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Abstract. In this work, we introduce the Cross Human Motion Diffu-
sion Model (CrossDiff3), a novel approach for generating high-quality hu-
man motion based on textual descriptions. Our method integrates 3D and
2D information using a shared transformer network within the training
of the diffusion model, unifying motion noise into a single feature space.
This enables cross-decoding of features into both 3D and 2D motion rep-
resentations, regardless of their original dimension. The primary advan-
tage of CrossDiff is its cross-diffusion mechanism, which allows the model
to reverse either 2D or 3D noise into clean motion during training. This
capability leverages the complementary information in both motion rep-
resentations, capturing intricate human movement details often missed
by models relying solely on 3D information. Consequently, CrossDiff ef-
fectively combines the strengths of both representations to generate more
realistic motion sequences. In our experiments, our model demonstrates
competitive state-of-the-art performance on text-to-motion benchmarks.
Moreover, our method consistently provides enhanced motion generation
quality, capturing complex full-body movement intricacies. Additionally,
with a pre-trained model, our approach accommodates using in-the-wild
2D motion data without 3D motion ground truth during training to gen-
erate 3D motion, highlighting its potential for broader applications and
efficient use of available data resources.

1 Introduction

In recent years, the field of human motion synthesis [7,9,10,14,15,18,41,50] has
witnessed significant advancements, primarily driven by the growing demand for
high-quality, realistic motion generation in applications such as gaming, virtual
reality, and robotics.

A crucial aspect in this research area is generating human motion based
on textual descriptions, enabling contextually accurate and natural movements
[40]. However, current methods [4, 8, 26, 40] predominantly rely on 3D motion
information during training, leading to an inability to capture the full spectrum
of intricacies associated with human motion. When using only 3D representation,

* Work done during an internship at Tencent AI Lab.
† Corresponding author.
3 https://wonderno.github.io/CrossDiff-webpage/

https://orcid.org/0009-0007-8339-5229
https://orcid.org/0000-0002-1445-3196
https://orcid.org/0000-0003-0403-1923


2 Z. Ren et al.

x!"#

𝑥!$#x%$#

x%"#

Cross-Diffusion Model

𝑥!"#x%"#

Standard Diffusion Model
A person is dancing eloquently.

Fig. 1: Our method utilizing the cross-diffusion mechanism (Left) exhibits more full-
body details compared to existing methods (Right).

the generation model may struggle to relate text semantics to some body part
movements with very small movement variations compared to others, which can
lead to overlooking important motion details. This is because the model might
focus on more dominant or larger movements within the 3D space, leaving subtle
nuances underrepresented. For example, when given a prompt such as "a person
is dancing eloquently," as illustrated in Figure 1, the generated motion might
lack vitality, display a limited range of movements, and contain minimal local
motion details.

To effectively address the limitations and accurately capture the nuances of
full-body movement, we introduce the Cross Human Motion Diffusion Model
(CrossDiff). This innovative approach seamlessly integrates and leverages both
3D and 2D motion information to generate high-quality human motion se-
quences. The 2D data representation effectively illustrates the intricacies of hu-
man body movements from various viewing angle projections. Due to different
view projections in 2D data, small body part movements can be magnified in
certain projections, making them more noticeable and easier to capture. This
helps the text-to-motion generation models to better associate text descriptions
with a wider range of human body motion details, including subtle movements
that might have been overlooked when relying solely on 3D representation.

As a result, incorporating 2D information with 3D enables the diffusion model
to establish more connections between motion and text prompts, ultimately en-
hancing the motion synthesis process. The CrossDiff learning framework consists
of two main components: unified encoding and cross-decoding. These compo-
nents work together to achieve more precise and realistic motion synthesis. Fur-
thermore, it is essential to transfer the knowledge acquired in the 2D domain to
3D motion, which leads to an overall improvement in the model’s performance.

Unified encoding fuses motion noise from both 3D and 2D sources into a
single feature space, facilitating cross-decoding of features into either 3D or 2D
motion representations, regardless of their original dimension. The distinctive
innovation of our approach stems from the cross-diffusion mechanism, which
enables the model to transform 2D or 3D noise into clean motion during the
training process. This capability allows the model to harness the complemen-
tary information present in both motion representations, effectively capturing
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intricate details of human movement that are often missed by models relying
exclusively on 3D data.

