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7 Supplementary Materials

7.1 Aerial Image Dataset Roof Masks Downsampling Results

We also tested on another binary image dataset consisting of building roof masks
in real-world aerial images of urban areas (see Table |4 and Figure . We built
our dataset of 255 512x512 images by randomly subtracting sub-images from
an satellites aerial image dataset (by Humans in the Loop group with the Mo-
hammed Bin Rashid Space CenterED, which originally contains 72 images of
various sizes (from 509x544 to 2149x1479). As mentioned in Section [3] we tem-
porarily added a ring of white pixels to the image boundaries to simplify bound-
ary handling cases. We point out that this dataset is more challenging than the
CNCB dataset we tested in Section p| as it contains a lot of small and relatively
thin components. This leads to even more topologically incorrect downsampling
results (compared to CNCB dataset) by the traditional non topology-preserving
methods. However, our IP-based method and the dilation-based method still pro-
duced completely topologically correct results. Our method’s results still have
similar levels of pixel-wise accuracy as the traditional methods, while the dilation
method’s accuracy is much worse. On the downside, this dataset is more chal-
lenging to have topologically correct results - there are 8, 3, 14, and 42 infeasible
cases for downsampling factors 2, 4, 8, and 16, respectively.

Table 4: Quantitative and speed comparisons of different downsampling methods on
the 255 segmentation masks in the aerial dataset to different sizes. Best and second-
best results are marked in red and blue, respectively.

512x512 to 256x256 (factor 2) 512x512 to 128x128 (factor 4)
I Betti L PH | Ave. I Beti [ PH J Ave.

Method | T IoU 1 Dice |\ "orror distance time (s) TIoU 1 Dice | error distance time (s)
Bicubic [94.56% 97.15% 2.47 0.077 0.001 [86.75% 92.50% 4.62 0.135 0.001
Pooling |94.81% 97.29% 0.98 0.056 0.675 |87.85% 93.32% 2.43 0.124 0.174
ACN [6]]93.59% 96.63% 5.15 0.215 0.190 |81.98% 89.74% 5.67 0.240 0.285
Dilation|55.42% 67.81% 0.00 0.174  37.702 |54.41% 67.68% 0.00 0.176 8.958
Ours 94.71% 97.24% 0.00 0.031 3.137 |87.33% 92.97% 0.00 0.055 3.180
512x512 to 64x64 (factor 8) 512x512 to 32x32 (factor 16)

- 1 Betti [ PH | Avg. i 1 Betti  JPH | Avg.
Method | T IoU 1 Dice num. error distance time (s) TIoU T Dice num. error distance time (s)
Bicubic |78.45% 87.15% 10.14 0.213 0.001 [63.13% 75.97% 13.57 0.292 0.001
Pooling |78.94% 87.39% 7.28 0.195 0.051 [63.60% 76.11% 11.65 0.279 0.018
ACN (6]|66.77% 79.78% 10.57 0.249 0.365 [48.28% 63.83& 12.84 0.287 0.445
Dilation|48.23% 62.75% 0.00 0.174 2.296 [34.18% 48.55% 0.00 0.194 0.496
Ours 78.62% 87.41% 0.00 0.083 3.494 [61.37% 74.60% 0.00 0.115 5.348

4 https://humansintheloop.org/resources/datasets/semantic-segmentation-dataset-2/
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Fig. 8: Aerial roof mask dataset downsampling results. These are challenging problems
that non topology-preserving methods often generate results with altered topology.
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7.2 Comparisons to works by Passat et al. and Ngo et al. [16], [18],
and [15]

Table 5: Comparing [16] and ours. We tested on both our datasets (CNCB and roof
mask dataset) of 512x512 input images. A non-success for [1] means it cannot reach
a feasible solution. For ours it means the solver declares the problem to be infeasible
(with default coverage value) or could not finish in time. We find that [1] often cannot
reach a feasible solution for downsampling tasks w/ factor > 2. Moreover, [1]’s results’
PH distances are much worse.

