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Abstract. The acquisition of multi-task (MT) labels in 3D scenes is
crucial for a wide range of real-world applications. Traditional meth-
ods generally employ an analysis-by-synthesis approach, generating 2D
label maps on novel synthesized views, or utilize Neural Radiance Field
(NeRF), which concurrently represents label maps. Yet, these approaches
often struggle to balance inference efficiency with MT label quality.
Specifically, they face limitations such as (a) constrained rendering speeds
due to NeRF pipelines, and (b) the implicit representation of MT fields
that can result in continuity artifacts during rendering. Recently, 3D
Gaussian Splatting has shown promise in achieving real-time render-
ing speeds without compromising rendering quality. In our research, we
address the challenge of enabling 3D Gaussian Splatting to represent
Versatile MT labels. Simply attaching MT attributes to explicit Gaus-
sians compromises rendering quality due to the lack of cross-task infor-
mation flow during optimization. We introduce architectural and raster-
izer design to effectively overcome this issue. Our VersatileGaussian
model innovatively associates Gaussians with shared MT features and
incorporates a feature map rasterizer. The key element of this versatile
rasterization is the Task Correlation Attention module, which utilizes
cross-task correlations through a soft weighting mechanism that dissem-
inates task-specific knowledge. Across experiments on the ScanNet and
Replica datasets shows that VersatileGaussian not only sets a new bench-
mark in MT accuracy but also maintains real-time rendering speeds (35
FPS). Importantly, this model design facilitates mutual benefits across
tasks, leading to improved quality in novel view synthesis even in situa-
tions that the ground-truth dense labels are absent, and with the assis-
tant of dense labels from off-the-shelf 2D predictors.

1 Introduction

Efficient and accurate 3D scene modeling and analysis have become pivotal in
the realms of computer vision and graphics. Numerous applications necessitate
the concurrent rendering of view-consistent multi-task (MT) labels from any
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Fig. 1: Our approach VersatileGaussian unifies Multi-task rendering by augmenting
3D Gaussian Splatting with integrated feature learning and a meticulously designed
multi-task rasterizer. This approach ensures real-time rendering (35 FPS) from any new
views within 3D environments (left side). Moreover, it delivers notable enhancements
in multi-task performance (right side) across various benchmarks.

viewpoint within a 3D scene, demanding high-resolution rendering in real time.
Traditional methods adhere to an analysis-by-synthesis approach, synthesizing

MT labels for novel views using a renderer to generate color image, followed
by the application of 2D multi-task discriminative models [44,50]. Despite their
simplicity, these frameworks exhibit view inconsistency when viewpoints change,
leading to a degraded user experience. Implicit scene representations, particu-
larly Neural Radiance Fields (NeRFs) [29], have shown superior rendering qual-
ity by mapping spatial coordinates to color and density and employing volume
rendering [19] techniques at new viewpoints. Nevertheless, MT rendering with
implicit representations or their extensions [53, 56] faces significant challenges:
NeRF-based methods are inherently slow in training and rendering; moreover,
incorporating an MT field can exacerbate this slowness and often result in float-
ing artifacts in the MT field.

An emerging alternative, 3D Gaussian Splatting (3D-GS) [20], offers a point-
based representation that achieves faster training and real-time rendering speeds
compared to NeRF-based methods, maintaining or surpassing the quality of ren-
dered images. This advancement facilitates real-time rendering applications in
VR and AR. However, the 3D-GS framework, primarily designed for image syn-
thesis, does not inherently support the joint learning of dense label maps along-
side color images. A naive extension that attaches MT labels to each Gaussian
proves to be sensitive to noise and yields only moderate rendering quality (see
the experiment section).