In experiments, we demonstrate our model achieves competitive state-of-the-
art performance on several text-to-motion benchmarks, outperforming existing
diffusion-based approaches that rely solely on 3D motion information during
training. Furthermore, our method consistently delivers enhanced motion gen-
eration quality, capturing complex full-body movement intricacies essential for
realistic motion synthesis. A notable advantage of our approach is its ability to
utilize 2D motion data without necessitating 3D motion ground truth during
training, enabling the generation of 3D motion. This feature underscores the
potential of the CrossDiff model for a wide range of applications and efficient
use of available data resources.

2 Related Work

2.1 Human Motion Generation

Human motion generation is the process of synthesizing human motion either
unconditionally or conditioned by signals such as text, audio, or action labels.
Early works [7,16,18,24] treated this as a deterministic mapping problem, gen-
erating a single motion from a specific signal using neural networks. However,
human motion is inherently stochastic, even under certain conditions, leading to
the adoption of deep generative models in more recent research.

For instance, Dancing2music [14] employed GANs to generate motion under
corresponding conditions. ACTOR [25] introduced a framework based on trans-
formers [44] and VAEs, which, although designed for action-to-motion tasks, can
be easily adapted for text-to-motion tasks as demonstrated in TEMOS [26]. Since
text and audio are time-series data, natural language processing approaches are
commonly used. Works by [6], [1], and [8] utilized GRU-based language models
to process motion data along the time axis.

MotionCLIP [39] uses the shared text-image space learned by CLIP [28] to
align the feature space of human motion with that of CLIP. MotionGPT [35,36]
directly treats motion as language and addresses the motion generation task as a
translation problem. However, conditions like language and human motion differ
significantly in terms of distribution and expression, making accurate alignment
challenging.

To overcome this issue, T2M-GPT [52] and TM2T [9] encode motion us-
ing VQ-VAE [43] and generate motion embeddings with generative pretrained
transformers. MotionDiffuse [53] is the first application of diffusion models in
text-to-motion tasks. MDM [40] employs a simple diffusion framework to dif-
fuse raw motion data, while MLD [4] encodes motion using a VAE model and
diffuses it in the latent space. ReMoDiffuse [54] retrieves the motion related
to the text to assist in motion generation. Meanwhile, Fg-T2M [45] utilizes a
fine-grained method to extract neighborhood and overall semantic linguistic fea-
tures. Although these methods attain success, they depend exclusively on 3D
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Fig. 2: Overview of our CrossDiff framework for generating human motion from textual
descriptions. The framework incorporates both 3D and 2D motion data, using unified
encoding and cross-decoding components to process mixed representations obtained
from random projection.

motion data during training, which results in a failure to capture sufficient com-
plexities associated with human motion. In contrast, our approach utilizes a
cross-diffusion mechanism to leverage the complementary information found in
both 2D and 3D motion representations.

2.2 Diffusion Models

Diffusion generative models [11, 35, 36], based on stochastic diffusion processes
in Thermodynamics, involve a forward process where samples from the data dis-
tribution are progressively noised towards a Gaussian distribution and a reverse
process where the model learns to denoise Gaussian samples. These models have
achieved success in various domains, including image synthesis [29,31,32,34,42],
video generation [11,21,49], adversarial attacks [23,55], motion prediction [3,46],
music-to-dance synthesis [17,41], and text-to-motion generation [4,30,40,51,53].

Classifier-Free Guidance [12] enables conditioned generation without addi-
tional model training, balancing fidelity and diversity. In the image domain,
inpainting methods [5,20,37] iteratively incorporate known information into the
diffusion process, maintaining constant image parts while learning to inpaint oth-
ers. Similar approaches have been applied to motion editing [13,33,40]. Differing
from these works, our work focuses on leveraging multiple data representations
to enhance diffusion model learning.

3 Method

3.1 Overview

Given a textual description c, our objective is to generate multiple human motion
sequences x1:N = {xi}Ni=1, each with a length of N . As illustrated in Figure 2, our
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method is carefully designed to efficiently incorporate both 3D and 2D motion
data within the learning process of the diffusion model.

