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Abstract. We present a novel discrete optimization-based approach to
generate downsampled versions of binary images that are guaranteed
to have the same topology as the original, measured by the zeroth and
first Betti numbers of the black regions, while having good similarity
to the original image as measured by IoU and Dice scores. To our best
knowledge, all existing binary image downsampling methods don’t have
such topology-preserving guarantees. We also implemented a baseline
morphological operation (dilation)-based approach that always generates
topologically correct results. However, we found the similarity scores to
be much worse. We demonstrate several applications of our approach.
First, generating smaller versions of medical image segmentation masks
for easier human inspection. Second, improving the efficiency of binary
image operations, including persistent homology computation and short-
est path computation, by substituting the original images with smaller
ones. In particular, the latter is a novel application that is made feasible
only by the full topology-preservation guarantee of our method.

Keywords: Binary Image Downsampling · Discrete Optimization · Im-
age Segmentation

1 Introduction

Binary images, i.e., images consisting of only "foreground" (e.g., black) and
"background" (e.g., white) pixels, are widely used in computer visions and com-
puter graphics. Example usages include data structures for segmentation masks,
image inputs to document analysis and industry machine vision systems [19], and
the encoding of 2D geographical maps in games and animations. A classic book
on machine vision [11] pointed to several advantages of binary images. First, de-
signers noted that binary images are easier for humans to recognize key features
such as silhouettes. Second, binary images led to significantly smaller memory
and processing requirements of computer vision algorithms than their grey-level
or color image counterparts. In particular, the binary nature of pixel values en-
ables efficient run-length encoding of the data storage and the applicability of
binary logical operations instead of integer arithmetic operations.

A key characteristic of binary images compared to grey-level or color images
is their natural correspondence to 2D graphs. To do so, we first convert a binary
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Fig. 1: Downsampling a binary image of two connected components by a factor of 2
(i.e., turning each 2x2 block of pixels into a downsampled pixel). Bicubic filtering-and-
thresholding (by OpenCV), average pooling (when tie choose foreground color), and the
adaptive crossing number (ACN)-based method [6], all generate results with different
topology. We show the ACNs in each original pixel. Our method finds a topologically
correct result. A non-trivial pixel-color decision is marked in red.

image to a regular quad mesh by taking every pixel as a quad face. We then
remove all quads corresponding to white pixels and the resulting dangling ver-
tices and edges (i.e., vertices and edges without adjacent faces). We now have
a graph consisting of black-pixel quads only. This graph has zero or more con-
nected components and zero or more holes inside each components. We denote
the number of connected components and the total number of holes, namely the
zeroth and first Betti numbers, as the topology of the binary image.

The topology of binary images plays a key role in their applications. There
exists a large body of research concerning the efficient computation of topological
operations on binary images such as border following, region adjacency graph,
medial axis / skeletonization calculation, morphological operations (such as thin-
ning and dilation), and distance transforms [2,3,11,19,23,24,26,27]. For neural
image and volume segmentation methods, it has been shown that incorporating
prior knowledge about the topology (in terms of Betti numbers) of the segmented
objects, usually in forms of new loss functions, can improve the segmentation
results’ topological accuracy and in some cases even per-pixel accuracy [5,9,10].
In all these applications, having topologically correct versions of a binary image
at different resolutions can be useful.

However, preserving the topology when downsampling a binary image is a
non-trivial and sometimes impossible task. To our best knowledge, all exist-
ing binary image downsampling methods, including bilinear or bicubic filtering-
and-thresholding, various pooling-based approaches, and an adaptive crossing
number-based method proposed in 2007 [6], can cause topological changes. We
show examples in Figure 1. There, we can see that the color of a downsampled
pixel can not be decided by simply checking the ratios of black or white pixels in
its corresponding block of original pixels - sometimes a downsampled pixel has
to be white even if its corresponding block of pixels are all black. In Figure 2 (a),
we show a binary image without any topological correct downsample solutions.
Note that our approach finds a non-trivial and correct solution to Figure 1 and
definitely declares Figure 2 (a) to be an infeasible problem.