10U, Dice |PH dist|success% |[time
[1], factor2 (94.07, 96.89| 0.247 | 82.00% |1.08
Our, factor2|93.91, 96.79| 0.018 | 98.00% |2.56
[1], factor4 |85.64, 91.94| 0.241 | 41.00% |2.35
Our, factor4|86.23, 92.26| 0.034 | 99.00% |2.00
[1], factor8 |71.18, 82.28| 0.181 | 10.35% [4.81
Our, factor8|75.97, 85.48| 0.057 | 96.95% |2.05

[18] and [15] both analyzed the necessary and sufficient conditions for a
2D binary image to retain topology after arbitrary rigid transformations (trans-
lations and rotations, but no scaling). In [15], two algorithms to transform a
2D binary image to be a topology-invariant-under-affine-transformation one are
proposed. The first is by fixing “at-fault” pixels (ones that can break topology
after rigid transforms) one-by-one and the second is by doing a super-resolution
(but no subsequent downsampling is discussed). Note that down-scaling is not a
rigid transformation so their results are not directly applicable to our problems.
In |16], the authors extend the discussions to affine transformations (includ-
ing scaling) and proposed an algorithm to do arbitrary topology-invariant affine
transformation. In short, the algorithm (Alg.3 in their paper) starts by subdi-
viding the initial binary image to fit in the target (affine transformed) grid, with
possibly lots of arbitrarily-shaped polygons. Next, the subdivided polygon mesh
is converted to one that is fully compatible to the target grid by applying mor-
phological operations (erosion and dilation) one polygon-by-one. The operations
are picked in a greedy, gradient-descent manner, sorted by an elegant scoring
function (their Eq.85). However, the algorithm doesn’t have the guarantee that
a feasible solution (if one exists) is always reached (note that it starts with an
infeasible solution). In this regard, we consider it less reliable than our baseline
greedy dilation-based approach (Sec. |4|in our paper) because ours instead start
with a feasible solution and improves upon it by applying topology-preserving
dilation operations iteratively. We got the source codes from the authors and
fixed some issues to make it work for large downsampling tasks. See Table [5] for
testing results.
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7.3 Proof of Lemma [1]

We recap the Lemma here:
Faces of the opposite of all the half-edges in a boundary all belong to the same
component.

Case (1) and (2 Case (3) and (4):

Fig. 9: Showing the cases for the proof of Lemma

Proof. We prove it by showing that the faces of the opposite of every two consec-
utive half-edges must belong to the same component. We denote two consecutive
boundary half-edges as €0 and el,their faces as fO and f1, and their opposite’s
faces as of0 and of1, respectively. We discuss four possible cases of a bound-
ary: (1) a outer boundary of a black component, (2) an inner boundary of a
black boundary, (3) a outer boundary of a white component, and (4) an inner
boundary of a white component. Illustrations are shown in Figure [9]

For case (1) and (2), if fO and f1 share an edge, then of0 and of1 must
belong to the same white component because they share one edge. If f0 and
f1 shares only a vertex, then of0 and of1 are actually the same face. Now for
the case that f0 and f1 are the same face, assume for a moment that of0 and
of1 belong to different white components. This means that the face, call it f2,
that is adjacent to both of0 and of1, but not f0/f1, must be a black face (so
to separate of0 and of1). However, this is a contradiction as f2 is adjacent to
f0/f1 via a vertex and should have been included into the black component,
which would violate the configuration of the two consecutive half-edges.

For case (3) and (4), if fO and f1 share an edge, then of0 and of1 must
belong to the same black component. If f0 and f1 are the same, then of0 and
of1 are of the same black component because they share a vertex. If f0 and f1
are different, then of0 and of1 are the same. [J

7.4 Proving that constraints (2), (3), and (4) of the IP problem
have ensured that the original and the solved downsampled
binary images have the same DAG

We show a sketch of proof as follows.

Proof. Constraint (2) ensures that every nodes of the original DAG (i.e., every
black and white components) exist in the downsampled DAG. Constraint (3)
ensures that a black big-pixel is adjacent to either another black big-pixel of the
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same component, or to a white big-pixel. The same applies for white big-pixels.
In other words, any two components of the same color won’t touch each other.