During the training phase, we first obtain mixed representations of the data
from the provided 3D input using a random projection technique. Afterward,
the 2D and 3D data representations are independently diffused and processed
through our learning framework, CrossDiff, which primarily consists of unified
encoding and cross-decoding components.

The unified encoding module maps both the 2D and 3D data into a shared
feature space. These features are then passed through the cross-decoding com-
ponent, resulting in the generation of two motion representations. These repre-
sentations are subsequently employed for loss calculation and model learning. In
the inference phase, our approach supports not only standard sampling but also
mixture sampling.

Preliminary. Denoising diffusion probabilistic models (DDPM) [11] can it-
eratively eliminate noise from a gaussian distribution to approximate a true data
distribution. This technique has had a significant impact on the field of generative
research, including text-to-motion applications. In this study, we have adapted
DDPM and trained a transformer-based model to gradually reduce noise and
generate motion sequences.

Diffusion is modeled as a Markov noising process {x1:N
t }Tt=0 of T steps. For

simplicity, we use xt to denote x1:N
t in the following discussion. Starting with

a motion sequence x0 in original data distribution, the noising process can be
described as

q(xt|xt−1) = N (xt;
√
αtxt−1, (1− αt)I) (1)

where αt ∈ (0, 1) is constant hyper-parameters. When αT is small enough, we
can approximate xT ∈ N (0, I). The reverse process is to progressively denoise
xT from a gaussian distribution to obtain the clean motion x0. Following [29,40],
we predict the clean motion x0 itself on textual condition c as x̂0 = G(xt, t, c).
We apply the simple objective [11]

Lsimple = Et∼[1,T ]||x0 −G(xt, t, c)||22. (2)

3.2 Mixed Representations

As the naive diffusion model is trained only on one data distribution (3D poses),
we have trained it on a mixture representation of 3D and 2D poses. To obtain 2D
data that is closer to the real distribution, we randomly projected the 3D poses
into 2D planes in four directions (front, left, right, and back). The 3D poses xi

3D ∈
Rd3D and 2D poses xi

2D ∈ Rd2D are represented respectively by d3D-dimensional
and d2D-dimensional redundant features, respectively, as suggested by [8]. The
pose xi is defined by a tuple of (r, jp, jv, jr, cf ), where (r3D, jp3D, jv3D, jr3D, cf3D)
is identical to [8]. In addition, r2D ∈ R2 represents 2D root velocity. jp2D ∈
R2j , jv2D ∈ R2j and jr2D ∈ R2j represent the local joints positions, velocities and
rotations, respectively, with j denoting the number of joints besides the root.
cf2D ∈ R4 is a set of binary features obtained by thresholding the heel and toe
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joint velocities. Notably, the rotation representation is made up of the sine and
cosine values of the angle.

3.3 Cross Motion Diffusion Model

Framework. Our pipeline is illustrated in Figure 2. CLIP [28] is a widely recog-
nized text encoder, and we use it to encode the text prompt c. The encoded text
feature and time-step t are projected into transformer dimension and summed
together as the condition token ztk. The 2D and 3D motion sequences are pro-
jected into the same dimension, concatenated with condition token ztk in time
axis and summed with a standard positional embedding. We aim to unify the
two domain features in one space but it is too difficult for one linear layer. A
straightforward idea is to encode via two separate encoders:

z03D = E3D(x3D,t, t, c), z
0
2D = E2D(x2D,t, t, c), (3)

where E3D/2D(·) are 3D/2D L1-layer transformer encoders [44]. However, We
find it more efficient to add another shared-weight encoder to extract shared
feature:

{zi3D/2D}L2

i=1
= Eshare(z03D/2D), (4)

where Eshare(·) is a shared-weight L2-layer transformer encoder, and {zi3D/2D}L2

i=1
are the outputs of each shared-weight layer. The whole process is defined as uni-
fied encoding.