One can instead design a downsampling algorithm that guarantees to output
topologically correct results by leveraging morphological operations. Although
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Fig. 2: (a) A binary image without any topologically correct downsampling solutions.
(b) Three black regions with different Betti numbers (from left to right: (1,0), (2,1),
(3,2)). However, their Euler characteristics all equal to 1. This can be verified by their
numbers of vertices, edges, and faces: (32,52,21), (32,48,17), and (32,46,15). This is
expected because Euler characteristic equals the number of connected components
minus the number of holes for 2D graphs ( [11]).

we did not find such algorithms published in research venues, we envision a base-
line approach as follows. For each connected component in the original binary
image, we create a corresponding trivial shape with the same topology in the
downsampled image. We then iteratively improve the shapes of each component
by dilation operations. We found that such a greedy approach can not produce
results that have high similarity to the original binary image.

In short, the downsampling task has two main goals - the result binary image
shall have the same topology and also high similarity to the original. Our insight
is to formulate the task as an discrete optimization problem - in which the
black-or-white decisions of each downsampled pixels are encoded as Boolean
variables, the topology preservation is a hard constraint, and the similarity to
the original binary image is the objective function to maximize. In this way,
any computed solution to the optimization problem is akin to a topologically
correct downsampled binary image while having good similarity to the original.
Another benefit of such a optimization-based approach is that impossible tasks
are identified as infeasible problems.

The bottleneck of the optimization problem design is the formulation of the
topology-preserving hard constraint. As has been shown in Figure 1, topology-
preservation is a global phenomena where the decision of one downsampled pixel
can be influenced by regions far away. Therefore, any local approaches (i.e., mak-
ing the decision based on the values of nearby pixels) would not work. We also
found that constraining the Euler characteristics of each components does not
work because two graphs with different Betti numbers can have the same Euler
characteristic (shown in Figure 2 (b)). Inspired by the topological "no-island"
constraint for network design problems in [17], we propose a novel formulation to
ensure that the topology of each component’s boundary to remain a circle, which
subsequently ensures that the topology of each component to remain the same.

In summary, our contributions are as follows:

– We propose a novel discrete optimization-based approach to tackle the pre-
viously unsolved topology-preserving binary image downsampling problem.
Our method outputs results that are not only topologically correct, but
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also have good similarity scores that are competitive with conventional ap-
proaches without topology-preservation guarantees.

– We have designed our problem formulation such that it can be solved effi-
ciently. In fact, our method can be used to speed up binary image operations
such as persistent homology computation.

– We show that the main advantage of our method, namely full topology-
preservation, enables novel applications of binary image downsampling that
traditional downsampling methods could not support.

2 Related Work

2.1 Existing Binary Image Downsampling Methods

We base our discussions of existing common binary image downsampling meth-
ods on the implementations in OpenCV [4]. To find the color of a downsampled
pixel at coordinate (X,Y ), the Nearest Neighbor approach simply converts
(X,Y ) back to the original resolution, (A ∗ X,B ∗ Y ), A and B are the down-
sampling factors in width and height, and use the pixel color at (A ∗X,B ∗ Y ).
Average Pooling (in OpenCV it is called "Area") assigns black to a down-
sampled pixel if the ratio of black pixels in its A-by-B block equal or greater
than half, and assigns white otherwise. Similarly, Max or Min Pooling choose
a black big-pixel if any or all of the corresponding pixels are black, respectively.
Bilinear or Bicubic Interpolation-And-Thresholding does a grey-image
downsampling using the standard bilinear or bicubic interpolation first, and then
convert the grey-level result to a binary image using thresholding at half grey.

In [18] and [15], the necessary and sufficient conditions for a binary image to
retain topology after arbitrary rigid transformations (translation and rotation,
but no scaling) are analyzed. In [16], an algorithm to do arbitrary topology-
invariant affine transformations (including scaling) for binary images is proposed.
However, the algorithm often could not reach a feasible solution (if one exists) for
downsampling tasks. A detailed discussion is in the Supplementary Materials.

