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Abstract. Targeted adversarial attack, which aims to mislead a model
to recognize any image as a target object by imperceptible perturbations,
has become a mainstream tool for vulnerability assessment of deep neural
networks (DNNs). Since existing targeted attackers only learn to attack
known target classes, they cannot generalize well to unknown classes.
To tackle this issue, we propose Generalized Adversarial attacKER
(GAKer), which is able to construct adversarial examples to any target
class. The core idea behind GAKer is to craft a latently infected represen-
tation during adversarial example generation. To this end, the extracted
latent representations of the target object are first injected into inter-
mediate features of an input image in an adversarial generator. Then,
the generator is optimized to ensure visual consistency with the input
image while being close to the target object in the feature space. Since
the GAKer is class-agnostic yet model-agnostic, it can be regarded as a
general tool that not only reveals the vulnerability of more DNNs but
also identifies deficiencies of DNNs in a wider range of classes. Extensive
experiments have demonstrated the effectiveness of our proposed method
in generating adversarial examples for both known and unknown classes.
Notably, compared with other generative methods, our method achieves
an approximately 14.13% higher attack success rate for unknown classes
and an approximately 4.23% higher success rate for known classes. Our
code is available in https://github.com/VL-Group/GAKer.

Keywords: Targeted Adversarial Attack · Generator-based Attack ·
Black-box attack · Unknown Classes

1 Introduction

Deep neural networks (DNNs) have significantly advanced the field of artificial
intelligence, achieving remarkable success in various domains, including image
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recognition [11], natural language processing [34,36], and AIGC [12,29]. Despite
great success, DNNs have been shown to be significantly vulnerable to adversarial
attacks [7,8,23,31], which misleads DNNs to fail by using adversarial examples,
i.e., adding human-imperceptible perturbations into clean images. Thus, it is
of great importance to understand the mechanism behind DNNs and design
effective assessment methods [7, 8, 23, 31, 45] to identify deficiencies of DNNs
before deploying them in security-sensitive applications.

In terms of the way of attacking, adversarial attacks generally can be divided
into two categories. The first one is the untargeted attack [3, 4, 7, 15, 43, 45],
where the goal of attackers is to fail DNNs. The second one is the targeted
attack [5, 21, 44, 46], where attackers not only fail DNNs but also mislead them
to recognize an image as the pre-specific target. Since the targeted attack with
high flexibility poses a severe threat to security-sensitive applications, it has
become a mainstream tool for vulnerability assessment of DNNs. Therefore, in
this work, we focus on the study of targeted attacks.

Among the target attack methods, two technical branches exist for adver-
sarial example generation. The first one is the iteration-based framework, which
produces an adversarial example of each clean image in an iterative manner.
This framework has shown to be susceptible to overfitting white-box models, and
iteration-based strategy leads to a heavy computational overhead [5, 10, 44, 46].
In a different line of this, the second branch is the generator-based framework,
which constructs an adversarial example by using a trained generative model and
shows a great potential of transferability [5, 10, 44, 46]. However, the generator
used in existing methods [21,24,25,39,46] is trained to adapt adversarial exam-
ples to known target classes only. As depicted in Fig. 1a and Fig. 1b, the trained
generator is responsible for either only one class or a set of known classes. When
it comes to an unknown target class (i.e., the class not seen during training),
previous methods are not capable of generating relatively adversarial examples
unless retraining the generator, thus limiting the comprehensive assessment of
DNNs. To tackle this, one straightforward solution is to train a generator to
adapt a vast number of target classes with a large-scale dataset (e.g ., ImageNet-
21k). However, as demonstrated in [44], the attack success rate of an adversarial
example significantly degrades as the number of known classes increases. Hence,
one question arises: how to design a generalized yet efficient assessment in which
vulnerability of DNNs can be evaluated by any target classes?

To answer the above question, we study a more practical paradigm. As shown
in Fig. 1c, any target object could be a good offense, and an adversarial exam-
ple can be constructed from any target regardless of whether it is a known
class or not. To achieve such generalization capability, we argue that extracting
the major component of an object is the key to adversarial example genera-
tion. Motivated by this, we propose Generalized Adversarial attacKER, termed
(GAKer). The core idea behind the GAKer is to contaminate the latent repre-
sentation of a clean image with the major component of the target object. To
equip GAKer with the capability of latent infection, it jointly utilizes the latent
representation of a clean image and the major component of the target object to
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generate the adversarial example. Then, the adversarial example generated from
GAKer is optimized to remain visually consistent with the clean image, but
the corresponding major component is dominated by the target object. Once
trained, the GAKer has the ability to replace major components between two
images without depending on specific class or targeted DNN, thus improving the
generalization capability of DNN assessment. Comprehensive evaluations across
diverse DNNs, encompassing standard models, adversarially trained models, and
vision-language foundation models, reveal that the proposed GAKer can effec-
tively generate high-quality adversarial examples regardless of target classes.
This demonstrates GAKer’s generalization ability, making it a valuable tool for
the adversarial robustness assessment of DNNs. In summary, three contributions
are highlighted:

– We propose a novel Generalized Adversarial attacKER, which is a general
assessment tool since it can generate adversarial examples from any object.
Without satisfying the visual appearance of an image, it can mislead any
DNNs by latently changing the major components of an image.

