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This supplementary material provides a more detailed description of the pro-
posed method. We also present a variety of additional experimental results, in-
cluding per-class IoU and qualitative results.

1 Implementation Details

Augmentation We set the range of random translation for enhanced-Mix3D to
[−25m, 25m] along the x-axis and the range of random rotation to [−30◦, 30◦]
around the z-axis. After merging two point clouds, the estimated density values
for each point are separately calculated based on the origin of each point cloud
and then these values are aggregated. Alg. 1 provides a detailed description of
the enhanced-Mix3D. Regarding beam sampling augmentation [17], we reduce
the LiDAR channels to half by selecting only even-numbered vertical beams.
We also incorporate standard 3D point cloud augmentation methods such as
scaling [0.9, 1.1], rotation [0◦, 360◦] around the z-axis, flipping, and translation
[−0.1m, 0.1m].

Algorithm 1 Enhanced-Mix3D Density Augmentation

Input: Two point clouds P1 ∈ RN×3 and P2 ∈ RM×3

Output: Mixed point cloud Po ∈ R(N+M)×3 and it’s corresponding density embed-
ding D ∈ R(N+M)×4

1: R1 ← Z-axis-RandomRotation([−30◦, 30◦])
2: R2 ← Z-axis-RandomRotation([−30◦, 30◦])
3: t← X-axis-RandomTranslation([−25m, 25m])
4: P̃2 ← R2(R1P2 + t) ▷ Transform point cloud
5: Po ← [P1; P̃2] ▷ Mix coordinates
6: O2 ← R2t ▷ sensor center of P̃2

7: for pi ∈ Po do
8: d1 ← DensityOf(pi) ▷ From Eq. 5 in the main paper
9: d2 ← DensityOf(pi −O2) ▷ From Eq. 5 in the main paper

10: Di ←
√

d2
1 + d2

2 ▷ Mix densities
11: end for

J. Kim and J. Woo—Both authors contributed equally to this work.



2 J. Kim et al.

Reservoir Sampling We employ the density clipping technique to ensure that
density values during the test phase do not surpass the 90th or fall below the
10th percentile values established from the training dataset. Due to the resource-
intensive nature of sorting the entire training dataset for percentiles, we adopt
an on-the-fly approach for percentile estimation using reservoir sampling [14],
as detailed in Alg. 2. We sample density values into reservoir memory R with
the size of N = 1000, then approximate percentiles in the memory. To prevent
decelerating the training process, we estimate percentiles only when sufficient
samples are accumulated, subsequently updating them with a cumulative moving
average. For the test phase, the established 90th and 10th percentile values,
denoted as p̂, serve as model parameters.

Algorithm 2 Point cloud Reservoir Sampling Algorithm
Initialize R[1, ..., N ], p̂← 0, c← 0 ▷ R is the reservoir memory, p̂ is the
estimated percentile, N is the max size of reservoir, c is the number of resets

1: for point cloud P in S do ▷ S is the stream of training point cloud data
2: D ← calculate density from point cloud P ▷ From Eq. 5 in the main paper
3: ρ← N

k
▷ k is the number of points processed so far

4: s← min(N , round(ρ× |D|)) ▷ s is the number of point to be sampled
5: if s < 1 then
6: s← N
7: k ← 0 ▷ Reset the count of processed points
8: c← c+ 1
9: pcurr ← Calculate percentile of R

10: p̂← p̂+ pcurr−p̂
c

▷ Calculate Cumulative Moving Average
11: end if
12: Select s random density values of points from D
13: Replace R with these points
14: k ← k + |D|
15: if c = 0 then ▷ Exception for first loop
16: p̂← Calculate percentile of R
17: end if
18: ForwardModel(P, p̂) ▷ Model forward with estimated percentile
19: end for
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(a) Raw point cloud (K) (b) Augmented point cloud (K) (c) Raw point cloud (N) (d) Augmented point cloud (N)

Fig. 1: Results of point cloud transformation through the proposed augmentation
scheme on SemanticKITTI (K) and nuScenes (N) datasets.

Table 1: Comparison of per-class performance (IoU) with DGLSS. All methods are
trained using the MinkowskiNet on the SemanticKITTI and tested on SemanticKITTI
(K), nuScenes (N), and Waymo (W) datasets. The best and the second best results are
highlighted in bold and underline, respectively.

