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A1 Appendix

In this Appendix, we will provide more details about data collection and anno-
tations of the proposed EgoExo-Fitness dataset in Sec. A2. After that, we will
introduce details about the benchmarks in Sec. A3, including formal definition,
implementation, more experiment analysis, and other benchmark tasks. Finally,
we provide more dicussinos about comparisons between EgoExo-Fitness and the
existing datasets (i.e., Ego4D [9], Ego-Exo4D [10], and other related datasets)
in Sec. A4.

A2 More details of EgoExo-Fitness

Recording System. For the two Insta-Go3 cameras, we use 2560× 1440 pixel
resolution RGB images. For the GoPro camera, we use 1920× 1080 pixel resolu-
tion RGB images. For the side and front exocentric cameras, we set the resolution
to be 1024×576 and 1280×720, respectively. After synchronization, video frames
will be extracted with 30 FPS and resized to 456× 256.
Participants. We recruited 40 adults (28 males, 12 females) for data collection.
Each participant was asked to participate at most nine rounds of recordings.
Action sequences. EgoExo-Fitness records 86 types of fitness action sequences,
each containing 3 to 6 continuous fitness actions. Tab. A.2 provides the details
of each action sequence.
Annotation tools. We use the popular COIN [20] annotation tool for two-
level temporal boundaries. Besides, we develop a web-based annotation tool to
collect the annotations of interpretable action judgment. Fig. A.1 introduce the
workflow of the annotation process of interpretable action judgment.
Guidance and Technical Keypoints. As discussed in the main body of the
paper, we obtain several technical keypoints from the text guidance. We use the
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Table A.1: Recorded fitness actions. Abbr.: the abbreviation of the fitness action.

Action types Abbr. Action types Abbr. Action types Abbr.

1:Kneeling Push-ups KPU 5: Shoulder Bridge SB 10: Jumping Jacks JJ
2: Push-ups PU 6: Sit-ups SU 11:High Knee HK
3:Kneeling Torso Twist KTT 7: Leg Reverse Lunge LRL 12:Clap Jacks CJ
4:Knee Raise and Abdomi- KRAMC 8: Leg Lunge with Knee Lift LLKL

nal Muscles Contract 9: Sumo Squat SS

Ego & Exo
Single Action Videos

Technical Keypoint Verification
Natural Language Comment

Action Quality Score

Fig.A.1: The annotation process of interpretable action judgement.

text guidance provided in FLAG3D [21]. We use the prompt “In this task, you
are given text guidance of a fitness action. Your job is to separate the text guid-
ance into several key points.” to require LLM (i.e., GPT-4) to extract technical
keypoints from the text guidance. Tab. A.3 shows an example of the extracted
technical keypoints.
More Examples. We show more examples of annotations of interpretable ac-
tion judgment in Fig. A.2.
Privacy and Ethics. From the onset, privacy and ethics standards were critical
to the data collection and release effort. All videos are recorded after we obtain
the consent provided by participants. All human experts are asked to sign a
privacy protection agreement to prevent data and privacy disclosure during the
annotation process. To further protect the privacy and personal information,
before the data release, we will ensure that the release resources do not contain
privacy-sensitive content (e.g ., real names).
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Table A.2: All recorded fitness sequences. For the correspondence between action
names and abbreviations, please refer to Tab. A.1. SID: sequence ID.