In this work, we introduce VersatileGaussian, the first approach that en-
ables the real-time rendering of high-quality, versatile label maps from any view-
point. We propose a method to learn a shared MT feature field for each Gaussian,
representing the common visual attributes of the scene. A novel MT rasterizer
splats and rasterizes these common features into task-specific features adapt-
able to any task. The essence of this rasterizer is the facilitation of cross-task
information flow for joint optimization, with the lightweight Task Correlation
Attention enabling rapid yet high-quality feature field decoding, significantly en-
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hancing MT accuracy. Experimental validation on benchmark datasets confirms
that VersatileGaussian surpasses all prior baselines in both rendering quality
and efficiency. Notably, it is observed that even versatile labels inferred from
off-the-shelf 2D models can boost the novel view synthesis quality of 3D-GS.

Our key contributions are summarized as follows:
– VersatileGaussian, the first framework that enable real-time, high-quality

MT rendering at novel views, drawing inspiration from 3D Gaussian splat-
ting.

– A novel architecture for learning shared feature vectors on each Gaussian
and an MT rasterizer that seamlessly decodes into task-specific features,
subsequently translated into versatile label maps.

– The Task Correlation Module within the MT rasterizer effectively fosters
cross-task correlations, substantially enhancing MT rendering quality.

2 Related Work

2.1 Efficient 3D Representation for NVS.

Novel View Synthesis aims to generate photo-realistic images at novel views us-
ing observations at several source views. A category to achieve NVS is to utilize
mesh as representation [1, 3, 10] and employ rasterizers [26] to render images
and optimize the mesh. The development of Multi-View Stereo [16] (MVS) en-
ables MVS-based NVS methods such as [5,11,17,23], which re-project and blend
the images at source views into the target views. Recently, Neural Radiance
Fields (NeRF) [29] have achieved great success in NVS by representing scenes
as radiance fields parameterized by neural networks, producing photo-realistic
images of high quality. Despite the rendering quality benefits of this implicit
representation, the rendering speed is reduced due to the high computational
cost of querying the radiance fields. Therefore, much effort has been put into
accelerating NeRFs by using voxels [6,12,18,32,39], point clouds [49], decompo-
sition [6, 15, 32], octrees [40, 51], and hash tables [30]. Compared to the neural
rendering employed by NeRFs, which queries radiance field values at sampled
points, rasterization using splatting is more GPU-friendly and potentially faster.
ADOP [33] represents scenes with neural points and leverages differential ras-
terization to render target images. Recent progress made by Gaussian Splatting
(3D-GS) [20] achieves impressive results both in render quality and speed. By
representing a scene as a set of attributed Gaussians, its customized rasterizer
can achieve very fast, high-quality image rendering using the splatting technique.
However, its rasterizer is customized to the explicit representations of RGB SH
coefficients attached to each Gaussian, complicating its direct extension to render
versatile labels.

2.2 Multi Task Learning for Dense Prediction

Dense prediction tasks, such as semantic segmentation, key point detection, edge
detection, and surface normal estimation, play a critical role in computer vi-
sion and pattern recognition. Traditionally, researchers have designed separate
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neural networks for each task. However, recent studies [2, 14, 25, 45, 48] have
shown relations among these tasks. Multi-task learning has become a popular
approach to jointly train neural networks for multiple dense prediction tasks.
Encoder-Based Methods [7,8,35,41] focus on integrating different tasks dur-
ing the feature extraction stage. By sharing the task features in the encoding
stage, these methods ensure that multiple tasks share a common representation,
enabling them to propagate consistent information among themselves. This im-
proves model accuracy, reduces the number of parameters, and reduces computa-
tional effort [14,25]. Decoder-Based Methods [45,48,54,55,58] may also share
features for different tasks in the encoding stage but further introduce cross-task
feature fusion modules in the decoder. These modules allow task-independent
features in the decoding phase to interact and fuse, further improving model
accuracy. Attention is a widely-used technique to enable multi-task feature
interaction and refinement [2, 25, 48, 50]. For example, Ye and Xu proposed In-
vPT [50], leveraging Transformers to capture global associations in images. This
approach achieves simultaneous modeling of global spatial locations and multiple
tasks in a unified framework.