To output motion in two modality, we use independent L2-layer transformer
decoders [44] for 2D and 3D data. Starting from 2D/3D learnable token em-
beddings Tok2D/3D, each decoder layer takes the output of the previous layer as
queries and the output of same-level shared layer zi as keys and values instead of
the last layer. The starting point is to make decoder layers follow the extracting
patterns of shared-weight layers rather than gaining deeper embeddings. Finally,
a linear layer is added to map the features to the dimensions of the motions.
This cross-decoding can be integrated as:

x̂3D,0 = D3D({zi3D/2D}L2
i=1), x̂2D,0 = D2D({zi3D/2D}L2

i=1), (5)

where D3D/2D are 3D/2D decoders including learnable tokens; and x̂3D/2D,0 are
predicted clean 3D/2D motion sequences. In summary, with a pair of 3D motion
and 2D projected motion, CrossDiff outputs four results via

x̂iD→jD,0 = GiD→jD(xiD,t, t, c) = DjD(Eshare(EiD(xiD,t, t, c))), (6)

where x̂iD→jD,0 are predicted j-dimension clean motion x̂jD,0 from i-dimension
motion noise xiD,t with i, j ∈ {2, 3}.

Training. As mentioned in Section 3.1, we apply a simple objective (Eq. 2) for
all outputs:

LiD→jD = Et∼[1,T ]||xjD,0 −GiD→jD(xiD,t, t, c)||22. (7)
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We train our model in two stage. In stage I, CrossDiff is forced to learn the
reverse process, motion characteristic of texts in both domains and the motion
connection of two distribution via the loss

LstageI = L3D→3D + w23L2D→3D + w32L3D→2D + w22L2D→2D, (8)

where w23, w32, w22 are relative weights. In stage II, there is only a 3D generation
loss:

LstageII = L3D→3D. (9)

This helps the model focus on the 3D denoising process and eliminate the un-
certainty of the 2D and 3D mapping relationship while retaining the knowledge
of diverse motion features.

3.4 Mixture Sampling

... ...𝑥2𝐷,𝑇 𝑥3𝐷,0𝑥2𝐷,𝑡

𝐺2𝐷→2𝐷    

ො𝑥2𝐷,0

𝑥2𝐷,𝑡−1

diffuse

... 𝑥2𝐷,𝛼

𝐺2𝐷→3𝐷    

ො𝑥3𝐷,0

𝑥3𝐷,𝛼−1

diffuse

... 𝑥3𝐷,𝑡

𝐺3𝐷→3𝐷    

ො𝑥3𝐷,0

𝑥3𝐷,𝑡−1
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Fig. 3: Overview of Mixture Sampling. The original noise is sampled from a 2D
gaussian distribution. From time-step T to α, CrossDiff predicts the clean 2D motion
x̂2D,0 and diffuses it back to x2D,t−1. In the remaining α steps, CrossDiff denoises in
the 3D domain and finally obtains the clean 3D motion.

After training, one can sample a motion sequence conditioned on a text
prompt in an iterative manner. The standard method [40] gradually anneals the
3D noise from a gaussian distribution, which we still use. We predict the clean
sample x̂3D,0 and noise it back to x3D,t−1 for T steps until x3D,0.

Furthermore, utilizing the CrossDiff architecture, we propose a novel two-
domain sampling approach. As shown in Figure 3, We first sample 2D gaussian
noise which is then denoised with G2D→2D(x2D,t, t, c) until time-step α. Next,
we project the denoised 2D noise onto the 3D domain using G2D→3D(x2D,t, t, c)
and continue the denoising process with G3D→3D(x3D,t, t, c) for the remaining
α steps. Our experiments in supplementary demonstrate the difference between
mixture sampling and the vanilla method.

3.5 Learning 3D Motion Generation from 2D Data

Given the complexity and cost associated with collecting high-quality 3D motion
data, generating 3D motion from 2D motion data is an attractive alternative.
Moreover, generating 3D motion from textual descriptions in an out-of-domain
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scenario is approximately a zero-shot task. To achieve this, we first estimated 2D
motion from text-related videos using an off-the-shelf model. We then utilized
the pretrained model in stage I G2D→3D(x2D,t, t, c) to generate corresponding
3D clean motion, with t set to 0 and c set to null condition ∅. A motion filter
is applied to smooth the generated motion. We assume that 2D pose estimation
is relatively precise, allowing the processed 2D/3D motion to serve as pseudo-
labels for training. The model is fine-tuned with the same objective as stage
I, but with different weight hyper-parameters. After training, our model can
generate diverse motion according to out-of-domain textual descriptions using
mixture sampling (Sec. 3.4).