SIDs Action Orders SIDs Action Orders

1 KPU, SU, JJ 44 SB, LRL, CJ, KRAMC
2 KPU, JJ, SU 45 KRAMC, LRL, SB, CJ
3 KTT, SU, JJ 46 PU, SB, CJ, SS
4 KTT, JJ, SU 47 PU, SB, SS, CJ
5 SU, KTT, JJ 48 SB, PU, CJ, SS
6 KPU, JJ, HK 49 PU, SB, LRL, KRAMC, CJ
7 KPU, HK, JJ 50 PU, SB, LRL, CJ, KRAMC
8 JJ, KPU, HK 51 PU, LRL, SB, KRAMC, CJ
9 KPU, SU, LLKL, JJ 52 SB, PU, LRL, CJ, SS
10 KPU, SU, JJ, LLKL 53 PU, SB, LRL, CJ, SS
11 SU, KPU, LLKL, JJ 54 PU, SB, SS, CJ, LRL
12 KTT, SU, LLKL, JJ 55 SB, HK, KRAMC, CJ, SS
13 KTT, SU, JJ, LLKL 56 SB, KTT, KRAMC, CJ, SS
14 LLKL, SU, KTT, JJ 57 SB, KPU, KRAMC, CJ, SS
15 KPU, KTT, JJ, HK 58 SB, CJ, KRAMC, KPU, SS
16 KPU, KTT, HK, JJ 59 SB, CJ, KRAMC, HK, SS
17 KTT, KPU, JJ, HK 60 SB, CJ, KRAMC, KTT, SS
18 KPU, KTT, SU, LLKL, JJ 61 SB, CJ, KRAMC, LLKL, SS
19 KPU, KTT, SU, JJ, LLKL 62 SB, CJ, KRAMC, SU, SS
20 KPU, SU, KTT, LLKL, JJ 63 JJ, SB, KRAMC, CJ, SS
21 KTT, KPU, SU, JJ, HK 64 LLKL, SB, KRAMC, CJ, SS
22 KPU, KTT, SU, JJ, HK 65 PU, SB, LRL, KRAMC, CJ, SS
23 KPU, KTT, HK, JJ, SU 66 PU, SB, LRL, CJ, SS, KRAMC
24 KTT, KRAMC, LLKL, JJ, HK 67 PU, LRL, SB, KRAMC, CJ, SS
25 KTT, JJ, LLKL, KRAMC, HK 68 SB, PU, SU, LRL, CJ, SS
26 KRAMC, KTT, LLKL, JJ, HK 69 SB, PU, LLKL, LRL, CJ, SS
27 KPU, KTT, SU, LLKL, JJ, HK 70 PU, SB, SU, SS, CJ, LRL
28 KPU, KTT, SU, JJ, HK, LLKL 71 PU, SB, JJ, SS, CJ, LRL
29 KPU, SU, KTT, LLKL, JJ, HK 72 PU, SB, LLKL, SS, CJ, LRL
30 KTT, KPU, KRAMC, SU, JJ, HK 73 PU, SB, KTT, SS, CJ, LRL
31 KPU, KTT, KRAMC, SU, JJ, HK 74 SB, HK, LRL, KRAMC, CJ, SS
32 KPU, KTT, KRAMC, HK, JJ, SU 75 SB, CJ, LRL, KRAMC, JJ, SS
33 KTT, KRAMC, SU, LLKL, JJ, HK 76 SU, SB, LRL, KRAMC, CJ, SS
34 KTT, JJ, SU, LLKL, KRAMC, HK 77 LLKL,KRAMC,HK
35 KRAMC, KTT, SU, LLKL, JJ, HK 78 SB,LRL,CJ
36 PU, LRL, CJ 79 PU,SB,CJ,LRL
37 LRL, PU, CJ 80 KTT,SU,JJ,HK
38 SB, CJ, LRL 81 KPU,KTT,SU,JJ
39 LRL, SB, CJ 82 KPU,KTT,LLKL,SU,JJ,HK
40 PU, LRL, KRAMC, CJ 83 KPU,KTT,JJ,HK,LLKL
41 PU, LRL, CJ, KRAMC 84 PU,SB,KRAMC,CJ,SS
42 LRL, PU, KRAMC, CJ 85 KPU,SU,KTT,KRAMC,JJ
43 SB, LRL, KRAMC, CJ 86 KTT,KRAMC,LLKL,SU,JJ,HK
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Table A.3: Examples of the language guidance and technical keypoints.

Action
Name

Clap-Jacks

Language
Guidance

Lift your head and chest, and tense your abdomen. tense the arms,
and use the strength of your pectoral muscles to clap your hands
while jumping back and forth with alternating feet.