2.3 Versatile Labels in 3D representation

Recently, in addition to RGB images, more dense labels have been introduced
into 3D representations for scene understanding [13, 42], enabling applications
such as semantic segmentation [31,57], panoptic segmentation [24,37], and scene
editing [22,46]. Nevertheless, given a set of source views with versatile labels and
camera poses, synthesizing the labels of a target view, namely Multi-Task View
Synthesis (MTVS), which aims to achieve better render quality for all kinds of
labels, is a novel problem recently explored by SS-NeRF [53]. SS-NeRF utilizes
NeRF as a 3D representation for multi-task labels. Furthermore, MuvieNeRF
[56] proposes a cross-task attention module to facilitate knowledge sharing and
information flow among the tasks. However, these two methods suffer from low
render speed due to the high computational cost of neural rendering.

3 Preliminaries

3.1 3D Gaussian Splatting

3D Gaussian Splatting (3D-GS) [20] is an explicit 3D scene representation that
models the scene using a set of 3D Gaussians. A 3D Gaussian is parameterized
by a mean vector x ∈ R3 and a covariance matrix Σ ∈ R3×3:

G(p) =
1

(2π)
3/2 |Σ|1/2

e−
1
2 (p−x)TΣ−1(p−x) (1)

3D-GS renders the color c by blending n ordered Gaussians overlapping the
pixels using the following render function:

c =

n∑
i=1

ciαi

i−1∏
j=1

(1− αj) (2)
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Fig. 2: The pipeline of VersatileGaussian. VersatileGaussian represents versa-
tile labels as view-direction-dependent and view-direction-independent features on the
Gaussians. After fast rasterization of the feature maps, a Task Correlation Attention
module is used to facilitate task information flow, contributing to better render quality.

where ci is the color computed from the SH coefficients of the ith Gaussian. αi

is given by evaluating a 2D Gaussian with covariance Σ′ ∈ R2×2 multiplied by
a learned per-Gaussian opacity. The 2D covariance matrix Σ′ is calculated by
projecting the 3D covariance Σ to the camera coordinates:

Σ′ = JWΣW TJT (3)

where J is the Jacobian of the affine approximation of the projective transfor-
mation and W is the view transformation matrix.

In summary, 3D-GS uses a set of 3D Gaussians to represent and render a
scene. Each 3D Gaussian is characterized by the following parameters: position
x ∈ R3, a series of SH coefficients

{
ci ∈ R3|i = 1, 2, ..., n

}
, opacity α ∈ R, rota-

tion q ∈ H and scaling s ∈ R3

3.2 Multi-task View Synthesis

Multi-task learning for dense predictions involves learning to generate multiple
task labels jointly. The Multi-task View Synthesis (MTVS) problem is slightly
different from conventional multi-task dense prediction settings. The goal of
MTVS is to jointly synthesize multiple scene properties at novel views using the
multi-task labels from given source views [56]. Formally, the goal of MTVS is
to learn a model Φ that takes as input a set of V source-view task annotations
along with camera poses as references and synthesizes multi-task annotations for
a novel view.

YT = Φ
(
{(Yi,Pi)}Vi=1 ,PT

)
, (4)

where Y i =
[
xi,y

1
i , · · · ,yK

i

]
denotes RGB images xi and n other multi-task

annotations {yj
i}nj=1 in the ith source view with camera pose P i, and P T is the

camera pose of the target view.
To enable 3D-GS to render multiple labels, either multi-task labels or features

have to be explicitly stored on Gaussians.
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Fig. 3: The Structure of Task Correlation Attention. The per-pixel Task Corre-
lation Attention establishes a soft weighting mechanism to propagate task-wise knowl-
edge. The features are split into several chunks (Left) and fused within and across these
feature chunks (Right).

4 Methodology

We introduce VersatileGaussian, a real-time approach to render versatile label
maps at arbitrary novel view. As illustrated in Fig. 2, an initial point cloud along
with a set of source views with multi-task labels and corresponding poses, is pro-
vided to optimize the Gaussians. This allows for the synthesis of versatile label
maps at any given view. To enable 3D-GS with versatile label representation
and rendering, we represent the 3D scene using a feature fields parameterized by
Gaussians attached with features. We further extend the differentiable rasterizer
to render feature maps at the target view. Then to ensure that versatile labels
are robust to noise or incomplete training views, a cross-task attention module
is proposed to capture cross-task correlations and facilitate efficient task infor-
mation fusion. Finally, individual task heads are employed to read out versatile
label maps.