The adaptive crossing number (ACN)-based method [6] also aimed for bi-
nary image downsampling with topology-preservation as a goal. However, the
method does not guarantee topologically correct results. The method only per-
forms downsampling by a factor of 2. In short, ACN are integer numbers assigned
to each pixels in the original image such that higher values indicate pixels that
are more likely to alter the topology when not chosen, and vice versa. For each
downsampled pixel, the color of the pixel with the highest ACN is chosen. In tie,
the pixel in the first scanning order (the upper-left corner) is chosen.

2.2 Leveraging Topology for Neural Image Segmentation Methods

There exist many methods that leverage the topological properties of segmenta-
tion masks to improve the results of neural segmentation methods. They mostly
do so by introducing novel loss functions that are more sensitive to the topo-
logical differences between prediction results and the ground truth. In [14], the
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authors found that the feature maps of a pretrained VGG19 neural network [22]
tend to be more topologically correct and designed a topological loss function
using the outputs of these feature maps. In [10], a more direct and effective topo-
logical loss function is introduced that measures the differences in terms of the
persistent homology (PH) of segmentation masks. Note that this method encodes
only the first Betti number (numbers of connected components) of 2D segmen-
tation masks. In [5], a more general PH-based cost function design is introduced
that can encode arbitrary lengths of Betti numbers of segmented objects (e.g.,
numbers of cavities in volumetric data). In [9], a non PH-based cost function de-
sign, based on homotopy warping, is introduced that showed improved accuracy
and computational cost. Other non PH-based topological cost function designs
include one based on morphological skeleta [20] and one based on Euler char-
acteristics [12]. Our method can benefit these methods by providing easier data
visualization. Also, we envision that being able to quickly generate segmentation
masks at reduced resolutions but still with the same topology (which was not
possible prior to our method) can lead to novel algorithm designs.
Persistent Homology (PH). In short, PH encodes the "birth" and "death"
times of each components during a consecutive session of dilation from each
component being a single point until all components are so inflated to merge into
a single component without holes. Unlike Betti numbers which are discrete, PH
are continuous-valued and differentiable encoding. Therefore, they can be easily
modeled as cost functions of neural networks. However, the main downside is
that PH computation is expensive ( [9,12]). In Section 5.2, we demonstrate that
our method can be used to significantly reduce the cost of PH computation with
a small impact to its accuracy.

3 Our Method

We begin with definitions. A binary image consists of pixels of exactly two pos-
sible colors - foreground ("black" in short) and background ("white" in short).
Note that in our figures we may use different colors to denote pixels of different
connected components (e.g., Figure 1). We downsample a binary image of width
W and height H by a factor of A in width and B in height. We only consider
the case of A and B being positive integers and W is dividable by A and H
is dividable by B. In other words, we practically convert each A-by-B block of
pixels of possibly different colors into one downsampled "big"-pixel of a single
color. The resolution of the downsampled binary image is W/A-by-H/B.

A W -by-H binary image can be turned into a regular grid-like quad mesh
of H rows and W columns of quads. A quad is black or white if it corresponds
to a black or white pixel, respectively. If we remove all the white quads and the
resulting "dangling" vertices and edges (i.e., those without any adjacent faces),
we are left with a quad mesh of black quads only. Note that we consider an edge
is adjacent to a face if and only if that face has the edge as one of its sides. This
black-quad mesh of the binary image may have zero or more connected compo-
nents. Note that we consider two black quads sharing just a single vertex (i.e.,
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Fig. 3: Left: An input binary image of 3 black components (orange, blue, and green)
and 4 white components (white, grey, goose-yellow, and light green). Middle: Its re-
gion adjacency graph (RAG). Right: a topologically correct downsampled solution with
the same RAG. We draw the outer and inner boundaries of black components in red
and purples, respectively. Observe that a black components’ outer boundary can self-
intersect. For inner boundaries, one cannot intersect itself but different ones can inter-
sect with each other. We also show the type-index and distance of each corner on the
first component’s outer boundary. The corner with the "last" flag on is asterisked.

in a diagonal position) as neighbors. In each of the connected component, there
may be zero or more holes. We denote the numbers of connected components
and the total numbers of holes, namely the zeroth and first Betti numbers of the
black-quad mesh, as the topology of the binary image.