Technical
Key Points

KP_1: Lift your head and chest upward.
KP_2: Tense your abdominal muscles for stability.
KP_3: Keep your arms tense.
KP_4: Use the strength of your pectoral (chest) muscles.
KP_5: Clap your hands while performing the exercise.
KP_6: Perform jumping movements back and forth.
KP_7: Alternate your feet while jumping.

Action
Name

Sumo Squat

Language
Guidance

Stand about twice shoulder-width apart, with your toes facing diag-
onally forward. when squatting to the thighs parallel to the ground,
keep your knees in the same direction as your toes. keep your upper
body as straight as possible, and sit back slightly when squatting.
cross your arms over your chest.

Technical
Key Points

KP_1: Stand with your feet about twice shoulder-width apart.
KP_2: Position your toes so they are pointing diagonally for-

ward.
KP_3: Squat down until your thighs are parallel to the ground.
KP_4: Ensure your knees are aligned in the same direction as

your toes.
KP_5: Keep your upper body as straight as possible throughout

the movement.
KP_6: Slightly sit back as you squat down, like sitting into a

chair.
KP_7: Cross your arms over your chest.
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Natural Language Comment:

Technical Key Point Verification:

Action Quality Score: 3

KP_1: "Stand with your feet about twice 
shoulder-width apart.”
Ver_1: True
...
KP_5: "Keep your upper body as straight as 
possible throughout the movement.”
Ver_5: False
...
KP_9: "Cross your arms over your chest.”
Ver_9: True

“The movement is performed according to the
guidance, and the movement is relatively smooth, but
please try to keep your upper body upright and your
waist straight throughout the entire movement, as this
can achieve better training results.”

KP_1: "Begin in a lunge position.”
Ver_1: True
...
KP_6: "Focus on moving steadily and smoothly as 
you transition from the lunge to the knee raise.”
Ver_6: False
...
KP_8: "Keep your pelvis and upper body facing 
forward at all times.”
Ver_8: True

“The movements are followed according to the guidance,
the speed is moderate, the movements are smooth, and
they are executed very well. Especially with the lunge
posture, the upper body and the back leg maintain a
straight line. However, during the process of moving the
legs, due to the lack of core strength, the movements still
shake and are unable to maintain stability and smoothness.”

Technical Key Point Verification:

Natural Language Comment:

Action Quality Score: 4

KP_1: "Keep your back straight.”
Ver_1: True
...
KP_5: "Maintain a stable upper body throughout 
the exercise.”
Ver_5: False
...
KP_7: "Aim to maintain the fastest speed 
possible while performing the leg lifts.”
Ver_7: False

“The movements were not performed according to the
guidance, the arms did not swing quickly, the alternating
speed of the legs did not gradually increase and the height
was not high enough, the body swayed violently from side
to side, lack of balance, overall completion of the
movement was very poor.”

Technical Key Point Verification:

Natural Language Comment:

Action Quality Score: 1

KP_1: "Tighten your waist and abdominal 
muscles for stability.”
Ver_1: True
...
KP_5: "Use the movement of your arms to help 
drive your body to jump.”
Ver_5: False
...
KP_8: "Maintain a steady head position, 
avoiding lowering or raising your head.”
Ver_8: True

“Overall, the execution of the movements is
average. Generally following the guidance, the
process is relatively smooth, but the arms are not
exerting the correct force and are overly relaxed. It
is recommended to control the force exerted by the
arms.”

Technical Key Point Verification:

Natural Language Comment:

Action Quality Score: 4

KP_1: "Lift your head and chest upward.”
Ver_1: True

……
KP_3: "Keep your arms tense.”
Ver_3: False
……
KP_7: "Alternate your feet while jumping.”
Ver_7: True

“The movements generally follow the guidance, but
the details are not handled well. The clapping
motion does not utilize the pectoral muscles, and
there is excessive head movement during
alternating jumps.”