4.1 3D Gaussian Feature Fields

3D-GS is an explicit representation where the RGB SH coefficients are stored on
each Gaussian to form an appearance field. To model versatile labels and better
utilize intrinsic correlations among different labels, feature maps for each task
should be rendered at any view. Therefore, we extend 3D-GS to a feature-based
version to form a feature field, from which a feature map can be rendered using
a differentiable rasterizer. Representing Tasks as Attributes: 3D-GS utilize
a set of Gaussians to represent a scene, where each Gaussian is parameterized by
attributes: position x ∈ R3, a serial of SH coefficients

{
ci ∈ R3|i = 1, 2, ..., n

}
,

opacity α ∈ R, rotation q ∈ H and scaling s ∈ R3. To render versatile labels,
instead of extending 3D-GS with explicit labels for each task, we represent mul-
tiple labels as features on each Gaussian. Specifically, according to the nature
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of tasks, the features field is divided into two types, the view-dependent feature
field and the view-independent feature field. The view-dependent feature field
models view-dependent labels, which vary according to view directions. To make
the feature view-dependent, we adopt Spherical Harmonics to approximate the
features at different view directions at each Gaussian. Feature field is represented
by a serial of SH coefficients

{
ci ∈ Rdv |i = 1, 2, ..., n

}
and the view-dependent

feature zv (d) of direction d is the sum of all SH basis functions multiplied by
the coefficients, formulated as below:

zv (d) =

n∑
i=1

ciBi (d) (5)

where Bi : S
3 → R is the ith SH basis defined on 3D sphere. The view direction

d is implied in the camera pose, thus we omit it in the rest of this section. To
model view-independent features, we simply employ a vector zn ∈ Rdn on each
Gaussian. Rasterizer for Versatile Features: We adopt the fast differentiable
rasterizer of 3D-GS [20] to feature maps at a given camera pose. Specifically, the
rasterizer takes as input a set of Gaussians where each Gaussian is attributed as:
(1) position x ∈ R3 (2) opacity α ∈ R (3) rotation quaternion q ∈ H (4) scaling
vector s ∈ R3. (5) view-dependent SH coefficients

{
ci ∈ Rdv |i = 1, 2, ..., D2

}
where D is the degree of SH (6) view-independent features zn ∈ Rdn . Then the
rasterizer renders two feature maps, namely view-dependent feature map Zv ∈
RH×W×dv and view-independent feature map Zn ∈ RH×W×dn . Specifically, the
view-dependent SH coefficients are firstly transformed to generate the view-
dependent features at view direction d correlated to the given camera pose using
Eq. (5). Then we use the standard rendering procedure mentioned in Eq. (2) to
get the view-dependent and view-independent feature Zv

p,Z
n
p for each pixel:

[
Zv

p,Z
n
p

]
=

n∑
k=1

[zv
k; z

n
k ]αk

k−1∏
j=1

(1− αj) (6)

4.2 Cross Task Feature Propagation

To enable efficient cross-task information propagation, we design a pixel-wise
Task Correlation Attention (TCA) module, establishing a soft weighting mech-
anism on feature maps for all tasks. Categorising the Tasks: We formulate
the involved task set as T = {t1, ..., tn} where tk represents the kth task. The
tasks are partitioned into two subsets, tailored to their intrinsic nature: (1) The
view-dependent tasks Tv ⊂ T such as RGB image, surface norm and shading
map, where the labels corresponding to the same 3D point varies when the view
direction changes. (2) The view-independent tasks Tn ⊂ T such as semantic
map, keypoints and object edge, where the labels corresponding to the same 3D
point keep the same despite the change of the view direction. The involved tasks
are either view-dependent or view-independent, i.e. Tv∪Tn = T and Tv∩Tn = ∅.
Task Correlation Attention: Considering rendering efficiency, the proposed
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Task Correlation Attention is conducted pixel-wisely. Given the view-dependent
and view-independent feature Zv

p ∈ Rdv and Zn
p ∈ Rdn of pixel p, we first apply

task-specific projections to get the individual features f t
p ∈ Rd of task t at pixel

p as follows:

f t
p =

{
W tZv

p, t ∈ Tv
W tZn

p , t ∈ Tn

where W t ∈ Rd×dv if t ∈ Tv, otherwise W t ∈ Rd×dn . Then the task-correlation
attention is applied to each pixel, and thus we can omit the pixel subscript p
in f t

p for shorthand in the rest of this section. Given the individual features
for each task