During training with 2D motion estimated from videos, we encounter sig-
nificant errors in root estimation due to the uncertainty of camera movement.
To address this issue, we decouple the root information r3D/2D and generate it
based on other pose features. Please refer to supplementary for more details.

4 Experiments

Our focus is on the text-to-motion generation task, and we conduct experiments
on two standard datasets: HumanML3D [8] and KIT Motion-Language (KIT-
ML) [27]. In Section 4.1, we introduce these standard datasets and the evaluation
metrics used in our experiments. In Section 4.2, we present comparable quanti-
tative results with state-of-the-art methods and outperform diffused methods on
the HumanML3D dataset. We also use upper and lower body indices, combined
with visualization effects, to illustrate our superior performance in capturing
whole-body details. Moreover, we demonstrate that CrossDiff supports training
with additional 2D motion sequences in Section 4.3. Finally, we discuss ablation
studies in Section 4.4 to analyze the contributions of each component of our
proposed method.

4.1 Datasets and Evaluation Metrics

Datasets. The HumanML3D [8] and KIT-ML datasets [27] are widely used
in research. KIT-ML provides 6,353 textual descriptions for 3,911 motion se-
quences, which are all down-sampled to 12.5 FPS. HumanML3D is currently the
largest 3D human motion dataset with textual descriptions. The motions are
originally from two motion capture datasets, AMASS [22] and HumanAct12 [10],
and are rescaled to 20 frames per second. It contains 14,616 motions annotated
with 44,970 sequence-level textual descriptions. To enable fair comparisons with
previous works [4,8,40], we use the redundant motion representation proposed by
[8]. This representation involves re-targeting the joint positions to a default hu-
man skeleton template, setting the initial pose at the same position (X=0,Z=0)
facing the Z+ direction, and including root global positions, local positions,
joint rotations, joint velocities, and foot contact labels. We use the same motion
representation for KIT-ML.
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To obtain corresponding 2D motion, we utilize orthogonal projection to
project 3D motion into 2D planes for four directions (front, left, right, and
back). Then, we process the redundant 2D motion representation as described
in Section 3.2.

UFC101 [38] is an influential action recognition dataset that contains paired
videos and action labels. We obtain 2D joint positions using the ViTPose [48]
model and process them into redundant 2D motion representation. We filter out
fuzzy data and ultimately select 24 action labels, with each label related to 10-50
motion sequences. We then annotate around five textual descriptions for each
label.

Evaluation Metrics. We compare our results with previous works using the
same metrics as [8, 40]. These metrics involve evaluating quality with Frechet
Inception Distance (FID), precision with R-Precision and Multi-modal Dis-
tance (MM Dist), and diversity with Diversity (DIV) and Multimodality
(MModality). These measurements assess generated motion distribution, re-
trieval ranking accuracy, Euclidean distances between text and motion features,
and variance across features and within a single text.

Besides using the evaluation model from [8], we introduce a new metric
measuring the FID (Fréchet Inception Distance) of upper and lower body move-
ments, denoted as FID-U and FID-L. This enables a fine-grained analysis of
human motion and better comprehension of upper and lower body dynamics. We
split joints into two groups using the root joint as a boundary and train separate
evaluators, following a similar approach to [8]. This effectively evaluates gener-
ated motion quality for both body segments, offering a deeper understanding of
human motion complexities and advancing research on new motion generation
models.

Implementation Details. We use the AdamW [19] optimizer, setting the
learning rate to 1e-4 and 1e-5 in stages I and II, respectively. Our model is
trained for 4k epochs in stage I and 1k epochs in stage II, using 8 Tesla V100
GPUs with a mini-batch size of 32. The number of diffusion steps is set to 1K.
The loss weights (w23, w32, w33) is set to (1, 1, 1) in stage I and (0.1, 0.1, 1) in
training on UFC101 datasets.