Method Car Bicycle Motor-
cycle Truck Other

vehicle
Pedes-
trian

Drivable
surface

Side-
walk

Walk-
able

Vege-
tation mIoU

K
Base 91.23 10.04 35.69 52.89 37.95 40.99 83.86 62.78 66.34 91.33 57.31
DGLSS [6] 92.76 11.99 27.09 72.50 45.95 36.39 84.76 65.64 67.98 91.28 59.62
Ours 91.86 21.65 48.11 26.84 40.04 62.32 91.90 79.65 72.29 90.31 62.50

N
Base 68.91 2.51 12.18 11.30 20.35 29.47 80.17 31.91 40.19 77.18 37.42
DGLSS [6] 76.36 1.51 35.18 26.47 25.49 37.09 82.03 38.12 44.20 81.79 44.83
Ours 75.29 3.84 29.28 30.11 31.37 51.69 87.85 50.02 51.10 83.77 49.43

W
Base 72.12 2.52 4.52 7.77 13.36 40.86 64.92 30.12 34.84 81.40 35.24
DGLSS [6] 82.26 4.85 9.72 16.80 17.67 52.55 68.20 35.91 33.33 85.41 40.67
Ours 83.66 4.69 13.99 25.79 18.71 61.53 63.19 38.49 28.66 88.54 42.73

2 Extended Results and Analysis

Augmentation Fig. 1 illustrates the results of applying the proposed augmen-
tation scheme on the SemanticKITTI [1] and the nuScenes [2] datasets.

Per-class Evaluation Results We provide a comparative analysis of our ap-
proach against other methods by examining per-class IoU metrics. Tab. 1 and
Tab. 2 detail the per-class results in the DGLSS setting [6]. Tab. 3 and Tab. 4
present the per-class performance in the LiDomAug [11] setting, when using
MinkNet42 [3] and C&L [20] as the backbone, respectively. The comparison
results in Tab. 3, excluding our proposed method, are sourced from the DCF-
Net [22] and LiDomAug papers. The results in Tab. 4 are obtained from the
LiDAR-UDA paper [12] and from the authors of LiDomAug.

As shown in Tab. 1, the proposed method outperforms DGLSS [6] in 8 out of
10 classes when trained on SemanticKITTI (64-ch) and tested on nuScenes (32-
ch), with an average performance gain of 10.26% over DGLSS. In the (K→W)
scenario, our method demonstrates higher performance in 7 classes compared
to DGLSS, showing an average improvement of 5.07%. Tab. 2 illustrates the



4 J. Kim et al.

Table 2: Class-wise IoU of the proposed method in the DGLSS setting.

Scenario Car Bicycle Motor-
cycle Truck Other

vehicle
Pedes-
trian

Drivable
surface

Side-
walk

Walk-
able

Vege-
tation mIoU

N→N 89.11 7.43 44.51 69.21 74.69 67.60 96.58 75.71 73.43 83.37 68.16
N→K 86.63 4.83 29.35 24.80 13.45 38.70 80.97 48.79 52.52 85.14 46.52
N→W 72.64 2.37 12.24 22.58 35.64 66.27 77.85 48.41 37.75 84.03 45.98
W→W 93.70 56.55 66.16 50.83 64.96 91.55 94.54 72.39 75.27 95.55 76.15
W→K 90.97 32.18 58.61 17.83 8.16 68.51 84.01 57.09 62.29 91.03 57.07
W→N 77.14 9.83 26.82 58.70 53.77 62.42 93.36 50.65 49.43 85.36 56.75

Table 3: Comparison of per-class performance (IoU) with DA/DG methods. The sym-
bol † denotes methods necessitating ego-motion knowledge. The best and the second
best results are highlighted in bold and underline, respectively.

Method DA Car Bicycle Motor-
cycle Truck Other

vehicle
Pedes-
trian

Drivable
surface

Side-
walk Terrain Vege-

tation mIoU

K
→

N

Base 50.7 5.7 6.0 21.7 24.8 29.2 89.1 42.0 23.1 85.8 37.8
FADA [16] ✓ 69.1 1.9 21.4 42.9 20.5 12.6 84.3 43.6 38.3 80.0 41.5
CLAN [8] ✓ 73.1 1.7 16.3 31.4 19.1 13.5 85.7 45.7 50.1 81.4 41.8
DAST [21] ✓ 73.2 2.1 24.4 44.6 22.4 18.2 77.6 39.5 43.2 81.2 42.6
DCF-Net [22] ✓ 74.9 1.8 28.9 33.9 21.6 19.9 84.5 44.6 46.3 83.6 44.0
CutMix [23] 75.5 0.1 14.0 26.6 22.6 3.9 86.6 36.5 19.7 85.6 37.1
Copy-Paste [5] 77.9 3.1 11.1 21.7 31.2 7.8 88.0 38.8 19.6 86.2 38.5
Mix3D [9] 72.1 0.0 34.8 11.7 26.4 28.5 83.3 41.0 46.4 86.5 43.1
PolarMix [19] 74.1 1.7 41.9 26.9 23.8 30.5 85.1 42.7 45.3 86.2 45.8
LiDomAug† [11] 79.2 5.8 28.0 49.3 32.1 13.8 88.0 42.0 35.4 85.1 45.9
Ours 76.0 5.7 42.3 33.9 26.7 49.5 88.5 49.8 50.2 78.2 50.1