– To our knowledge, this work, for the first time, explores the problem of
generalized target adversarial attack. Our study reveals that changing the
major components of an object is the key to the generalized assessment of
DNNs.

– Extensive experiments conducted on a wide range of DNNs demonstrate
the generalizability of our proposed method for vulnerability assessment,
especially under the setting of any targeted class. Particularly, our method
has increased the targeted attack success rate by approximately 14.13% for
unknown classes and by approximately 4.23% for known classes compared
with other generator-based approaches.

2 Related Work

2.1 Iterative Methods

Since the discovery of adversarial examples, most iterative methods are pro-
posed, which utilize model gradients to iteratively add adversarial perturbations
to specified images. These methods are mainly categorized as gradient-based op-
timization and input transformation. The gradient-based optimization aims to
circumvent poor local optima by employing optimization techniques. MI-FGSM
[3] and NI-FGSM [17] introduce momentum and Nesterov accelerated gradient
into the iterative attack process to enhance black-box transferability, respec-
tively. PI-FGSM [6] introduces patch-wise perturbations to better cover the dis-
criminative region. VMI-FGSM [37] tunes the current gradient with the gradient
variance from the neighborhood. RAP [26] advocates injecting worst-case per-
turbations at each step of the optimization procedure rather than minimizing
the loss of individual adversarial points. The input transformation methods also
increase adversarial transferability by preventing overfitting to the surrogate
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(c) Arbitrary-target attack

Fig. 1: The inference process of different generator-based targeted attacks.
In the center of each scenario is the generator G that takes the model inputs at the
top and aims to produce adversarial examples x′ at the bottom. The classes indicated
within G (cat, dog, fish, bird) are the training classes. Blue lines denote known classes
that are encountered during inference, and yellow lines denote unknown classes that
were not present in the training data. Sub-figure (a) depicts a single-target attack
where each generator is specialized for one class, thus can only attack that specific
class. Sub-figure (b) demonstrates a multiple-target attack where the generator G takes
a source image x and known target labels (e.g ., cat, dog) to create their adversarial
examples x′, but it fails to attack labels unknown to the training (e.g ., fish, bird). Sub-
figure (c) represents an arbitrary-target attack where G can utilize target images to
craft adversarial examples capable of misleading the classifier into known and unknown
classes (e.g ., fish, bird), highlighting the generalization capability of this approach.

model. DI-FGSM [43] applies various input transformations to the clean images.
SIT [38] applies a random image transformation onto each image block to gener-
ate a diverse set of images for gradient calculation. SU [40] introduces a feature
similarity loss to encourage universal learned perturbations by maximizing the
similarity between the global adversarial perturbation and randomly cropped
local regions.

2.2 Generative Methods

Another branch of targeted attacks utilizes generators to craft adversarial ex-
amples. Compared with iterative-based attacks, generator-based attacks have
several characteristics [8]: high efficiency with just a single model-forward pass
at test time and superior generalizability through learning the target distribu-
tion rather than class-boundary information [21]. Thus, many generator-based
targeted attack methods are proposed, which can divided into single-target and
multi-target generator attacks. Notably, this work focuses on scenarios where
black-box models are entirely inaccessible, so query-based generator attacks
which requiring extensive querying are not within the scope of discussion.

Single-target Generative Methods: Early generative targeted attacks
employed a single generator to attack a specific target, primarily aiming to
enhance transferability across various models. Pourseed [25] proposes a gen-
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erator capable of producing image diagnostic and image-dependent perturba-
tions for targeted attacks. Naseer [22] introduced a relativistic training objec-
tive to mislead networks trained on completely different domains. Furthermore,
Naseer [21] matches the perturbed image distribution with that of the target
class. TTAA [39] captures the distribution information of the target class from
both label-wise and feature-wise perspectives to generate highly transferable
targeted adversarial examples.

Multi-target Generative Methods: However, generator-based methods
are confined to single-target attacks, which require training a generative model
for each target class, resulting in considerable computational costs and ineffi-
ciency. Recently, exemplified by the introduction of the Multi-target Adversarial
Network (MAN) framework [10], have revolutionized this landscape. MAN repre-
sents a paradigm shift by enabling the generation of adversarial examples across
multiple target classes through a unified training process. Yang et al . [44] intro-
duce a significant contribution by leveraging a hierarchical generative network.
Through this design, they are able to train 20 generators, each trained for 50
target classes, thereby covering all 1000 classes in the ImageNet dataset. Gao
et al . [5] proposes a generative targeted attack strategy named Easy Sample
Matching Attack (ESMA), which exhibits a higher success rate for targeted at-
tacks through generating perturbations towards High-Sample-Density-Regions
of the target class.