4.2 Comparisons on Text-to-motion

Comparative Analysis of Standard Metrics. In our evaluation, we test our
models 20 times and compare their performance with existing state-of-the-art
methods. These methods include Language2Pose [1], T2G [2], Hier [6], T2M [8],
MotionDiffuse [53], Fg-T2M [45], MDM [40], T2M-GPT [52], MLD [4] and Re-
MoDiffuse [54]. As illustrated in Table 1, our model exhibits competitive per-
formance when compared to these leading methods. However, it is important to
note that the KIT-ML dataset primarily consists of "walk" movements and lacks
intricate details. Consequently, this dataset does not present the same challenges
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Table 1: Quantitative results on the HumanML3D and KIT-ML test set. The overall
results on KIT-ML are shown on the right, while the results of both widely-used and
newly-proposed metrics on HumanML3D are shown on the left. The red and blue
colors indicate the best and second-best results, respectively.

Methods
HumanML3D KIT-ML

R Precision FID↓ MM Dist↓ DIV→ MModality↑ FID-U↓ FID-L↓ R Precision FID↓ MM Dist↓ DIV→ MModality↑ FID-U↓ FID-L↓(top 3)↑ (top 3)↑
Real 0.797 0.002 2.974 9.503 - - - 0.779 0.031 2.788 11.08 - - -
Language2Pose 0.486 11.02 5.296 7.676 - - - 0.483 6.545 5.147 9.073 - - -
T2G 0.345 7.664 6.030 6.409 - - - 0.338 12.12 6.964 9.334 - - -
Hier 0.552 6.532 5.012 8.332 - - - 0.531 5.203 4.986 9.563 - - -
T2M 0.740 1.067 3.340 9.188 2.090 - - 0.693 2.770 3.401 10.91 1.482 - -
MotionDiffuse 0.782 0.630 3.113 9.410 1.553 - - 0.739 1.954 2.958 11.10 0.730 - -
Fg-T2M 0.783 0.243 3.109 9.278 1.614 - - 0.745 0.571 3.114 10.93 1.019 - -
MDM 0.611 0.544 5.566 9.559 2.799 0.825 0.840 0.396 0.497 9.191 10.847 1.907 0.925 0.973
T2M-GPT 0.775 0.141 3.121 9.722 1.831 0.145 0.607 0.745 0.514 3.007 10.921 1.570 0.602 0.715
MLD 0.772 0.473 3.196 9.724 2.413 0.541 0.553 0.734 0.404 3.204 10.80 2.192 0.563 0.772
ReMoDiffuse 0.795 0.103 2.974 9.018 1.795 0.125 0.565 0.765 0.155 2.814 10.80 1.239 0.205 0.644
Ours 0.730 0.162 3.358 9.577 2.620 0.118 0.281 0.704 0.474 3.308 10.77 1.742 0.434 0.625

that our method is specifically designed to address. It indicates we can steadily
generate high-quality and precise motion while pay attention to rich diversity.
In other words, our generated results are not only consistent with the textual
description, but also more expressive.

Comparative Analysis of Fine-grained Metrics. We compare the fine-
grained metrics for our upper and lower body with those from four recent stud-
ies [4, 40, 52, 54]. As demonstrated in Table 1, our generated motion is more
robust and detailed. Our low FID scores for both the upper and lower body
indicate that our synthesized motion effectively captures full-body movement
rather than focusing solely on specific semantic parts. In contrast, ReMoDiffuse
and T2M-GPT achieves a low FID score for the upper body but a high score for
the lower body. This suggests that their generation process exhibits unbalanced
attention towards different body parts, primarily translating textual descriptions
into upper body characteristics rather than capturing the entire body’s motion.

Figure 4 displays qualitative comparisons with existing methods. Our method
can "march" with arm swings, "wobble" using hands for balancing and alternate
between defense and attack in a "fight". MDM exhibits a certain rigidity, while
T2M-GPT and ReMoDiffuse appear to lack dynamism. For direct comparisons,
please refer to the supplementary videos provided. We conducted a user study
on motion performance, in which participants were asked two questions to assess
the vitality and diversity of the motions. The results, presented in Figure 5(a),
confirm our analysis. In summary, our method demonstrates a superior ability
to interpret semantic information and generate more accurate and expressive
motions.