{
f t1 , · · · ,f tn

}
, as shown in Fig. 3, we first split the features into

fragments along the channel dimension, and then compute the attention score
among tasks using multiple separate heads. A linear projection is added to the
head dimension to enable each attention function to depend on all of the keys
and queries [36], achieving communication across the attention heads. Formally,
at each pixel, given individual features f tk for each task tk, the fused features
f̃
tk is calculated as:

Ah =
∑

h′∈[H]

H
(n)
h,h′FQh′KT

h′F T ,∀h = 1, · · · , H. (7)

F̂ h =
∑

h′∈[H]

H
(p)
h,h′ softmax(Ah′/

√
C/H)FV h,∀h = 1, · · · , H, (8)

F̃ =
[
F̂ 1 · · · F̂H

]
W , (9)

where F = {f t1 , · · · ,f tn}i is the feature fragment to be processed by the ith

head, F̃ = {f̃
t1
, · · · , f̃

tn} the fused features. The matrices H(n) and H(p) ∈
RH×H are adopted to correlate the attention weights across the heads. W is a
projection matrix to integrate the ray-wise feature calculated by different heads,
C and H represent the number of channels and attention heads, respectively. Af-
ter collecting the fused feature f̃

tk ∈ Rd at each pixel, we use a simple projection
matrix W tk ∈ Rdk×d to readout the explicit labels for each task, specifically, the
label ytk of the kth task is calculated as ytk = W tk f̃

tk for a certain pixel, where
dk is the label dimension of the kth task.

4.3 Optimization

We train the network jointly with all the tasks. The total loss is defined as the
weighted average of each task loss as follows:a

L =
1

|T |
∑
t∈T

wtLt
(
yt
r, ŷ

t
r

)
(10)

where T = {t1, ..., tn} is the task set, wt the loss weight of task t ∈ T , Lt (·, ·)
the single task loss for task t, yt and ŷtthe predicted and ground-truth label
map of task t.



VersatileGaussian 9

Table 1: Quantitative Comparison in Replica Datasets. We compare Versati-
leGaussian with both 2D and 3D baselines, using SemanticNeRF as the reference for
overall accuracy. VersatileGaussian significantly outperforms other methods in quality
and speed.

Methods Category. FPS Overall RGB KP SH ED SN SL
∆m(%) ↑ PSNR↑ L1 ↓ L1 ↓ L1 ↓ L1 ↓ mIoU↑

invPT [50] 2D 5.93 - - 0.004 0.04 0.03 0.05 0.91
SemanticNeRF [57]

3D

0.05 0.00 26.19 0.495 0.15 0.14 0.13 0.77
SS-NeRF [53] 0.08 +39.11 28.11 0.015 0.09 0.04 0.08 0.62

MuvieNeRF [56] 0.01 -119.28 25.89 0.131 0.53 0.08 0.81 0.35
VersatileGaussian 34.68 +63.96 34.57 0.003 0.04 0.01 0.05 0.96

5 Experiments

In this section, we present the experimental evaluation of our method. We first
introduce our implementation details and experimental settings. Then, we com-
pare both the efficiency and effectiveness of our methods to the state-of-the-art
multi-task view synthesis methods, both quantitatively and qualitatively. We
also ablate the main mechanisms of our method to validate our design.