2.3 Adversarial Defenses

A primary class of defense methods processes adversarial images to break the
perturbations. For instance, Guo et al . [9] introduces several techniques for input
transformation, such as JPEG compression [9], to mitigate adversarial pertur-
bations. R&P [41] employs random resizing and padding to reduce adversarial
effects. HGD [16] develops a high-level representation guided denoiser to dimin-
ish the impact of adversarial disturbances. ComDefend [14] proposes an end-to-
end image compression model to defend against adversarial examples. NRP [20]
trains a neural representation purifier model that removes adversarial pertur-
bations using automatically derived supervision. Another approach enhances re-
silience to attacks by incorporating adversarial examples into the training phase.
For instance, Tramèr et al . [35] bolster black-box robustness by utilizing ad-
versarial examples generated from unrelated models. Similarly, Xie et al . [42]
integrate feature denoising modules trained on adversarial examples to develop
robustness in the white-box model.

3 Methodology

3.1 Problem Formulation

Formally, let xs denote a clean image, and y is the corresponding label. Fϕ(·) is
the classifier with parameters ϕ. The targeted attack aims to mislead the classifier
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Fig. 2: The pipeline of our GAKer. We propose a generator-based method, GAKer,
that can achieve attacks even when targeting classes unseen during training. During
the training phase, we extract target features ft through a frozen Fψ and inject them
into the generator Gθ, then use Clip(·) to constrain x′

s within the perturbation budget.
Gθ aims to minimize the cosine similarity between f ′

s and ft, as well as between fδ
and ft. Due to our training strategy built on the feature distribution independent of
the training classes, our generator can generate adversarial examples x′

s for unknown
classes to attack the victim model.

to output a specific target class from an adversarial example x′
s corresponding

to the clean image xs, as formulated as Eq. 1.

Fϕ(x′
s) = yt, s.t. ∥x′

s − xs∥∞ ≤ ϵ (1)

where yt represents a specific target class and it is often constrained as one of
known classes, ϵ is the perturbation constraint.

In terms of arbitrary-target attack, it releases the constraint of the specific
target class and aims to construct adversarial examples from any target regard-
less of whether it is from known classes or not. Given an arbitrary target image
xt, the adversarial example generation is formulated as Eq. 2:

x′
s = min(xs + ϵ,max(G(xs,xt),xs − ϵ)), (2)

where Gi denotes a trained adversarial generator. Compared with the conven-
tional targeted attack, the arbitrary-target attack is more challenging since it
requires a generator with a strong generalization capability.

3.2 Generalized Adversarial Attacker

In this section, we introduce the details of the proposed Generalized Adver-
sarial Attacker (GAKer). The overall pipeline is depicted in Fig. 2. Given a
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target object, the GAKer intends to contaminate latent representations of the
clean image by utilizing major components of the target. It is worth noting that
the target object can be either a one-hot class label or an image with the vi-
sual appearance of the object. Existing methods [5,10,44] use the label index or
the one-hot label as the condition for targeted adversarial example generation.
However, the one-hot label lacks visual characteristics, which leads a trained
generator to memory class features, thus limiting the generalization capability.
To incorporate richer target information, we use images of the target object as
input for generating adversarial examples. Next, we divide classes into known
classes and unknown classes Y = Yknown ∪ Yunknown. Then we select known
classes as the training set (t ∼ Yknown) and generate an adversarial example
using relevant image xt of the target. The objective function is represented as
Eq. 3:

min
θ

E(xs∼Xs,t∼Yknown)[L(xs,xt)], (3)

where L is the loss function, Fψ(·) is the pretrained feature extractor, and Gθ is
our arbitrary-target generator (see Sec. 3.3 for detailed architecture). To general-
ize to unknown target classes during the inference phase, we use cosine distance
as the loss function instead of cross-entropy:

Dcos(f ′
s, ft) = 1− f ′

s · ft
∥f ′
s∥2 · ∥ft∥2

, (4)

where f ′
s = Fψ(x′

s), ft = Fψ(xt). In addition, an identical learning objective is
used to constraint the feature of adversarial perturbation δ = x′

s − xs and the
feature of the target object:

L(xs,xt) =Dcos(Fψ(Gθ(xs,xt)),Fψ(xt))
+ αDcos(Fψ(Gθ(xs,xt)− xs),Fψ(xt)),

(5)

where fδ = Fψ(δ), α denotes the hyper-parameter (see Appendix C for the
effect of α). The entire training process is independent of specific target classes,
enabling adaptation to unknown classes, including those from different datasets.

3.3 Latent Infection

This section describes how to inject target features into the source image in the
latent feature space. There are two major modules in GAKer: the Feature Ex-
tractor Fψ and the Generator Gθ, as shown in the Fig. 2. The Feature Extractor
is adapted from a pretrained model by removing the classification head. It is
specialized for extracting feature vectors from input images. During the train-
ing, the weights of this module are frozen. We employ a UNet [5] as the basic
architecture of the generator. It is designed to generate adversarial examples by
using clean images with features of the target object obtained from the Feature
Extractor.
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As depicted in Fig. 3, the latent
infection involves a two-step process.
First, features of the target object are
processed through the Feature Trans-
form Module (FTM), which adopts a
Linear-GELU-Linear sequence to en-
hance their representational capacity.
Second, these enhanced features are
combined with the features of the
clean image. Particularly, the Dimen-
sion Matching Module (DMM), which
consists of a Linear-GELU layer, is
used to align dimensions for two fea-
tures. With the designed architecture,
the generator is optimized to extract
major components from the target ob-
ject, and learns to replace the major
components of the clean image with
that of the target object.