Technical Key Point Verification:

Natural Language Comment:

Action Quality Score: 3

KP_1: "Lie on your back with legs bent at 
about a 90-degree angle.”
Ver_1: True
……
KP_7: "Pull your navel toward your spine, tilt 
your pelvis backward, and lift your pubis.”
Ver_7: True
……
KP_12: "Gently lower your spine back to the 
mat, segment by segment, returning to the 
starting position.”
Ver_12: True

“The movements completely align with the
instructional text. This exercise has many details to
pay attention to, making it relatively difficult.
However, the performer's movements are very
precise.”

Technical Key Point Verification:

Natural Language Comment:

Action Quality Score: 5

Fig.A.2: More examples of interpretable action judgement.

A3 Benchmarks

In this section, we will first present more details and experiments on Action
Classification, Cross-View Sequence Verification, and Guidance-based Execution
Verification. Then, we will introduce two more benchmarks on Action Localiza-
tion and Cross-View Determination.

A3.1 Action Classification

Implementation. (1) Data Construction: We select 4,753 single action videos
(3,000 for training and 1,753 for testing) to construct the Action Classifica-
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tion benchmark. (2) Pre-trained weights: We evaluate models with various
pre-training strategies to construct action classification benchmark. For I3D [5],
EgoVLP [13], and TimeSformer [2] pretrained on the K600 [4] dataset, we use
the official pretrained weights. For TimeSformer pre-trained on Ego-Exo4D [10],
we follow the setting of “Key-Step Recognition” benchmark in Ego-Exo4D to ini-
tialize the model with K600 pre-trained weights then trained on Ego-Exo4D. (3)
Experiment Settings: The input size of the video clip is set as 16×224×224.
During training, the video clips are sampled with temporal augmentation fol-
lowed by random cropping. We train the models for 200 epochs with a base
learning rate of 1e-5 and adopt a multi-step learning rate decay with a decay
rate of 0.5 for every 25 epochs. For evaluation, a single video is uniformly sampled
from the video, followed by center cropping.

Table A.4: Action classification results on different views. We report Top-1 accuracies
on different veiws for TimeSformer model with Ego-Exo4D pre-training.

Train on Exo-L Exo-M Exo-R Exos Ego-L Ego-R Ego-M Egos

Exo 0.8746 0.8993 0.8746 0.8825 0.0814 0.1017 0.0610 0.0814
Ego 0.1559 0.1475 0.1763 0.1601 0.8305 0.8508 0.7186 0.8000

Ego & Exo 0.9051 0.8921 0.8949 0.8975 0.8475 0.7898 0.7153 0.7840

More Experiment Analysis. In the main paper’s experiments, we found that
models perform worse on egocentric data. In this section, we will explain these
results more fully. The first reason leading to this result is the invisibility of the
human body. To support this view, we evaluate the performance of each view.
As shown in Tab. A.4, it is more difficult for a model to recognize an action
from videos shot from the Ego-M camera (i.e., the forward-recording camera)
than from other egocentric cameras (i.e., Ego-L and Ego-R). The main difference
between videos shot from Ego-M and other egocentric Ego-cameras is that the
human body is always out of view in videos from Ego-M.

Compared with Ego-M, videos shot from Ego-L and Ego-R record parts of
the body. However, from Tab. A.4, it can be observed that that the model still
achieves poorer performance on videos shot from Ego-L and Ego-R than on
those from exocentric cameras. To go deeper to this observation, we conduct a
confusion evaluation. Specifically, we select one action (i.e., Leg Reverse Lunge)
and two other actions (i.e., Knee Raise and Abdominal Muscles Contract, and
Kneeling Torso Twist) whose egocentric videos are much easier to confuse mod-
els. The confusion matrixes and cropped frames are shown in Fig. A.3. From
the egocentric video frames, similar action patterns (i.e., legs bending) can be
observed among videos of these three actions, which cause serious confusion. On
the contrary, the exocentric videos of these three actions are much more discrim-
inating, which leads to higher classification performance. From these results, we
conclude that the other reason leading to poorer full-body action understanding
performance on egocentric videos is that it is easier to observe similar action
patterns from egocentric videos, which will confuse models.
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Confusion Matrix (Ego)