However, the above two constraints still don’t guarantee each original compo-
nent remains one single component in the downsampled image. Now, constraint
(4) dictates that every boundary between a black and a white component (which
means all kinds of component-component boundaries as it is impossible to have
two components of the same color to be adjacent to each other) remain a sin-
gle close loop. This rules out the possibility of one original component become
multiple connected components. [J

7.5 IP Problem Solving Outcomes Analysis

In short, any solution that our method outputs will have the same topology as
the input image. To be precise, there are 4 possible outcomes:

— 1) and 2): The problem is solved optimally or sub-optimally (due to time
limit) and a topologically correct solution with an optimal or sub-optimal
objective value (in terms of pixel-wise similarity to the input image) is found.

— 3): The Gurobi solver finds the problem to be infeasible (w.r.t. the predefined
“coverage” dx / dy value - using a larger coverage value may, but not always,
leads to more feasible solutions). Note that this is a certain conclusion (no
feasible solution w.r.t. the coverage value would exist if the problem is found
to be infeasible).

— 4): Gurobi could not find a solution nor being able to declare the problem to
be infeasible within the time limit (we used 60 seconds). In our experiments,
we found such cases to be rare (such cases are included in average time
calculations throughout our tests).

7.6 Ablation Study of the IP Formulation Constraints Design

The necessities of constraint (1) (i.e., the image shall be fully covered by big-
pixels without overlaps), (2) (i.e., every component shall appear), and (4) (the
boundary between every pair of adjacent components shall be a single closed
loop) in Section |3| are apparent. However, it may not be clear if constraint (3) is
needed when constraint (4) is already in place. We show a counter example and
a discussion in Figure [I0]

7.7 More CNCB Dataset Downsampling Qualitative Results

We show more qualitative results on the CNCB dataset with more downsam-
pling factors (from 2 to 16) in Figure Figure and Figure We point out
that at big downsampling factors, results done by non topology-preserving meth-
ods (e.g., bicubic, pooling, and ACN) often have altered connected components,
such as small components (or holes) got erased, multiple components/holes got
connected, or one component/hole got separated into many.
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Fig. 10: We show the necessity of constraint (3) in Section |3| In the right, we show
that the two black components become a single one when constraint (3) is not enforced
even when constraint (4) is being applied. The two components are represented by
faces marked in A and B, respectively. Observe that in the right, constraint (4) actu-
ally still applies. This is because at point p and ¢, none of the corner configurations
are applicable, so their Boolean variables are not enumerated. This allowed the outer
boundaries of component A and B to become non-closed intervals.

7.8 Persistent Diagram Comparisons

In Section we have shown quantitative comparisons (in terms of PH distances)
of persistent diagrams of original binary images and downsampled images by our
method and other methods. To have an qualitative comparison, in Figure[T4] we
show persistent diagrams of an original 512x512 binary image and its downsam-
pled versions by our method, and some results done by other methods. We see
that persistent diagrams of our downsampled images are visually similar to the
original. In comparison, persistent diagrams of results done by other methods,
having significantly higher PH distances, look more different to the original.

7.9 Shortest Path Comparisons

In Figure [I5] we show approximate shortest paths in our downsampled images.
We also show a false negative (FN) case and a false positive (FP) case, both led
to highly incorrect shortest path estimations, that may happen in topologically
incorrect downsampled images.

7.10 Bigger Resolution Inputs Testing Results

To see how our method performs on bigger (> 512x512) input binary images, we
tested on two big images found in the aerial image dataset. Statistics are shown
in Table [f] and downsampling results are shown in Figure [I6] By comparing
to Table [4] we see that the computational cost of downsampling a 1024x1024
image to 64x64 is only slightly higher then converting a 512x512 image to 64x64
(from 3.494 sec to 3.647 sec). The same can be said about comparing converting
1024x1024 and 512x125 images to 32x32 images (from 5.348 sec to 5.550 sec).
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Table 6: Quantitative and speed comparisons of different downsampling methods on
two bigger (1024x1024) input binary images in the aerial image dataset to different
sizes. Best and second-best results are marked in red and blue, respectively.