4 Experiment

4.1 Experimental Settings

Datasets. We train our models on the ImageNet training set [2]. Correspond-
ingly, we evaluate the performance on the ImageNet val set.
Networks. We consider several models, including DenseNet-121 (Dense-121) [13],
ResNet-50 (Res-50) [11] and VGG-19 as surrogate models. We select various
black-box models, i.e., ResNet-152 (Res-152) [11], VGG-19 [28], Inception-v3
(Inc-v3) [30], ViT [32], DeiT [33] and CLIP [27], for testing the transferability
of attacks. Additionally, we evaluate the proposed method on defense models,
including Inc-v3adv, Inc-v3ens3, Inc-v3ens4, IncRes-v2ens [35], and Large Vision-
Language Models (LVLM) such as LLaVA [18,19] and Qwen-VL [1].
Baselines. For iterative attacks, we compare our method with MI [3] and the
advanced method SU [40], which is competitive in target settings. For single-
target generative attacks, we choose TTP [21] as the method for comparison
with our approach. Specifically, we train multiple TTP models to accomplish
multi-target attacks. For multi-target generative attacks, we choose HGN [44]
and ESMA [5]. Both of these methods, along with ours, only require training a
single generator to perform attacks on multiple targets.
Implementation details. In all experiments, the perturbation constraint ϵ is
set to 16, the number of known classes N is set to 200, the α is set to 0.5 and the
number of samples in each known class M is 325. We train the generator with
an AdamW optimizer for 20 epochs. For the MI method, we set the decay factor
µ to 1. For the SU method, we perform the combinational attack of DTMI [3,43]
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Table 1: Targeted Attack Success Rates on Unknown Classes. We report tar-
geted attack success rates (%) of each method and the leftmost model column denotes
the substitute model (“*” means white-box attack results).

Model Attacks Res-50 Res-152 VGG-19 Dense-
121 Inc-v3 ViT DeiT CLIP Avg

Clean 0.03 0.01 0.00 0.03 0.05 0.00 0.00 0.02 0.02

Res-50 HGN 0.05* 0.14 0.15 0.06 0.04 0.05 0.06 0.10 0.08
GAKer (Ours) 41.69* 23.05 26.02 23.80 5.85 1.44 4.99 4.36 16.40

VGG-19 HGN 0.08 0.10 0.08* 0.10 0.04 0.04 0.04 0.10 0.07
GAKer (Ours) 11.05 5.41 43.25* 13.33 3.20 0.51 2.55 2.28 10.20

Dense-121 HGN 0.06 0.05 0.09 0.05* 0.00 0.03 0.01 0.05 0.04
GAKer (Ours) 23.10 17.28 25.17 40.31* 7.23 2.60 7.56 4.49 15.97

and SU [40]. For both iterative methods, we employ the logit loss and set the
number of iterations to 300 steps. For multi-target generative attacks, such as
HGN and ESMA, and our method, only one model needs to be trained to achieve
attacks on multiple target classes. Detailed training costs and implementation
specifics are provided in Appendix A and Appendix B, respectively.

4.2 Main Results

Results on Unknown Classes. Compared with existing generator-based at-
tacks, the best innovation of our method is the ability to attack unknown classes.
We select 200 classes as known classes and the remaining 800 classes as unknown
classes from ImageNet. Then we train the generator with the known classes and
evaluate the targeted attack success rate on unknown classes. Notably, only HGN
and our method can be evaluated on unknown classes.

As shown in Tab. 1, our method significantly outperforms HGN, highlight-
ing the superior transferability of our approach. For instance, with a substitute
model of ResNet-50 and a black-box model of VGG-19, our method achieves a
success rate of 41.69% on unknown classes, while HGN only achieves 0.05%.
This result underscores the limitation of existing methods in generating tar-
geted adversarial examples for unknown classes, while our method demonstrates
effective generalization to such classes. Separate average results on all unknown
classes can be found in Appendix D.
Results on Known Classes. For evaluation on known classes, we compare our
method with state-of-the-art iterative-based method (SU), single-target generator-
based attacks (TTP), and multi-target generator-based attacks (HGN, ESMA).
All multi-target generator-based attacks (HGN, ESMA, and our method) are
trained on the same 200 classes. Due to the TTP method requiring training a
model for each target class, the cost of training 200 models is prohibitively high.
Therefore, we randomly select 10 classes from the 200 classes and train 10 TTP
models separately for each substitute model (TTP-10). We then test our method
on the same 10 classes (GAKer-10).

Table 2 shows the targeted attack success rates on known classes for each
method. Compared with the iterative-based method SU, our method achieves



10 Y.Sun et al.

Table 2: Targeted Transfer Success Rates on Known Classes. We report tar-
geted attack success rates (%) of each method and the leftmost model column denotes
the substitute model (“*” means white-box attack results).