Legs bending
Similar action pattern

KRAMC LRL LLKL

Causing 
confusion

KRAMC LRL LLKL

Confusion Matrix (Exo)

Easier to 
recognize

Video Frames (Exo)

Video Frames (Ego)

Fig.A.3: The similar action patterns observed by egocentric videos will confuse models
to recognize an action. Best viewed in color.

A3.2 Cross-View Sequence Verification

More Details on Task Setup. Following the task setup of existing work on SV
[6,17], we formulate CVSV as a classification task during training, i.e., predicting
the sequence class. During testing, the embedding distance d (or similarity)
between two videos indicates the verification score of this pair.

Specifically, in training phase, a training set Dtrain = {(vi, si)}Ni=1 is used to
construct a sequence classification task, where vi is a action sequence video and
si is a sequence label (e.g ., a SID in Tab. A.2). Given a video v ∈ R3×H×W×T

and its corresponding sequence label s, the model f ⊙ g : R3×H×W×T → RC

is asked to predict the sequence label from C sequence classes. Here f is the
embedding encoder, g is the classifier. H, W , and T are height, width, and
the number of frames, respectively. In the testing phase, the model is asked to
perform sequence verification on the test set where the sequence labels do not
overlap with videos in the training set. Given a video pair (vi, vj), a distance
(or similarity) function D is conducted on the embeddings of each video in the
pair, which is denoted as dij = D(f(vi), f(vj)). A higher dij indicates a lower
possibility for vi to contain the same action sequence as vj (opposite if similarity
function is used). In practical application, a threshold τ can be set to decide
whether two sequences are consistent: if dij > τ , sequences of vi and vj are
consistent, otherwise inconsistent (opposite if similarity function is used).
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Fig.A.4: An overveiw of the CAT baseline for cross-view sequence verification.

More Details about baseline model. As discussed in the main paper, we
adopt the state-of-the-art sequence verification model CAT [17] as the baseline
model. The overview of CAT is shown in Fig. A.4. The embedding encoder f in-
cludes a 2D Backbone and a Temporal Modeling Module to encode video embed-
dings. The classifier g is implemented as a Multi-Layer Perceptron. Specifically,
the 2D backbone is implemented as a CLIP-ViT/16 [18], and the Transformer
encoder is adopted as a Temporal Modeling Module. During training, CAT takes
a pair of videos with the same action sequence as input and is optimized to learn
to classify the action sequence labels by a classification loss LCLS . Besides, an
extra sequence alignment loss LSA is adopted to align video representations of
videos with the same action sequence.
Implementation. (1) Data Construction. Following previous works [6,11,17],
we take 1074 action-sequence videos to build the CVSV dataset and make sure
that the type of action sequences in the training set has no overlap with the test
set. After that, we select 3,800 video pairs to train CAT and select another 3800
video pairs for testing. (2) Experiment Settings. We follow the official setting
of existing SV works [6,11,17] to use the normalized Euclidean distance is used
as the distance function. All experiments are conducted with a batch size of 8, a
cosine learning rate scheduler with a base learning rate of 5e-5, and the models
are trained for 40 epochs.

A3.3 Guidance-based Execution Verification

More Details about GEVFormer. This section will provide more details on
implementing GEVFormer, including the architectures and loss formulation.

In GEVFormer, the TCM module is implemented as a 2-layer Transformer
Encoder with 2-head attention. CMV module is designed as a 2-layer Trans-
former Decoder with 2-head attention and a linear evaluator. The prediction
results P = {p1, ..., pn} is normalized by Sigmoid(·) function.