1024x1024 to 64x64 (factor 16)

1024x1024 to 32x32 (factor 32)

. 1 Betti L PH | Avg. . | Betti J PH | Avg.
Method | T IoU 1 Dice num. error distance time (s) TIoU T Dice . error distance time (s)
Bicubic [76.62% 86.56% 5.00 0.158 0.004 [59.87% 74.33% 10.58 0.179 0.004
Pooling |77.00% 86.81% 4.42 0.175  0.066 |59.53% 73.83%  10.67 0.202  0.038
ACN [6]]62.39% 76.42% 9.17 0.212  0.801 |43.83% 60.49&  12.17 0.229  0.879
Dilation|56.56% 71.50% 0.00 0.107  2.232 |37.12% 53.31% 0.00 0.159  0.674
Ours 76.52% 86.51% 0.00 0.075  3.647 |54.43& 69.69% 0.00 0.095  5.550

7.11 Anisotropic Downsampling Results

Our method supports anisotropic downsampling by using different downsam-
pling factors in width and height. In Figure [[7] we show one such result of
downsampling a 512x512 image into a 32x64 one with downsampling factor 16
in width and 8 in height.
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Fig. 11: CNCB dataset downsampling results at all factors (2, 4, 8, and 16). Observe
that results done by non topology-preserving methods often have altered connected
components, especially at large factors (16).
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Fig.12: CNCB dataset downsampling results at all factors (2, 4, 8, and 16).



26 CC Chen, CH Peng

W

¥

¥

o

&l«‘

¥

Input mask (512) Bicubic (256) Pooling (256) ACN (256) Dilation (256) Ours (256)
L Y [ . L Y L [ L4 .
kl 4 ko 4 “c Y 4 (VAL ku 4
Bicubic (128) Pooling (128) ACN (128) Dilation (128) Ours (128)
] . r - + b L] . ] M
ST N U TR B AR “i ¥
Bicubic (64) Pooling (64) ACN (64) Dilation (64) Ours (64)
u 1 4 . T . 1 . 4 .
3
| o | | e L
Bicubic (32) Pooling (32) ACN (32) Dilation (32) Ours (32)
) . ™ . N . ) . n . N .
@ L @ [ ] |
- M - . - ¢ - * - M - *
Input mask (512) Bicubic (256) Pooling (256) ACN (256) Dilation (256) Ours (256)
= ) e . B ) ' » . o R
L J @ L ® [ ]
- * - * - . - . - *
Bicubic (128) Pooling (128) ACN (128) Dilation (128) Ours (128)
e ) + L .J‘- 1 ﬁﬂ‘ | R N
v * » » *
Tl - L™ - - ] [ [ - .
Bicubic (64) Pooling (64) ACN (64) Dilation (64) Ours (64)
. .. = A - o .
| | L ) [ ] -
"= L | [ . L [ 1 L |
Bicubic (32) Pooling (32) ACN (32) Dilation (32) Ours (32)

Fig. 13: CNCB dataset downsampling results at all factors (2, 4, 8, and 16).
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Fig. 14: Persistent diagrams of an original 512x512 binary image and its downsampled
versions by our method (to 128x128, 64x64, and 32x32), and some results done by

other methods (32x32).
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Fig. 15: Left: a shortest path (between two yellow pixels) and a pair of pixels without
a path (red) in an original image. Middle: shortest path finding results in our down-
sampled image. Right: we show a false negative (FN) case because the component
containing the two yellow pixels now becomes two. We also show a false positive (FP)
case because the two red pixels now belong to the same component and a path emerges.
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Fig. 16: Downsampling 1024x1024 images to 64x64 (factor 16) and 32x32 (factor 32).

Fig.17: Left: visualizing a downsampling result with factor 16 in width and 8 in
height. Observe that each big-pixel is a 16-by-8 rectangle. Middle: original image, Right:
downsampled image.