Model Attacks Res-50 Res-152 VGG-19 Dense-
121 Inc-v3 ViT DeiT CLIP Avg

Clean 0.02 0.02 0.01 0.03 0.03 0.02 0.02 0.01 0.02

Res-50

MI 99.35* 16.55 4.10 12.10 0.65 0.60 0.65 0.15 16.77
SU 99.45* 83.15 75.60 81.15 14.95 8.15 21.80 6.90 48.89

HGN 87.06* 55.68 52.09 64.59 24.09 16.36 29.35 6.71 41.99
ESMA 95.60* 83.22 81.98 82.54 40.14 28.01 55.45 24.08 61.37

GAKer (Ours) 96.61* 83.36 82.20 81.95 34.27 20.84 50.31 20.13 58.71

TTP-10 97.80* 77.80 73.00 79.00 44.00 33.10 44.00 19.40 58.51
GAKer-10 (Ours) 98.10* 88.20 90.60 86.00 45.20 28.70 62.00 24.50 65.41

VGG-19

MI 3.10 1.40 96.85* 3.60 0.30 0.20 0.55 0.35 13.29
SU 26.35 14.29 96.90* 26.05 4.10 2.20 5.89 4.60 22.55

HGN 28.50 16.65 90.15* 33.05 6.95 6.00 13.50 2.95 24.72
ESMA 27.30 17.85 95.39* 35.80 4.85 5.35 16.70 6.12 26.17

GAKer (Ours) 30.00 18.02 97.61* 33.38 10.76 3.36 11.65 4.75 26.22

TTP-10 50.10 37.50 98.20* 48.80 17.20 13.40 20.00 10.60 36.98
GAKer-10 (Ours) 32.00 16.50 93.80* 32.70 12.00 3.05 10.05 4.00 25.51

Dense-121

MI 10.25 5.85 5.15 99.55* 1.00 0.65 1.20 0.50 15.52
SU 65.20 49.70 59.90 99.55* 14.90 7.65 19.35 6.00 40.28

HGN 53.48 40.15 50.67 90.11* 23.32 13.92 22.35 5.00 37.38
ESMA 43.01 34.74 42.61 81.52* 11.74 9.89 23.47 6.24 31.65

GAKer (Ours) 70.26 61.12 69.83 90.91* 30.81 22.15 43.81 16.41 50.66

TTP-10 86.70 76.50 82.80 97.90* 49.20 44.10 57.00 24.60 64.85
GAKer-10 (Ours) 74.40 70.20 82.89 93.20* 42.80 28.99 60.00 23.10 59.45

higher targeted attack success rates on black-box models. For example, if the
substitute model is Dense-121, our method performs 10.38% better than SU on
average across different models. For generator-based attacks, our GAKer also
achieves a similar attack success rate to the ESMA method, outperforming the
HGN method. Notably, our method improves performance on several models by
an average of 10.5% and 5.47% over HGN and ESMA, respectively.

4.3 Results on Other Models

To further evaluate the generalization ability of our method, we also test our
method on defense models and Large Vision-Language Models (LVLM).
Results on Defense Models. In addition to attacking normally trained mod-
els, we evaluate the attack performance of various methods on adversarially
trained models when using ResNet50 as the white-box model. As shown in
Tab. 3, our method surpasses the HGN method in attacking targets in unknown
and known classes. For example, with the defense model as Inc-v3adv, we out-
perform HGN by 6.46% in terms of target success rate on the known classes.
On the unknown classes, HGN cannot achieve an attack at all, similar to the
performance of the clean samples, whereas our GAKer still exhibits an attack
success rate of 5.95%. This result indicates that our generator has discovered
more common model vulnerabilities, regardless of whether the model has been
specifically trained for defense.
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Table 3: Targeted Transfer Success Rates on Defense Models. Targeted success
rates (%) for each attack method using Res-50 as the substitute model (known classes
/ unknown classes).

Attacks Inc-v3adv Inc-v3ens3 Inc-v3ens4 IncRes-v2ens

Clean 0.03/0.04 0.04/0.03 0.02/0.01 0.03/0.03
HGN 29.22/0.06 26.24/0.06 24.88/0.07 21.69/0.04

GAKer (Ours) 35.68/5.95 29.60/4.10 23.66/3.38 25.25/3.21

Table 4: Attack Success Rates for Unknown Classes on LVLM. We report
attack success rates (%) of each method and the topmost row denotes the substitute
model. (untargeted attack success rates / targeted attack success rates)

Substitute Models Res-50 Dense-121 VGG-19

Black-box Qwen-VL LLaVA Qwen-VL LLaVA Qwen-VL LLaVA

Clean 5.77/8.15 9.03/7.02 5.77/8.15 9.03/7.02 5.77/8.15 9.03/7.02

SU 20.16/35.36 18.77/42.73 19.59/28.76 17.83/32.73 20.40/33.35 18.13/46.80
HGN 24.98/12.50 20.76/13.85 22.12/12.27 20.76/13.85 23.65/12.79 20.23/14.34

GAKer (Ours) 33.82/52.60 23.41/56.45 36.71/54.43 27.54/60.41 39.86/36.31 24.50/41.61