We can instead remove all the black quads and the resulting dangling vertices
and edges from the binary image, and have a white-quad mesh of the binary
image. However, different to the rule for black quads, we consider two white
quads to be neighbors if and only if they share an edge. In other words, black
quads use the 8-neighborhood rule but white quads use the 4-neighborhood rule.
With the black-quad mesh and white-quad mesh of a binary image both built, we
can now partition the whole quad mesh into black-quad connected components
("black components" in short) and white components that together fully cover
the whole quad mesh in a non-overlapping manner. We also build the region
adjacency graph (RAG) of the binary image, which is a graph in which each
node represents a component, and two nodes are connected by an edge if and
only if the two components are adjacent ( [19]). Note that every pair of adjacent
components must be one black and one white. See Figure 3 for an example.

We now introduce the key concept behind our topology-preserving constraint
formulation - the boundaries of connected components. We use notions of stan-
dard half-edge mesh data structures [1] .

Definition 1. A boundary of a connected component’s is a closed loop of con-
secutive half-edges such that every such half-edge’s face belong to the component
and its opposite half-edge’s face does not not belong to the component.

A boundary is outer if it is not of a hole. Otherwise, it is an inner boundary.
Note that the consecutive half-edges of a outer and inner boundary go in the
counter-clockwise and clockwise directions, respectively.
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The case of the half-edges on the boundary of the whole quad mesh creates
some confusion (because the face pointers of the opposites of these half-edges are
null). To simplify discussions, we assume the faces on the boundary of the whole
quad mesh are all white, and ignore the outer boundary of the white component
that touches the quad mesh boundary (e.g., Figure 3). To support cases where
there exist black faces touching the binary image boundary, we temporarily add
a ring of white faces along the image boundary and later crop out the resulting
white big-pixels. We now show an important lemma:

Lemma 1. Faces of the opposite of all the half-edges in a boundary all belong
to the same component.

We show the proof in Supplementary Materials.
Lemma 1 implies that for every pair of adjacent black and white component

as defined in the RAG of the original binary image, there exist exactly one
closed loop of consecutive half-edges in counter-clockwise order (which is the
outer boundary of the black component) that separates them.

3.1 Optimization Problem Formulation

We now formulate an integer programming (IP) optimization problem such that
every solution constitutes a topologically correct downsampling result. We found
that simply denoting the black-or-white decision of every big-pixels by a Boolean
variable cannot cope with the complexity of the problem. Instead, we have to
encode the per-big pixel coverage by each components. We first denote all com-
ponents in the original binary image as Ci, 0 ≤ i < Nc, Nc is the number of
components (both black and white). Now, for each component Ci, we collect all
big-pixels that can potentially cover its pixels. The default way is that a pixel
can be covered by a big-pixel if it is within the A-by-B block of pixels of the
big-pixel. We extend this idea to allow a big-pixel to cover its nearby pixels out-
side its block by a distance threshold in the original resolution. Specially, we say
a big-pixel at coordinate (X,Y ) in the downsampled image, 0 ≤ X < W/A and
0 ≤ Y < H/B, can cover a pixel at coordinate (x, y) in the original image if:

X ∗A− dx ≤ x ≤ ((X + 1) ∗A− 1) + dx,

Y ∗B − dy ≤ y ≤ ((Y + 1) ∗B − 1) + dy. (1)

dx and dy are distance thresholds in the two directions. We use ⌊A/4⌋ for dx
and ⌊B/4⌋ for dy in our implementation.
Boolean Variables Declaration. We denote the collected set of big-pixels
that can cover component Ci as:

P i
j , (2)

0 ≤ j < Ni, Ni is the number of big-pixels that can cover Ci. For every P i
j ,

we create a Boolean variable of the same name. We say P i
j is the j-th covering

big-pixel candidate for Ci. Note that a big-pixel can be a covering candidate for
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Fig. 4: The 12 possible corner configurations and their type-indices. Each has one
incoming half-edge and one outgoing half-edge, one or two left hand-side (LHS) big-
pixels (black), and one or two right hand-side (RHS) big-pixels (white) defined. Each
configuration has a "pointing-to" position defined, e.g., for the 0-th it is on the top.