5.1 Experimental Settings

Tasks: Consistent with [56], we conduct experiments on six tasks, consisting of
RGB synthesis (RGB), semantic segmentation (SL), surface normal estimation
(SN), texture edge detection (ED), keypoint detection (KP) and reshading (SH).
Datasets: We evaluate our method on both synthesis and real-world datasets.
For synthetic data, we use the Replica [38] dataset provided in [57]. We sample
two fragments from each of the eight scenes, with each fragment consisting of 75
frames, covering 300 frames out of 900 in each scene. Four-fifths of these frames
are used for training, and the remaining frames are used for evaluation. For real-
world data, we adopt ScanNet [9] following NerfingMVS [47]. We sample eight
scenes, each consisting of 40 frames, with 35 frames used for training and the
rest for testing. The image size for both datasets is 480 × 640. Versatile La-
bel Acquisition: In both datasets, the procedure of versatile label acquisition
is the same. For RGB reconstruction and semantic segmentation, the ground-
truth labels are provided in the datasets. For surface normal estimation, we
calculate the normal map from the ground-truth depth map. For edge detec-
tion, the ground-truth labels are generated by the canny detector [4] from the
ground-truth instance map, followed by the dilation algorithm and Gaussian fil-
tering. For key point detection, the Difference-of-Gaussians [27] (DoG) detector
is applied to the RGB image to generate labels for supervision and evaluation.
For reshading, following [56], we adopt the pre-trained model provided in [52]
to generate reshading maps. Metrics for Evaluation: For RGB Synthesis, we
use the Peak Signal-to-Noise Ratio (PSNR), which is commonly used to eval-
uate images. For semantic segmentation, mean Intersection over Union (mIoU)
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Fig. 4: Visualization of the 3D approaches on Replica and ScanNet dataset.
The top four rows show results on ScanNet, and the bottom five rows show results on
Replica. GT refers to the ground-truth label, Mu.NeRF to Muvie NeRF [56], Sem.NeRF
to Semantic NeRF [57], SS-NeRF to Scene-Property Synthesis with NeRF [53], and
Ver.GS to our VersatileGaussian. The columns from left to right display labels for
RGB, SN, SH, ED, KP, and SL, respectively.
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Table 2: Quantitative Comparison in ScanNet Datasets. The SemanticNeRF
is selected as the reference for the overall accuracy. It is clear that VersatileGaussian
achieves the best performance on most tasks with significantly faster rendering speed.

Methods Category. FPS Overall RGB KP SH ED SN SL
∆m(%) ↑ PSNR↑ L1 ↓ L1 ↓ L1 ↓ L1 ↓ mIoU↑

invPT [50] 2D 6.02 - - 0.008 0.16 0.06 0.13 0.91
SemanticNeRF [57]

3D
0.05 0.00 23.63 0.555 0.14 0.25 0.10 0.74

SS-NeRF [53] 0.08 +22.41 24.64 0.081 0.18 0.03 0.12 0.78
VersatileGaussian 35.1 +54.16 26.27 0.007 0.04 0.02 0.07 0.90

is adopted as the evaluation metric. The remaining tasks are evaluated using
the L1 error. Further, we employ multi-task learning performance as in [28, 43]
to evaluate the overall performance among all tasks. The overall accuracy is
measured by the average relative performance gain as:

∆m =
1

T

T∑
i

(−1)li(Mm,i −Mb,i)/Mb,i (11)

where Mm,i and Mb,i are the metrics of task i for the model m and baseline
b respectively. li is set to 0 if a higher value means better performance or 1
otherwise. Also, to evaluate the efficiency of different methods, the frames-per-
second (FPS) metric is employed to measure the rendering speed.