As discussed in the main paper, two losses are adopted to train GEVFormer
(i.e., LGEV and LAlign). First, given the predicted results P , the ground-truth
targets are denoted as P gt = {pgt1 , ..., pgtn }, where pgti is a binary value and pgti = 1
indicates that the execution of the action satisfies the i-th technical keypoint.
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Table A.5: Ablation study on different components of GEVFormer.

Methods TCM CMV LAlign
Exo Ego Avg

F1-score Precision Recall F1-score Precision Recall F1-score

CLIP-GEV 0.5080 0.5362 0.4657 0.4780 0.5401 0.4094 0.4881
✓ 0.5174 0.5407 0.4831 0.5103 0.5492 0.4890 0.5138
✓ ✓ 0.5282 0.5502 0.5080 0.5248 0.5570 0.4960 0.5265

GEVFormer ✓ ✓ ✓ 0.5452 0.5219 0.5707 0.5425 0.5186 0.5687 0.5439

After that, LGEV is implemented as a Binary Cross-Entropy loss:

LGEV = −
∑
i=1

[pgti logpi + (1− pgti )log(1− pi)]. (A.1)

Besides, given a mini-batch of training samples V = {v1, v2, ..., vK} (K is the
batch size), we randomly sample another batch of video Ṽ = {v1, ...vK}, where
vi and vj are time-aligned (i.e., synchronized). After that, we fed videos in V

and Ṽ into GEVForrmer and get the enhanced visual embeddings (outputs of
TCM module), which are denoted as G = {g1, ..., gK} and G̃ = {g̃1, ..., g̃K},
respectively. Given G and G̃, the synchronized video alignment loss LAlign is
written as:

LAlign =
1

K

K∑
i=1

log
exp(ψ(gi, g̃i)/δ)∑K
j=1 exp(ψ(gi, g̃j)/δ)

, (A.2)

ψ(gi, gj) =
gi

||gi||
· gj
||gj ||

, (A.3)

where ψ(., .) indicates cosine similarity function, and δ is the tempreture param-
eter.

More experiment settings. We select 3,260 samples from videos shot by
Ego-R, Ego-L, Exo-R and Exo-L. After that, we split them into training set
and test set (2,232 videos for training and 1,028 for testing). We use video
frames sampled with a sample rate 1/16 as the input. During training, a random
temporal augmentation is used to augment data. By default, λ is set as 0.7.

More Experiment Analysis. In this section, we conduct ablation studies on
GEVFormer. We start by ablating the components of GEVFormer. As shown
in Tab. A.5, when adding each component from the CLIP-GEV baseline to
GEVFormer, performance gradually improved, showing each component’s con-
tribution.

A3.4 Action Localization

Task Setups. TAL [15,22,24] aims to identify action instances (i.e., foreground)
in time and recognizing their categories. Note that the most discriminating part
of Fitness action is the “executing” stage. Hence, in the Action Localization
benchmark, we regard an action’s “executing” step as the foreground, otherwise
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Table A.6: Temporal Action Locaization benchmark results on different views. Results
in blue and red indicates the best performance on exocentric and egocentric videos,
respectively.

Train on Test on AP@0.3 AP@0.4 AP@0.5 AP@0.6 AP@0.7 mAP

Ego Ego 43.30 41.48 37.61 28.99 16.92 33.66
Exo 5.32 4.62 3.24 1.89 0.67 3.15

Exo Ego 4.79 4.05 3.01 1.52 0.61 2.80
Exo 49.87 48.48 44.78 37.81 23.64 40.92

Ego & Exo Ego 45.45 43.21 39.29 32.15 18.04 35.63
Exo 48.47 46.82 43.70 36.22 23.65 39.77