multiple components. We now formulate the four sets of constraints for the IP
problem as follows.
1) Full and Non-Overlapping Coverage Constraint. Every big-pixel has
to be covered by exactly one component. This means:

∀(X,Y )

∑
i,j

P i
j (X,Y ) = 1. (3)

P i
j (X,Y ) denotes any P i

j at coordinate (X,Y ) in the downsampled binary image.
2) Component Non-Emptiness Constraint. Every component has to be
covered by at least one big-pixel otherwise it would disappear. That is:

∀i
Ni∑
j

P i
j ≥ 1. (4)

3) Local Neighborhood Correctness Constraint. Topological correctness
in the neighborhood of each big-pixel is guaranteed by ensuring that two different
black components can not be adjacent to each other by the 8-neighborhood rule
and two different white components cannot be adjacent to each other by the 4-
neighborhood rule. Accordingly, we collect all pairs of mutually incompatible big-
pixel candidate Boolean variables (for example, two adjacent big-pixel candidates
that belong to different black or white components) as (Pm

0 , Pm
1 ), 0 ≤ m < Nm,

Nm is the number of such pairs. We then have:

∀m (Pm
0 + Pm

1 ) ≤ 1. (5)

Next, we introduce a constraint to ensure that, for every pair of adjacent
black and white components as defined in the original RAG, there exists exactly
one closed loop of consecutive half-edges that separate the two components.
4) Boundary-Preservation Constraint. Our main idea is to encode a solved
boundary as one closed loop of consecutive corners in a downsampled binary im-
age. A corner is two consecutive half-edges, v0-to-v1 and v1-to-v2, that intersect
at v1. There exist exactly 12 possible corner configurations, as shown in Figure 4.
Note that up to two corners can lie on the same vertex in a non-overlapping nor
crossing-over manner (e.g., 5-th can collocate with 11-th, but not 4-th).

For every boundary between a black component Cb and a white component
Cw, correctness in terms of local connectivity is ensured as follows. Observe that
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each corner configuration has one or two adjacent "left hand-side (LHS)" big-
pixels and one or two "right hand-side (RHS)" big-pixels defined (see Figure 4).
We then require that a corner is part of a boundary if and only if all its RHS
big-pixels exist in Cb and all its LHS big-pixels exist in Cw. This is realized by
adding the following constraints for every possible corner candidate, momently
denoted as a Boolean variable Corner:

0 ≤ (
∑

PRHS
Cb +

∑
PLHS
Cw )−N ∗ Corner ≤ N − 1. (6)

PRHS
Cb are all possible big-pixel Boolean variables belong to black component Cb

at the corner’s RHS side, and PLHS
Cw are all possible big-pixel Boolean variables

belong to white component Cw at the corner’s LHS side. N equals to sum of
the number of all possible PRHS

Cb and the number of all possible PLHS
Cw .

In practice, for every boundary, we exhaustively search all 12 possible corner
configurations on every possible inner vertices of the downsampled binary im-
age, and enumerate all possible "corner candidates" as Boolean variables for the
boundary as the ones that have both non-empty PRHS

Cb and PLHS
Cw sets. Equa-

tions 6 are then applied to every enumerated corner candidates of the boundary.
However, the above constraints still don’t guarantee that there exists only

one close loop of corners. Inspired by the "no-island" constraint proposed in [17],
we further create a "distance" integer variable and a "last" Boolean variable to
pair with every enumerated corner candidates of a boundary. We denote the
former as Distk and the latter as Lastk for corner candidate variable Cornerk,
0 ≤ k < N cc, N cc is the number of corner candidates of the boundary. Here, our
goal is to enforce that distance values of consecutive corners along a boundary
must be monotonically increasing, with exactly one exception at the corner with
the "last" flag on. This effectively ruled out any possibly of having multiple
closed loops as each loop needs at least one "last" flag to be true. We now have:

∀k (Cornerk − ((
∑
l

Distl)−Distk)− Lastk ∗ BIG) ≤ 0, (7)

where Distl are distance value variables of compatible corners at Cornerk’s
pointing-to position. BIG is a per-boundary integer constant that is guaranteed
to be bigger than the largest possible length of the downsampled boundary (e.g.,
set to the length of the boundary in the original binary image). We also require
that a corner’s distance value must be zero if the corner itself is false:

∀k Distk ≤ BIG ∗ Cornerk. (8)

Finally, we require that every boundary has exactly one "last" flag set to true:∑
k∈Boundary

Lastk = 1. (9)

See Figure 3 right for an example of a solved boundary.
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Fig. 5: We downsample a binary image of one black component
and one white component by factor 4 in width and height. For
the upper-left big-pixel of the black component, it’s score value is
16, which is contributed by the four numbered black pixels with
scores 6, 6, 3, and 1, respectively. To see this, the 4-th pixel’s
window is shown in red. It overlaps with the big-pixel at one
pixel, therefore contributing 1 to the big-pixel’s score.

Fig. 6: Our baseline dilation-based method. (a) An input binary image. (b) The initial
downsampled image. Each component is presented as a dot or a bounding box of inner
holes. (c) After 10 iterations of black component dilation. (d) After black component
dilation converged. (e) After 5 iterations of white component dilation. (f) Final result.

In summary, the above four sets of constraints have ensured that a solved
binary image, which is the summation of all the active big-pixel variables, shall
have the same RAG as the original. A proof is in the Supplementary Materials.
Finally, we design our cost function as follows.
Objective Function. Our goal is to assign every big-pixel candidates of every
component (i.e., P i

j as defined in Equation 2) a "score" value, Si
j , and formulate

the objective function as to maximize the sum of scores of active big-pixels:

max
P i

j

∑
i,j

(Si
j ∗ P i

j ), (10)

where i denote the component index and j denotes the big-pixel candidate in-
dex in a component. Our general idea is to raise a score whenever an origi-
nal pixel of a particular component is presented by an active big-pixel of the
same component, and the raise is inversely proportional to the distance in be-
tween. We propose a way to achieve this as follows. For every pixel of component
Ci at coordinate (x, y), we enumerate all its nearby pixel coordinates within a
(2 ∗ dx+ 1)-by-(2 ∗ dy + 1) window (dx and dy are coverage distance thresholds
used in Equation 1). Next, for every pixel in the window, we accumulate 1 to
the score of the corresponding big-pixel candidate. See Figure 5 for an example.

We provide an analysis on the all possible outcomes of solving the IP problems
in the Supplementary Materials.

4 A Baseline Dilation-Based Method

In short, we first enumerate all the black and white components in the input
binary image. Next, in the downsampled image (initialized as all white), for
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every component, we create a trivial and topologically correct representation
of it. We do this by simply creating a dot at the center for every component.
For components with holes, we create a bounding box of inner dots. Next, we
iteratively dilate first all the black components then all the white components
one pixel by one pixel. It becomes trivial to preserve topology for each dilation
(i.e., skip ones that break or merge components). We stop until no more dilation
operations can be found, or a time limit is reached. See Figure 6 for an example.

5 Results and Applications

We implemented our method in C++ and used Gurobi 11.0 [8] to solve the IP
problems. We tested on a Windows PC with AMD 7 Ryzen 5800X CPU, 32GB
RAMs, and NVIDIA RTX 3060 GPU. In Section 5.1, we tested our method
versus other downsampling methods on the segmentation masks of a medical
image dataset. We show results on more kinds of segmentation masks in the
Supplementary Materials. In Section 5.2, we show that the speeds of two im-
portant binary image operations - persistent homology (PH) computation and
shortest path calculation, can be significantly improved with small impact to the
accuracy via straightforward applications of our method.