5.2 Implementation Details

We implemented VersatileGaussian using the PyTorch framework, incorporating
customized CUDA kernels for both the forward and backward passes of feature
rasterization. This extension builds upon the rasterizer provided in [20]. We train
and evaluate our method on a single RTX3090 GPU. Model Details: To make
it efficient, we use a small feature dimension where dv = 12, dn = 32, d = 32, and
H = 2. Other hyperparameters are derived from Gaussian Splatting [20]. Op-
timization Parameters: The optimization parameters such as warm-up itera-
tions, intervals to densify Gaussians, learning rates, etc., are derived from 3D-GS
[20]. Losses: The individual loss for surface normal estimation, reshading, key-
point detection, and object edge detection is L1 (y, ŷ) = |y − ŷ|, where y is the
predicted label and ŷ is the ground-truth label. For semantic segmentation, we
use the Weighted Balanced Cross-Entropy loss LSL = − 1

C

∑C
k=1 ωkŷk log (yk),

where yk is the kth component of vector y, and ωk the weight for the kth class,
which is calculated over all training views. The individual loss or RGB synthe-
sis is a linear combination of L1 and D-SSIM: Lrgb = (1 − λ)L1 + λLD-SSIM,
where λ is set to 0.2 in practice. The weights of tasks in the total loss are set as
λRGB = 0.6, λSL = 0.5 and λSN = λED = λKP = λSH = 0.1.
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Table 3: Ablation Studies on Replica and ScanNet. Evaluation of the two key
designs of VersatileGaussian on both Replica and ScanNet.

Variant DataSet Overall RGB KP SH ED SN SL
∆m(%) ↑ PSNR↑ L1 ↓ L1 ↓ L1 ↓ L1 ↓ mIoU↑

Explicit
Replica

0.00 34.32 0.0041 0.11 0.011 0.058 0.95
+FF +10.95 32.86 0.0037 0.05 0.008 0.065 0.95

+FF+TCA +14.41 34.57 0.0035 0.04 0.009 0.056 0.95

Explicit
ScanNet

0.00 24.76 0.0085 0.046 0.0230 0.081 0.89
+FF +1.35 24.60 0.0084 0.044 0.0223 0.081 0.90

+FF+TCA +8.65 26.27 0.0077 0.039 0.0201 0.075 0.91

5.3 VersatileGaussian is Efficient and Effective

We compare our method with representative baselines to demonstrate its effi-
ciency and effectiveness. Details regarding the datasets, label acquisition pro-
cedures, and evaluation metrics are described in Sec. 5.1 Baselines: We con-
sider both 2D and 3D baselines. (1) For 3D baselines, we choose recent Mu-
vieNeRF [56]. As it requires extra data at the training stage, we adopt its original
settings and training data on Replica and then fine-tune the framework on our
sampled fragments. At the testing stage, when evaluating a scene, all the source
views with versatile label maps and corresponding camera pose are provided
to the framework and we evaluate the outputs at given testing camera poses.
We also choose two approaches that are in the per-scene optimization schema,
namely Scene-Property Synthesis with NeRF (SS-NeRF) [53] and a simple ex-
tension of Semantic NeRF [57]. Similar to the way in which Semantic NeRF
generates the semantic map, we extend it with other tasks by simply adding
additional shallow MLPs as individual task headers. Then all the task labels are
rendered using the standard volumetric rendering equation in NeRF [29], with a
shared density field. For the headers corresponding to view-dependent tasks, the
standard view direction encoding is provided. For per-scene fine-tuning methods,
at the training stage, all source views are provided to optimize the 3D represen-
tation, and then they are tested at testing views. (2) For 2D baselines, we choose
invPT [50], which takes as input an RGB image and outputs other labels, with-
out the requirement of known camera poses. At the training stage, on Replica
and ScanNet, we provide extra 3600 and 4440 frames respectively, including
frames at all source views of our testing scenes, as training data. As 2D methods
require RGB images as input, at the testing stage, the ground-truth RGB im-
ages at testing views are fed into the 2D frameworks, and all tasks except RGB
synthesis are evaluated. Quantitative Results: As shown in Tab. 1 and Tab. 2,
VersatileGaussian significantly outperforms existing approaches in both overall
multi-task accuracy and every single task. Notably, VersatileGaussian is at least
400 times faster than existing 3D approaches. Qualitative Results: We show
some visual samples generated by VersatileGaussian and existing 3D methods.
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Table 4: Results on Tanks and Temples Datasets. Incorporating additional tasks from
off-the-shelf methods improves RGB rendering quality. The first row is derived from
3D-GS [20].