Results on Large Vision-Language Models. The growing importance of
Large Vision-Language Models (LVLM), including LLaVA [18, 19] and Qwen-
VL [1], has been noted in recent times. Our research examines how well our
method can be adapted for use with these LVLMs. Specifically, we test multiple
templates on LVLMs to reduce the impact of prompt bias:

– Is there any (origin class / target class) in this image? Please begin answer
with ‘Yes,’ or ‘No,’

– Does this image contain any (origin class / target class)? Please begin an-
swer with ‘Yes,’ or ‘No,’

– In this image, is there a (origin class / target class) present? Please begin
answer with ‘Yes,’ or ‘No,’

We then assessed the effectiveness of our approach by calculating both the
untargeted and targeted attack success rates against LVLMs. We define the
untargeted attack success rate as the percentage of adversarial examples that
mislead the model into failing to recognize the original class. The targeted at-
tack success rate is defined as the percentage of adversarial examples that are
misclassified into the target class. As shown in Tab. 4 and Tab. 5, our method
achieves higher targeted attack success rates on LVLM than HGN. For exam-
ple, when the substitute model is Res-50 and the target is unknown classes, our
method achieves 52.60% and 56.45% targeted attack success rates on LLaVA
and Qwen-VL, respectively, while HGN only achieves 12.50% and 13.85%. This
result demonstrates that even when using a “small” substitute model like Res-50,
our method can successfully attack “large” models such as Qwen-VL and LLaVA.
We also show some cases on GPT-4V, which can be found in Appendix E.
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Table 5: Attack Success Rates for Known Classes on LVLM. We report attack
success rates (%) of each method and the topmost row denotes the substitute model.
(untargeted attack success rates / targeted attack success rates)

Substitute Models Res-50 Dense-121 VGG-19

Black-box Qwen-VL LLaVA Qwen-VL LLaVA Qwen-VL LLaVA

Clean 5.15/10.33 8.43/7.42 5.15/10.33 8.43/7.42 5.15/10.33 8.43/7.42

SU 20.10/42.28 18.78/46.02 19.70/35.67 17.13/37.28 20.53/38.77 18.38/48.88
HGN 22.95/36.57 18.67/34.35 21.70/31.13 18.22/29.78 22.80/28.87 16.15/30.95
ESMA 50.07/70.53 33.67/66.05 40.60/41.73 28.97/31.12 38.68/54.02 23.48/45.75

GAKer (Ours) 35.20/73.62 24.32/73.37 47.60/63.10 27.30/72.00 45.00/42.50 26.95/44.90

4.4 Ablation Study

This section discusses how different parameter selections in training dataset con-
struction impact the generator’s attack capability.
Numbers of Known Classes. Figure 4 demonstrates the impact of the number
N of known classes on the generator’s performance. Specifically, to mitigate

Fig. 4: Comparison of targeted attack suc-
cess rates across a range of known classes.
The Res-50 serves as the substitute model,
while the performance of black-box mod-
els, including Res-152, VGG-19, and Dense-
121, is evaluated for both known (K) and
unknown (U) classes.

the impact of adding new classes
as the number of known classes in-
creases, we evaluate targeted attack
success rate on a common set of 10
known classes and 500 common un-
known classes. When N is 10 or 50,
the attack success rate on unknown
classes is low due to limited train-
ing data. With N increased to 500,
the white-box success rate reaches
49.45% on 500 unknown classes. De-
spite higher training costs, perfor-
mance does not significantly improve
with more known classes. Therefore,
N is set to 200 to balance performance
and training cost.

When N is 10 or 50, the attack suc-
cess rate on unknown classes is low
due to limited training data. With N
increased to 500, the white-box suc-
cess rate reaches 49.45% on 500 un-
known classes. Despite higher training costs, performance does not significantly
improve with more known classes. Therefore, N is set to 200 to balance perfor-
mance and cost.
Strategies for Choosing Known Classes. Previous work [44] on multi-target
generators has highlighted the importance of not only determining the number
of target classes but also selecting which target classes to attack. When there
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are significant differences between the selected target classes, the generator can
achieve a better targeted attack success rate.

We introduce a similarity greedy algorithm to select a set of classes with the
largest feature differences. To simplify, we represent each target class using the
average of its image features and measure the similarity using cosine similarity.
Specifically, the algorithm starts by randomly selecting an initial feature vector
as the first class and adds it to the selected group. It then iteratively selects
a vector from the remaining pool that has the lowest average cosine similarity
to the vectors in the selected group. We add this selected class to the selected
group and repeat the process until achieve the specified number of target classes.

Fig. 5: Comparison of targeted attack
transfer success rates under different known
classes selection strategies.

We conduct multiple experiments
to eliminate the randomness intro-
duced by the initial selection. To vali-
date our selection method’s effective-
ness, we compare it with randomly se-
lecting strategy. Figure 5 illustrates
that our method significantly out-
performs random selection on known
classes. Compared with the random
strategy, we achieve a success rate in-
crease of 16.52% on black-box model
Res-152 when the substitute model is
Res-50. This demonstrates the neces-
sity of selecting known classes and the
effectiveness of our selecting method.