We re-implemented the ACN [6] method in C++ as the authors did not
provide codes. Since ACN only does factor-2 downsampling, we run it multiple
times to achieve downsampling at factors greater than 2. We use IoU and Dice
scores of the foreground (black) components to measure pixel-wise similarity
between two binary images. We use Betti number error, which measures sum
of absolute errors of the zeroth and first Betti numbers, and PH distance,
which measures the bottleneck distances of persistent diagrams [13] (computed
by [25]), to measure topological similarities.

5.1 Medical Image Segmentation Masks Downsampling

We have found that visualizing the segmentation masks in medical datasets in
reduced resolutions are helpful for users to identify intricate details such as tiny
components or holes, and components that are very close-by but actually are
separated. This is because small details are now represented by bigger pixels.
Inspired by this, we tested several downsampling methods on the 542 segmen-
tation masks (resolution 512x512) of lung coronavirus in the China National
Center for Bioinformation (CNCB) dataset [7]. We show quantitative results in
terms of topological accuracy, pixel-wise similarity, and speed in Table 1. We see
that our method generated completely topologically correct results. Our results
also have the lowest PH distances to the original among all methods. Remark-
ably, our results also achieved nearly the same levels of pixel-wise similarity as
the non topology-preserving methods. The baseline dilation-based method also
produced completely topologically correct results, but the pixel-wise accuracy
metrics are much worse. Note that the computational costs of our methods are
inversely proportional to the downsampling rates - this is because the higher
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Fig. 7: Visualization of segmentation masks in downsampled resolutions. Details such
as tiny components and holes are made easier to observe with bigger pixels. We deploy
a coloring scheme to highlight the fact that non topology-preserving methods may
produce results with erased small components/holes and merged/broken components.

the downsampling the fewer the big-pixel candidates. We consider our method’s
speed to be usable in interactive applications (less than 1 seconds for factor ≥ 4
cases). Our method cannot find feasible solutions for a few cases of the masks -
at downsampling factor 2, 4, 8, and 16, there are 2, 1, 3, and 8 infeasible cases,
respectively. Infeasible cases are generally detected instantly by our IP solver
(times are included in our average time computations).

We show side-by-side qualitative comparisons in Figure 7. As a mean for visu-
alization, we show different foreground and background components in different
colors (levels of red and white/grey for foreground and background components,
respectively). This coloring scheme helps to highlight an important fact that non
topology-preserving downsampling methods may merge separate components (or
holes) into one, or break one component or hole into multiple ones.
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Table 1: Quantitative and speed comparisons of different downsampling methods on
the 542 segmentation masks in the CNCB dataset [7] to different sizes. Best and second-
best results are marked in red and blue, respectively.

512x512 to 256x256 (factor 2) 512x512 to 128x128 (factor 4)

Method ↑ IoU ↑ Dice ↓ Betti
num. error

↓ PH
distance

↓ Avg.
time (s) ↑ IoU ↑ Dice ↓ Betti

num. error
↓ PH

distance
↓ Avg.
time (s)

Bicubic 93.08% 96.34% 0.061 0.018 0.002 85.54% 91.78% 0.133 0.034 0.002
Pooling 93.41% 96.53% 0.046 0.015 0.615 85.99% 92.03% 0.144 0.046 0.160
ACN [6] 91.78% 95.61% 0.092 0.051 0.161 78.78% 87.52% 0.135 0.085 0.256
Dilation 59.71% 73.78% 0 0.026 2.348 61.69% 75.39% 0 0.028 0.544
Ours 93.10% 96.34% 0 0.005 1.976 85.12% 91.55% 0 0.012 0.819

512x512 to 64x64 (factor 8) 512x512 to 32x32 (factor 16)

Method ↑ IoU ↑ Dice ↓ Betti
num. error

↓ PH
distance

↓ Avg.
time (s) ↑ IoU ↑ Dice ↓ Betti

num. error
↓ PH

distance
↓ Avg.
time (s)

Bicubic 73.27% 83.46% 0.339 0.091 0.002 55.37% 68.28% 0.779 0.184 0.002
Pooling 73.33% 83.21% 0.404 0.115 0.046 54.35% 66.75% 0.969 0.214 0.017
ACN 60.81% 74.37% 0.356 0.150 0.335 41.00% 56.42% 0.600 0.181 0.414
Dilation 53.40% 68.07% 0 0.051 0.137 35.96% 50.49% 0 0.085 0.043
Ours 73.31% 83.55% 0 0.030 0.612 54.85% 68.92% 0 0.062 0.563

Table 2: Average times and PH distances of PH computations at different downsam-
pled resolutions, tested on the CNCB dataset.