N
→

K

Base 78.5 0.0 8.2 3.4 11.1 34.5 66.3 35.8 39.4 84.2 36.1
FADA [16] ✓ 83.3 39.0 24.5 8.7 3.6 33.6 72.7 39.4 36.0 82.1 42.3
CLAN [8] ✓ 86.0 21.4 9.2 13.5 5.7 42.8 77.8 51.0 47.6 84.6 43.9
DAST [21] ✓ 90.8 40.8 24.0 11.5 5.2 41.7 76.7 45.3 48.5 84.5 46.9
DCF-Net [22] ✓ 91.7 34.3 24.5 18.5 11.6 49.1 78.6 47.5 49.8 86.4 49.2
CutMix [23] 81.2 0.0 5.3 9.1 17.4 11.8 73.6 45.5 46.8 85.7 37.6
Copy-Paste [5] 85.7 0.0 8.2 12.8 6.5 28.6 80.8 47.4 53.8 87.2 41.1
Mix3D [9] 93.1 10.4 31.3 17.0 14.1 34.2 71.8 40.7 44.6 89.5 44.7
PolarMix [19] 75.9 19.4 19.7 9.6 3.0 18.3 75.0 43.1 48.9 77.8 39.1
LiDomAug† [11] 92.6 31.6 42.5 21.6 6.4 34.4 70.0 47.1 59.4 77.5 48.3
Ours 89.5 4.7 29.5 22.4 6.3 33.7 81.9 50.7 56.5 88.2 46.3

class-wise IoU of the proposed method in various scenarios within the DGLSS
setting. Furthermore, as presented in Tab. 3, our method shows a 13.9% higher
performance in the (K→N) scenario compared to the state-of-the-art domain
adaptation method [22]. While the proposed method shows a slightly decreased
performance by 6.3% in the (N→K) scenario, considering that our method is
a domain generalization approach that does not require additional fine-tuning,
this comparable performance to the domain adaptation methods demonstrates
the superiority of our approach. As indicated in Tab. 4, even when using C&L as
the backbone, the proposed method outperforms both the latest domain adap-
tation [7, 12, 18, 20] and domain augmentation [11] methods, demonstrating the
superiority of the proposed approach.
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Table 4: Comparison of per-class performance (IoU) with DA/DG methods. All meth-
ods are based on C&L architecture. The symbol † denotes methods necessitating ego-
motion knowledge. The best and the second best results are highlighted in bold and
underline, respectively.

Method DA Car Bicycle Motor-
cycle Truck Other

vehicle
Pedes-
trian

Drivable
surface

Side-
walk Terrain Vege-

tation mIoU

K
→

N

Base 55.3 0.1 3.4 2.5 4.5 4.7 79.2 32.2 21.7 74.0 27.8
SWD [7] ✓ - - - - - - - - - - 27.7
3DGCA [18] ✓ - - - - - - - - - - 27.4
C&L† [20] ✓ - - - - - - - - - - 31.6
LiDAR-UDA† [12] ✓ 73.5 0.9 15.9 0.9 25.7 40.8 87.4 42.3 47.9 83.2 41.8
LiDomAug† [11] - - - - - - - - - - 39.2
Ours 73.5 1.7 35.9 34.2 27.4 40.3 85.1 45.4 48.5 78.9 47.1

N
→

K

Base 58.0 0.5 4.4 3.8 5.0 12.6 33.8 2.8 30.1 80.9 23.2
SWD [7] ✓ - - - - - - - - - - 24.5
3DGCA [18] ✓ - - - - - - - - - - 23.9
C&L† [20] ✓ - - - - - - - - - - 33.7
LiDAR-UDA† [12] ✓ 86.2 0.0 13.9 9.3 3.2 16.5 65.7 6.1 54.1 85.7 34.0
LiDomAug† [11] 83.7 0.0 16.6 5.4 13.4 29.6 67.4 25.4 56.5 81.2 37.9
Ours 84.6 8.7 27.6 15.8 2.6 27.6 75.6 27.6 46.8 86.1 40.3

Experiments with the additional setting We further compare our voxel-
based method with the results of applying Domain Adaptation (DA) methods [7,
10, 13, 15] to a range-view backbone [4], using the 11-class setting outlined in
Rochan et al. [10]. The comparative results in Tab. 5 are directly sourced from
the original paper [10], except for the MinkNet42 base and our method. The
results show that the MinkNet42 base model exhibits superior generalization
performance compared to the DA methods using range-view architectures [7,10,
13,15].