4.3 Learning from 2D Data

After being trained on a 3D dataset, our model can learn 3D motion generation
from 2D data. By fine-tuning the model with the UCF101 dataset [38], we ef-
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“a person marches 
forward, turns 
around, and then 
marches back.”

“a person walks 
wobbly down an 
incline.”

“he is punching in 
a fight.”

ours MDM T2M-GPT ReMoDiffuse

Fig. 4: Qualitative results on HumanML3D dataset. We compare our method with
MDM [40], T2M-GPT [52] and MLD [4]. We find that our generated actions better
convey the intended semantics.

fectively address a zero-shot problem arising from the absence of ground-truth
3D motion. Our sampling strategy reaches optimal performance when α = 1.
As depicted in Figure 6, the generated motions for various activities, such as
pulling up, biking, table tennis, and baseball, are showcased alongside their
textual prompts. Notably, pulling up and biking are entirely outside the Hu-
manML3D motion domain. Although playing table tennis and baseball share
similarities with actions like slapping or throwing in HumanML3D, the original
model is unable to synthesize motion under those specific descriptions. However,
after fine-tuning, our generated motion more closely resembles the given sports
rather than merely mimicking the actions. Despite some activities being beyond
the scope of the HumanML3D domain, our fine-tuned model successfully syn-
thesizes specific motions by leveraging the weak 2D data. This demonstrates its
remarkable adaptability and potential for efficient use of available motion data
since 2D motion and related textual descriptions are easier to obtain than 3D
motion.

4.4 Ablation Studies

Our model features separate pipelines for 2D and 3D inputs, allowing us to
train solely on 3D motion sequences, which is an improvement over MDM [40].
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left foot right foot

left hand right hand

3D motion
   2D motion at

front view
  2D motion at

left view

x axis: time

y axis: joint velocity

prompt:a person is walking forward with very animated hand motions.
(b)

Q1 Q2
Q1:Which motion is more realistic and contains more details？
Q2:Which generations are more diverse？

(a)

Ours vs MDM
Ours vs T2M-GPT
Ours vs ReMoDiffuse

Fig. 5: (a)The result of the user study. (b) Difference between 3D and 2D motion data
distribution. The time axis is represented on the x-axis, while the normalized joint
velocity is represented on the y-axis. The 3D motion is represented by a blue full line,
while the 2D motion is represented by red and green dashed lines, indicating the front
and left view, respectively.

a person lifts 

his body up 

by pulling on 

a bar.

a person rides 

a bicycle.

a man hits the 

ball back and 

forth over a 

table.

the man 

throws a 

baseball hard.

Fig. 6: Generating 3D movements without training on paired 3D motion and textual
descriptions.

We investigate the impact of introducing 2D data on the performance of 3D
generation and demonstrate the effectiveness of using a shared-weights encoder.

Why 2D motion help? To explain the benefits of 2D motions, we compared
the distribution differences between 3D and 2D motion data. Hand and feet
movements, which are primary indicators of motion, were visualized in both 3D
and 2D levels, and their velocities were normalized along the joints dimension. In
Figure 5(b), we can clearly see that around the 20th frame, the 2D velocity of the
left hand in the front view reaches a higher value while the 3D velocity is quite
low, indicating that hand movements in 2D are more prominent than in 3D. The
results show that 2D motion captures different details from 3D motion, suggest-
ing that the CrossDiff model can lead 3D motion to learn from the knowledge
that 2D motion acquired from text prompts. Specifically, for the given sample,
2D motion might learn "animated hand motions" while 3D motion focuses only
on "walking". 2D motion is an explicit feature that we artificially extract to
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Table 2: Evaluation of our models with different settings on the HumanML3D dataset.
Bold indicates best result. The symbol % indicates the percentage of data being used.
From top to bottom, we present MDM as baselines, the impact of training with 2D
representations, with(w/) or without(w/o) shared-weights encoder.