Models RGB keypoint detection edge detection
3D-GS [20] 23.14 - -
Ours (2-Tasks) 23.92 (↑ 0.78dB) 0.014 -
Ours (3-Tasks) 25.57 (↑ 2.43dB) 0.012 0.050

As shown in Fig. 4, some approaches do not produce reasonable results in cer-
tain cases. Compared to the rest approaches, VersatileGaussian achieves better
rendering quality. For example, VersatileGaussian renders clearer RGB images,
more accurate SH and SL maps, and more sharp and complete ED maps.

5.4 Boosting 3D-GS with Versatile Labels

We highlight that the RGB synthesis results of 3D-GS can be enhanced using
versatile labels, even when these dense labels are inferred from off-the-shelf 2D
models. We employ widely-used Tanks and Temples dataset [21] in our exper-
iment. Experimental settings such as the hyper-parameters, the optimization
parameters, and the train-test splits are derived from [20]. We train the RGB
synthesis task with other tasks (KP from the DoG feature and ED from the
canny algorithm), and a performance gain can be observed in Tab. 4.

5.5 Ablation Studies

We conduct ablation studies to justify our designs. To achieve versatile label ren-
dering with 3D-GS, We start from the Explicit extension of 3D-GS, where versa-
tile labels are modeled as explicit attributes attached to each Gaussian and ren-
dered following the standard splatting procedure mentioned in [20]. Specifically,
view-dependent labels are modeled as SH coefficients, and view-independent la-
bels are modeled as the label value itself. However, for some tasks, data of train-
ing views may be noisy (from 2D models or human annotation) or incomplete
(from sensors), to which the training of Explicit extension could be sensitive. We
further adopt Feature Fields (FF) for 3D-GS, where point-wise common features
are attached to each Gaussian. Given any target view, a feature map is rasterized
from the Gaussians and an individual MLP is employed for each task to read
out the explicit labels from the feature map. Each MLP contains two layers and
64 hidden dimensions, which leads to a similar total parameter count compared
to the full model. Considering tasks may benefit from each other, we design the
TCA module to enable cross-task propagation, leading to better details. The
quantitative and qualitative results are shown in Tab. 3 and Fig. 5, from which
two observations are made: (1) Learning Versatile Labels is not Trivial:
As shown in Tab. 3 and Fig. 5, The Explicit extension (labeled as Explicit) of
3D-GS yielded moderate performance in tasks such as RGB, Reshading, and
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Fig. 5: Visualization of variants in ablation studies. The left 4 columns are from
ScanNet and the right 4 columns are from Replica. For each scene, the 4 columns from
left to right are the GT label, the Explicit model, the Explicit+FF model, and the
Explicit+FF+TCA model (the full model). The rows from top to bottom are RGB,
SN, SH, ED, KP, and SL.

Edge. This issue is largely attributable to multi-task labels on training views
being noisy (from 2D models) or incomplete (from sensors) for some tasks and
the Explicit representation being sensitive to these noises. The model struggles
to differentiate between relevant and irrelevant features, as there is no feature
learning or cross-task propagation in the explicit baseline method, also a chal-
lenge exists in the 2D MTL paper [34]. (2) Cross Task Feature Propagation
Helps with Clearer Details: As shown in Fig. 5, the columns labeled with
+FF+TCA achieve better rendering quality at details such as corners and door
knobs, compared to those without the TCA module (labeled with +FF). This is
owing to the cross-task feature propagation enabled by the TCA module, which
helps each individual task get cues from other related tasks.

6 Conclusion

We present VersatileGaussian, the first framework that enables real-time,
high-quality multi-task (MT) rendering at novel views. We propose and imple-
ment a novel architecture for learning shared feature vectors on each Gaussian
and an MT rasterizer that seamlessly decodes into task-specific features, which
enables cross-task information flow during optimization. The Task Correlation
Attention within the MT rasterizer fosters cross-task correlations, substantially
enhancing MT rendering quality. Experiments on Replica and ScanNet datasets
show that VersatileGaussian achieves better rendering quality and faster render-
ing speed than existing methods.
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