradigm always per-
forms poorly on low diversity datasets like
MNIST, which is due to the diversity vanish-
ing in the small loss samples. We conduct sim-
ilar stratified experiments as Sec. 5.4 and use
the quotient of intraclass variance and inter-
class variance as the diversity metric (a large
value indicates larger diversity). As shown in
Fig. 4, only MNIST severely drops the diver-
sity for the subgroups with a small loss. It can
be challenging to incorporate sample interac-
tions like diversity into consideration without
sacrificing efficiency (e.g . use annealing or Monte-Carlo algorithms), so we leave
it to future work. In-depth discussion and modeling of high-order data utility
involve complex systems which is beyond our scope. It is worth noting that the
impact of diversity vanishing can be negligible in most realistic scenarios (e.g .,
CIFAR), especially for large-scale datasets due to their large overall diversity.
We provide the stratified visualization in the supplementary material.

6 Conclusion

This paper introduces a novel bi-level data pruning approach for efficient dataset
distillation, which leverages the inherent redundancy in large datasets. We pro-
pose preemptive pruning from the dynamics of distillation, which is applied be-
fore the distillation, accompanied by further adaptive pruning based on causal
effects. Our method would consistently enhance the performance of distillation
algorithms while reducing the computational burden. We believe that our find-
ings will inspire future research to explore more sophisticated data utility models
and optimization techniques, ultimately leading to more efficient and effective
dataset distillation methods.
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