as the background. The model is asked to predict all temporal boundaries and
the action type of the foreground given an untrimmed action sequence video
containing various actions.
Implementation. (1) Data Construction. We select 1,165 untrimmed ac-
tion sequence videos and randomly separate them into training and testing sets
(66.7% for training and 33.3% for testing). (2) Baseline Model. We apply
competing state-of-the-art transformer-based TAL method, TadTR [15], using
frame-wise features etxtracted from CLIP [18]. (3) Matrics. Performance is
evaluated by mean average percision (mAP) at different intersections over union
(IoU) thresholds of {0.3, 0.4, 0.5, 0.6, 0.7}. (4) Other experiment settings. In
our implementation, we use 10 action queries. Following previous work [14, 15],
we crop each feature sequence with windows of length 450 and overlap of 75%.
We train TadTR on EgoExo-Fitness for 50 epochs with an inital learning rate
of 1e-4. For other experiment settings, we follow the official implementation of
TadTR [15] on the THUMOS14 dataset [12].

Experiment. The benchmark result on Action Localization is shown in Tab. A.6.
In Action Localization, We have similar findings as in the Action Classification
benchmark, such as jointly training the model on multi-view data will not ben-
efit localization results on both egocentric and exocentric viewpoints (i.e., only
performance on egocentric data achieves improvement).

A3.5 Cross-View Skill Determination

Given a pair of action videos, Skill determination [7, 8] aims at inferring which
video displays more skill. Such a task has shown great potential for training hu-
mans and intelligent agents. Such a task will benefit the practical application of
training humans and intelligent agents. Although previous works have achieved
significant progress, today’s skill determination dataset is either collected from
exocentric viewpoints (e.g ., best) or egocentric(-like) viewpoints (e.g ., epic-skill).
However, in practical application, the videos may come from various viewpoints,
which poses a new challenge to skill determination. To address this issue, we ex-
tend the traditional skill determination to a cross-view manner (i.e., Cross-View
Skill Determination).
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Table A.7: Benchmark results on Cross-View Skill Determination. “ego/exo” indicates
independent models are trained on ego-only and exo-only data. “ego+exo” indicates
that the model is trained on both egocentric and exocentric data.

Methods Acc
Ego-Ego Exo-Exo Ego-Exo

Random 0.5000 0.5000 0.5000

RAAN(ego/exo) 0.7386 0.7656 -
RAAN(ego+exo) 0.7072 0.7768 0.7241

Task Setups. Following previous works [7,8], we formulate cross-view skill de-
termination (CVSD) as a pair-wise ranking task. In this setup, given a video
pair (vi, vj) where vi display more skill than vj , our goal is to learn a ranking
function f(·) such that f(vi) > f(vj).

Implementation. (1) Data Construction. EgoExo-Fitness provides the ac-
tion quality scores in annotations of interpretable action judgment. Based on
this, we construct the Cross-view Skill-determination data using the following
strategy. First, we sample 3328 single action videos shot by Ego-R, Ego-L, Exo-
R and Exo-L cameras and separate them into 1976 training videos and 1352
testing videos. Second, for training videos, we construct video pairs by pairing
videos with the same type of action. We do the same for testing videos. Third,
given a video pair (vi, vj) and their corresponding action quality score si and sj ,
we regard it as a valid pair if si > sj + θ is satisfied. Here θ is set as 1.5. By
following this strategy, we get 37680 valid pairs (25136 for training and 12544 for
testing) for Cross-view Skill Determination. (2) Baseline model. We use the
state-of-the-art skill determination model RAAN [8] as our baseline model. (3)
Experiment settings. Following previous works [7, 8], we train an individual
model for each task. We sample 500 frames from the videos using the image
feature extracted by CLIP [18] as the input of RAAN. For those videos with less
than 500 frames, we adopt zero paddings behind the CLIP features and carefully
modify the attention module of RAAN to adapt to the masked input.
Experiment. The benchmark results of Cross-view Skill Determination are
shown in Tab. A.7. We have similar findings as in Cross-view Sequence Veri-
fication benchmark, i.e., training models with all training pairs will not benefit
performance on Ego-Ego pairs.