Numbers of Sample in Each
Known Class. We observe that
noisy images, such as those with occlusion or blurring, can decrease performance.
To validate this, we employ three selection methods to form groups, each com-
prising 325 images: low quality (largest classification loss), high quality (lowest
loss), and random. Figure 6(a) demonstrates that image quality significantly
impacts the attack success rate. Consequently, we prioritize training images by
their classification loss, favoring those with the lowest losses. Specifically, we
experiment with different numbers of images (M ∈ {1, 130, 325, 650, 1300}) for
each known class, as illustrated in Figure 6(b). When the number of images (M)
is less than 325, the performance is lower, likely because the generator could
not capture the full breadth of class characteristics. Conversely, when M exceeds
325, the attack success rate slightly decreased, potentially due to the inclusion of
more noisy images. Thus, we ultimately select 325 as the optimal number of sam-
ples for each known class. This choice yields a maximum attack success rate of
41.69% for the unknown class in the ResNet-50 model. This finding underscores
the equal importance of both the quantity and quality of training samples.
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Fig. 6: Comparisons of targeted attack success rates at sample quality and different
numbers of targeted images per known class.

5 Conclusion

Generator-based targeted attacks are able to mislead DNNs to any target they
have been trained on, showing their dangers. For the first time, we find that the
attack also extends to untrained unknown classes, and the extent of its potential
harm is revealed. We propose the Generalized Adversarial attacker, which injects
target feature into adversarial examples to attack unknown classes. Through
comprehensive experiments across standard, defense, and large vision-language
models, we demonstrate that our method can effectively attack unknown and
known classes across models. We hope our work will draw attention to the po-
tential dangers of generator-based targeted attacks and inspire future research
in this area.

6 Societal Impacts & Limitation.

Societal Impacts. Previous research on generator-based target attacks re-
quires the attacker to know the target class. Our proposed algorithm allows suc-
cessful targeted attacks without this information, highlighting the risk of relying
solely on dataset and model confidentiality for security. Moreover, our method’s
success on unknown classes reveals inherent model vulnerabilities, offering new
insights for advancing security.

Limitation. While our method validates the possibility of attacking un-
known classes using generator-based methods, the gap in target attack success
rates between known and unknown classes still exists. In the future, we will focus
on analyzing the reasons for this difference.

Acknowledgements

This study is supported by grants from the National Natural Science Foun-
dation of China (Grant No. 62122018, No. 62020106008, No. U22A2097, No.
U23A20315), Kuaishou, and SongShan Laboratory YYJC012022019. It is also
supported by the Postdoctoral Fellowship Program of CPSF under Grant Num-
ber GZB20240114.



Adversarial Example Generation via Generalized Latent Infection 15

References

1. Bai, J., Bai, S., Yang, S., Wang, S., Tan, S., Wang, P., Lin, J., Zhou, C., Zhou, J.:
Qwen-vl: A versatile vision-language model for understanding, localization, text
reading, and beyond. CoRR (2023)

2. Deng, J., Dong, W., Socher, R., Li, L., Li, K., Fei-Fei, L.: Imagenet: A large-scale
hierarchical image database. In: CVPR (2009)

3. Dong, Y., Liao, F., Pang, T., Su, H., Zhu, J., Hu, X., Li, J.: Boosting adversarial
attacks with momentum. In: CVPR (2018)

4. Dong, Y., Pang, T., Su, H., Zhu, J.: Evading defenses to transferable adversarial
examples by translation-invariant attacks. In: CVPR (2019)

5. Gao, J., Qi, B., Li, Y., Guo, Z., Li, D., Xing, Y., Zhang, D.: Perturbation towards
easy samples improves targeted adversarial transferability. In: NeurIPS (2023)

6. Gao, L., Zhang, Q., Song, J., Liu, X., Shen, H.T.: Patch-wise attack for fooling
deep neural network. In: ECCV (2020)

7. Goodfellow, I., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial ex-
amples. In: ICLR (2015)

8. Gu, J., Jia, X., de Jorge, P., Yu, W., Liu, X., Ma, A., Xun, Y., Hu, A., Khakzar, A.,
Li, Z., Cao, X., Torr, P.H.S.: A survey on transferability of adversarial examples
across deep neural networks. CoRR (2023)

9. Guo, C., Rana, M., Cissé, M., van der Maaten, L.: Countering adversarial images
using input transformations. In: ICLR (2018)

10. Han, J., Dong, X., Zhang, R., Chen, D., Zhang, W., Yu, N., Luo, P., Wang, X.:
Once a MAN: towards multi-target attack via learning multi-target adversarial
network once. In: ICCV (2019)

11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR (2016)

12. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: NeurIPS
(2020)

13. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected
convolutional networks. In: CVPR (2017)

14. Jia, X., Wei, X., Cao, X., Foroosh, H.: Comdefend: An efficient image compression
model to defend adversarial examples. In: CVPR (2019)