With the application of our method, MinkNet42’s performance further in-
creases, recording a +13.1% uplift in the (K→N) scenario and a remarkable
+44.7% increase in the (N→K) scenario relative to its baseline performance.
Compared to [10], our method shows a substantial performance surge, achieving
+33.0% and +95.7% improvements in the respective scenarios. This significant
enhancement can be attributed to the inherent disadvantages of range-view-
based backbone, which struggle with performance dips due to the distortion in
the convolutional layer’s receptive field caused by the variation in input range
image resolution. Moreover, in scenarios like (K→N), where inputs include range
images with extensive blank areas not encountered during training, range-view-
based backbone face pronounced performance setbacks, a limitation our voxel-
based approach effectively circumvents.

Qualitative Results To further demonstrate the effectiveness of our proposed
method, we provide various qualitative results. We compare the baseline and
DGLSS [6] with our proposed method, in accordance with the experimental set-
tings of DGLSS, using the SemanticKITTI (K), Waymo (W), and nuScenes (N)
datasets. Fig. 2 and Fig. 3 show the qualitative results after training on nuScenes
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Table 5: Comparison with domain adaptation methods applied to a range-view back-
bone.

Backbone Method Car Bicycle Motor-
cycle

Other
vehicle

Pedes-
trian Truck Drivable

surface
Side-
walk Terrain Vege-

tation
Man-
made mIoU

K
→

N

SalsaNext
(Range-view)

Base 35.7 0.2 0.4 5.7 7.5 8.1 73.8 15.0 14.9 8.3 51.4 20.1
CORAL [13] 51.0 0.9 6.0 4.0 25.9 29.9 82.6 27.1 27.0 55.3 56.7 33.3
MEnt [15] 57.4 2.2 4.6 6.4 22.6 19.3 82.3 28.8 29.9 46.8 64.2 33.1
AEnt [15] 57.4 1.1 8.6 6.7 24.0 10.1 81.0 25.4 26.6 34.2 58.9 30.4
(M+A)Ent [15] 57.3 1.1 2.3 6.8 23.4 7.9 83.5 32.6 31.8 43.3 62.3 32.0
SWD [7] 45.3 2.1 2.2 3.4 25.9 10.6 80.7 26.5 30.1 43.9 60.2 30.1
Rochan et al. [10] 54.4 3.0 1.9 7.6 27.7 15.8 82.2 29.6 34.0 57.9 65.7 34.5

MinkNet42
(Voxel)

Base 69.7 5.3 26.2 18.3 26.5 17.5 82.2 35.6 30.6 65.2 69.7 40.6
Ours 75.3 1.6 44.9 15.7 28.5 19.4 87.8 48.0 44.4 67.3 72.1 45.9

N
→

K

SalsaNext
(Range-view)

Base 7.7 0.1 0.9 0.6 6.4 0.4 30.4 5.7 28.4 27.8 30.2 12.6
CORAL [13] 47.3 10.4 6.9 5.1 10.8 0.7 24.8 13.8 31.7 58.8 45.5 23.2
MEnt [15] 27.1 2.0 2.3 3.4 9.5 0.4 29.3 11.3 28.0 35.8 39.0 17.1
AEnt [15] 42.4 4.5 6.9 2.8 6.7 0.7 16.1 7.0 26.1 46.1 42.0 18.3
(M+A)Ent [15] 49.6 5.9 4.3 6.4 9.6 2.6 22.5 12.7 30.3 57.4 49.1 22.8
SWD [7] 34.2 2.7 1.5 2.0 5.3 0.9 28.8 20.5 28.3 38.2 36.7 18.1
Rochan et al. [10] 49.6 4.6 6.3 2.0 12.5 1.8 25.2 25.2 42.3 43.4 45.3 23.5

MinkNet42
(Voxel)

Base 58.7 11.3 12.6 2.1 24.2 11.6 63.3 14.7 22.1 64.5 64.9 31.8
Ours 87.1 15.0 20.1 4.1 20.4 16.9 83.6 45.9 54.7 81.7 76.8 46.0

and subsequently evaluating on Waymo and SemanticKITTI, respectively. Fig. 4
and Fig. 5 present the qualitative results on nuScenes after training on Waymo
and SemanticKITTI, respectively.
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(a) Ground-Truth (b) MinkNet (c) MinkNet+DGLSS (d) MinkNet+Ours

Fig. 2: Qualitative Results. Trained with nuScenes, tested on Waymo dataset.
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(a) Ground-Truth (b) MinkNet (c) MinkNet+DGLSS (d) MinkNet+Ours

Fig. 3: Qualitative Results. Trained with nuScenes, tested on SemanticKITTI dataset.
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(a) Ground-Truth (b) MinkNet (c) MinkNet+DGLSS (d) MinkNet+Ours

Fig. 4: Qualitative Results. Trained with Waymo, tested on nuScenes dataset.
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(a) Ground-Truth (b) MinkNet (c) MinkNet+DGLSS (d) MinkNet+Ours

Fig. 5: Qualitative Results. Trained with SemanticKITTI, tested on nuScenes dataset.
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