A4 More Comparisons with Related Datasets

A4.1 EgoExo-Fitness v.s. Ego4D

For a fair comparison, in the main paper, we compare EgoExo-Fitness with a
subset of Ego4D [9], which contains scenarios of technical full-body actions. All
selected scenarios are listed below: {Dancing, Working out at home, Basketball,
Climbing, Outdoor technical climbing/belaying/rappelling (includes ropework),
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Table A.8: More comparison betweens the proposed EgoExo-Fitness and the con-
current Ego-Exo4D [10] dataset. Compared with Ego-Exo4D, the proposed EgoExo-
Fitness collects videos of a new scenario (i.e., fitness) and augments data with novel
annotations of interpretable action judgment (i.e., text guidance and technical keypoint
verification are not provided in Ego-Exo4D).

Datasets Scenarios Step Text Keypoint Comment Score Durationguidance verification

Ego-Exo4D v1 [10]

Cooking ✓ ✓ ✓ 654h
Health ✓ ✓ ✓ 124h

Bike Repair ✓ ✓ ✓ 83h
Music ✓ ✓ 216h

Basketball ✓ ✓ 61h
Climbing ✓ ✓ 88h
Soccer ✓ ✓ 96h

Dancing ✓ ✓ 99h

Ego-Exo4D v2 [10]

Cooking ✓ ✓ ✓ 564h
Health ✓ ✓ ✓ 114h

Bike Repair ✓ ✓ ✓ 82h
Music ✓ ✓ 180h

Basketball ✓ ✓ 78h
Climbing ✓ ✓ 93h
Soccer ✓ ✓ 66h

Dancing ✓ ✓ 106h

EgoExo-Fitness(Ours) Fitness ✓ ✓ ✓ ✓ ✓ 32h

Swimming in a pool/ocean, Football, Going to the gym: exercise machine-class-
weights, Yoga practice, Working out outside, Rowing, Skateboard/scooter, Base-
ball, Roller skating, Playing badminton, Table Tennis, Bowling}.

From Tab. 2 in the main paper, we find that the subset only contains a tiny
fraction (about 172h) of videos in the whole Ego4D, which suggests that the ego-
centric full-body action understanding is rarely addressed even for the largest
egocentric video datasets. Compared with Ego4D, EgoExo-Fitness contains syn-
chronized ego-exo videos and novel annotations on how well a fitness action is
performed (i.e., annotations of interpretable action judgment), which provides
novel resources for future works on view characteristics, multi-view modeling,
and action judgment for the egocentric vision community.

A4.2 EgoExo-Fitness v.s. Ego-Exo4D

As supplements to Tab. 3, we provide more comparisons between our datasets
and Ego-Exo4D [10] in Tab. A.9. Besides, beyond the similarities and differences
discussed in Sec. 3.5, our dataset has a comparative scale with each scenario of
full-body (physical) actions in Ego-Exo4D (see the Tab. A.9). Note that for fair
comparisons, single actions recorded by RGB cameras are considered.

We hope the proposed EgoExo-Fitness can be another resource for studying
egocentric full-body action understanding and skill guiding.



EgoExo-Fitness 13

Table A.9: Comparisons between Ego-Exo4D [10] on dataset scale. Our dataset has
a comparative scale with each scenario of full-body (physical) actions in Ego-Exo4D

Datasets Ego-Exo4D v2 [10] Ours
Scenarios Basketball Climbing Soccer Dancing Fitness

# Tasks/Action Types 3 11 3 2 12
# Single Actions(RGB) 4550 7191 1567 4367 6131

Table A.10: More comparisons with existing full-body action datasets. EgoExo-
Fitness has a comparative scale with existing related datasets.

Datasets MTL-AQA [16] FineGym [19] FineDiving [23] FLAG3D(real) [21] 1st-basketball [1] WEAR [3] Ours

# Videos 1412 303 3000 7200 48 18 1276
# Single Actions 1412 32697 3000 7200 - 615 6131

A4.3 EgoExo-Fitness v.s. other related datasets

We also provide more comparisons with existing datasets in Tab. A.10 as sup-
plements to Tab. 2, which show that our dataset has a comparative scale with
existing full-body action datasets.
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