15. Kurakin, A., Goodfellow, I.J., Bengio, S.: Adversarial examples in the physical
world. In: ICLR (2017)

16. Liao, F., Liang, M., Dong, Y., Pang, T., Hu, X., Zhu, J.: Defense against adversarial
attacks using high-level representation guided denoiser. In: CVPR (2018)

17. Lin, J., Song, C., He, K., Wang, L., Hopcroft, J.E.: Nesterov accelerated gradient
and scale invariance for adversarial attacks. In: ICLR (2020)

18. Liu, H., Li, C., Li, Y., Lee, Y.J.: Improved baselines with visual instruction tuning.
CoRR (2023)

19. Liu, H., Li, C., Wu, Q., Lee, Y.J.: Visual instruction tuning. In: NeurIPS (2023)
20. Naseer, M., Khan, S.H., Hayat, M., Khan, F.S., Porikli, F.: A self-supervised ap-

proach for adversarial robustness. In: CVPR (2020)
21. Naseer, M., Khan, S.H., Hayat, M., Khan, F.S., Porikli, F.: On generating trans-

ferable targeted perturbations. In: ICCV (2021)
22. Naseer, M., Khan, S.H., Khan, M.H., Khan, F.S., Porikli, F.: Cross-domain trans-

ferability of adversarial perturbations. In: NeurIPS (2019)
23. Naseer, M., Ranasinghe, K., Khan, S., Khan, F., Porikli, F.: On improving adver-

sarial transferability of vision transformers. In: ICLR (2022)



16 Y.Sun et al.

24. Naseer, M., Ranasinghe, K., Khan, S.H., Khan, F.S., Porikli, F.: On improving
adversarial transferability of vision transformers. In: ICLR (2021)

25. Poursaeed, O., Katsman, I., Gao, B., Belongie, S.J.: Generative adversarial per-
turbations. In: CVPR (2018)

26. Qin, Z., Fan, Y., Liu, Y., Shen, L., Zhang, Y., Wang, J., Wu, B.: Boosting the trans-
ferability of adversarial attacks with reverse adversarial perturbation. In: NeurIPS
(2022)

27. Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G.,
Askell, A., Mishkin, P., Clark, J., Krueger, G., Sutskever, I.: Learning transferable
visual models from natural language supervision. In: ICML (2021)

28. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: ICLR (2015)

29. Su, S., Liu, J., Gao, L., Song, J.: F3-pruning: A training-free and generalized prun-
ing strategy towards faster and finer text-to-video synthesis. In: AAAI (2024)

30. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the incep-
tion architecture for computer vision. In: CVPR (2016)

31. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I.J.,
Fergus, R.: Intriguing properties of neural networks. In: ICLR (2014)

32. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training
data-efficient image transformers & distillation through attention. In: ICML (2021)

33. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training
data-efficient image transformers & distillation through attention. In: ICML (2021)

34. Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M., Lacroix, T., Roz-
ière, B., Goyal, N., Hambro, E., Azhar, F., Rodriguez, A., Joulin, A., Grave, E.,
Lample, G.: Llama: Open and efficient foundation language models. CoRR (2023)

35. Tramèr, F., Kurakin, A., Papernot, N., Goodfellow, I.J., Boneh, D., McDaniel,
P.D.: Ensemble adversarial training: Attacks and defenses. In: ICLR (2018)

36. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
L., Polosukhin, I.: Attention is all you need. In: NeurIPS (2017)

37. Wang, X., He, K.: Enhancing the transferability of adversarial attacks through
variance tuning. In: CVPR (2021)

38. Wang, X., Zhang, Z., Zhang, J.: Structure invariant transformation for better ad-
versarial transferability. In: ICCV (2023)

39. Wang, Z., Yang, H., Feng, Y., Sun, P., Guo, H., Zhang, Z., Ren, K.: Towards
transferable targeted adversarial examples. In: CVPR (2023)

40. Wei, Z., Chen, J., Wu, Z., Jiang, Y.: Enhancing the self-universality for transferable
targeted attacks. In: CVPR (2023)

41. Xie, C., Wang, J., Zhang, Z., Ren, Z., Yuille, A.L.: Mitigating adversarial effects
through randomization. In: ICLR (2018)

42. Xie, C., Wu, Y., van der Maaten, L., Yuille, A.L., He, K.: Feature denoising for
improving adversarial robustness. In: CVPR (2019)

43. Xie, C., Zhang, Z., Zhou, Y., Bai, S., Wang, J., Ren, Z., Yuille, A.L.: Improving
transferability of adversarial examples with input diversity. In: CVPR (2019)

44. Yang, X., Dong, Y., Pang, T., Su, H., Zhu, J.: Boosting transferability of targeted
adversarial examples via hierarchical generative networks. In: ECCV (2022)

45. Yuan, S., Zhang, Q., Gao, L., Cheng, Y., Song, J.: Natural color fool: Towards
boosting black-box unrestricted attacks. In: NeurIPS (2022)

46. Zhao, A., Chu, T., Liu, Y., Li, W., Li, J., Duan, L.: Minimizing maximum model
discrepancy for transferable black-box targeted attacks. In: CVPR (2023)


	Any Target Can be Offense: Adversarial Example Generation via Generalized Latent Infection