Methods R Precision FID↓ MM Dist↓ DIV→(top 3)↑
MDM 0.611 0.544 5.566 9.559
Ours 0.730 0.162 3.358 9.577
50% 3D 0.666 0.586 3.894 9.513
100% 3D 0.685 0.224 3.690 9.445
50% 3D + 100% 2D 0.672 0.422 3.708 9.345
100% 3D + 100% 2D 0.730 0.162 3.358 9.577
w/o shared-weights encoder 0.714 0.187 3.496 9.488
w/ shared-weights encoder 0.730 0.162 3.358 9.577
1 view(front) 0.722 0.186 3.467 9.798
1 view(left) 0.715 0.181 3.412 9.834
4 views 0.730 0.162 3.358 9.577
5 views 0.695 0.202 3.613 9.502

aid the model’s learning, and this approach can help improve performance when
dealing with arbitrary data.

Influence of 2D Representation Table 2 presents the results from four dif-
ferent experiment settings. The control groups of "100% 3D" and "100% 3D
+ 100% 2D" demonstrate that when training with paired 3D motion and text,
projecting the 3D motion to 2D and building a connection between the 2D mo-
tion and text can help boost performance. The visualizations in Figure 1 further
highlight the enhanced quality of our generated outputs. The control groups of
"50% 3D" and "50% 3D + 100% 2D" prove that additional 2D data can also
help improve performance. The additional 2D data indicates other 2D motion
without ground truth 3D motion. The experiment in Section 4.3 shows learning
2D motion in the wild can also help with out-of-domain 3D motion learning. As
we can see, the combined learning of 2D motion has great potential.

Shared-weights Encoder Without the shared-weights encoder, the model is
a simple encoder-decoder framework with two modalities. However, we believe
that this is not sufficient to fully fuse the 3D and 2D motion features. Inspired
by [47], we found that when learning with data from two modalities, extracting
separate and fused feature layer-by-layer is more efficient. The shared-weights
encoder serves as a fusing module, while the 3D/2D motion decoder acts as a
separate decoder module. The goal is to ensure that the decoder layers follow the
same extraction patterns as the shared-weight layers, rather than simply gaining
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deeper embeddings. The results presented in Table 2 demonstrate the efficiency
of using a shared-weights encoder.

2D Representation from different views To evaluate the impact of different
views, we conducted tests on four settings: a) only the front view, b) only the
left view, c) four views including front, left, back, and right, and d) five views
with an additional top view. When multiple views were used, the 3D motion
was paired with a random view projection to formulate the loss. As shown in
Table 2, it is reasonable to assume that four views contain more 2D information
and outperform one view. Furthermore, the front view and left view do not have
much distinction in terms of performance. However, the performance actually
decreased with the additional top view. This could be due to the fact that the
2D information becomes more difficult to classify without the condition of the
camera view. We did not pass along the camera information because it is dif-
ficult to estimate the camera view of in-the-wild videos, and injecting camera
information could disrupt the structure of the text-to-2D model, making it dif-
ficult for the text-to-3D model to follow. In conclusion, the number of views
serves as a practical hyperparameter that can be adjusted through enumeration
experiments.

5 Conclusion

In conclusion, the Cross Human Motion Diffusion Model (CrossDiff) presents
a promising advancement in the field of human motion synthesis by effectively
integrating and leveraging both 3D and 2D motion information for high-quality
motion generation. The unified encoding and cross-decoding components of the
CrossDiff learning framework enable the capture of intricate details of human
movement that are often overlooked by models relying solely on 3D data. Our
experiments validate the superior performance of the proposed model on various
text-to-motion benchmarks.

Despite its promising results, the CrossDiff model is not without potential
weaknesses. One limitation may arise from the model’s ability to generalize to
unseen or rare motion patterns, especially when trained only on 2D motion
data. Additionally, the computational complexity of the model might hinder its
real-time application in certain scenarios, such as interactive gaming and virtual
reality environments.

Future work could explore methods to enhance the model’s generalization ca-
pabilities, such as incorporating unsupervised or semi-supervised learning tech-
niques. To further advance our understanding, we propose the accumulation of a
sizable 2D motion dataset coupled with relevant textual prompts, enabling the
training of a unified motion generation model.
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