Image sizes: 512 (original) 256 (factor-2) 128 (factor-4) 64 (factor-8) 32 (factor-16)
Avg. time (s) 0.965 2.157 0.864 0.624 0.568
PH distance - 0.005 0.012 0.030 0.062

5.2 Binary Image Operations Speed Improvement

Persistent Homology (PH) Computation Speed-up. As shown in Table 1,
the quantitative differences of persistent diagrams (i.e., PH distances) between
our downsampled results and the original are in general very small. A visual
comparison of persistent diagrams, shown in the Supplementary Materials, also
confirmed this. Therefore, one possible approach to speed up PH computation
is by substituting the original binary images by smaller, downsampled versions
computed by our method. For this approach to work, the time needed by our
method to compute a downsampled image has to be shorter than the time saved
by computing PH on a smaller (downsampled) image than the original. Our tim-
ing comparisons (shown in Table 2) using PH computation done by a commonly
used tool [25] confirmed that this is the case when downsampling factor is ≥ 4.
Shortest Path Speed-up. Dijkstra shortest path computation in the black
components is an operation that may take place if a binary image is taken as a
geographical map (e.g., black components as land masses) in game design. We
can speed up the computation by leveraging binary image downsampling meth-
ods. Our approach is as follows. Assume we have an original image, A, and an
downsampled image, B. Our goal is to calculate a shortest path from pixel p0
to pixel p1 (both black pixels) in A. We now find the corresponding big-pixels
of p0 and p1 in B, denoted as P0 and P1. This is done by: 1) identify the pixel
p’s component index. 2) Check if the big-pixel at p’s corresponding coordinate
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Table 3: In average, conducting 200 Dijkstra shortest path computations with ran-
dom start and end pixels needs about 37.67 seconds in a 512x512 binary image. We
demonstrate that doing so in downsampled images can have significant time saving
with small impact to the accuracy. We show the average shortest distance errors, num-
bers of false positives (FP) and false negatives (FN), and total time (200 computations)
using different downsampling methods at different sizes. Only using our method and
the dilation method is free of FP and FN cases, while ours has smaller distance errors.

Avg. dist. error, FP, FN| time(s) 128 (factor-4) 64 (factor-8) 32 (factor-16)
Bicubic 1.65, 0.00, 0.78| 2.49 5.05, 0.00, 2.12| 0.95 11.57, 0.00, 1.85| 0.96
Pooling 2.63, 0.00, 0.00| 2.96 6.60, 0.01, 0.26| 1.21 14.64, 0.01, 0.40| 1.17
ACN [6] 1.80, 0.01, 0.10| 3.22 5.82, 0.00, 0.29| 1.92 13.44, 0.05, 0.47| 2.00
Dilation 0.38, 0.00, 0.00| 3.66 1.00, 0.00, 0.00| 1.48 2.52, 0.00, 0.00| 1.27

Ours 0.17, 0.00, 0.00| 3.63 0.19, 0.00, 0.00| 1.34 0.47, 0.00, 0.00| 0.99

in B is belong to the same component. 3) If yes, use the big-pixel. 4) If not, find
the closest big-pixel (to big-pixel boundaries in the original resolution) with the
same component index. We then take the computed shortest path from P0 to P1
in B, scaled back to the original resolution, as the approximated shortest path
for p0 to p1. Note that in this application, using non topologically-correct down-
sampled images is unsuitable: it is because when accurate component indices
of big-pixels are unavailable, we can only find each pixel’s corresponding big-
pixels approximately by distance. This may cause originally unreachable pairs
of points (i.e., in different components) to become reachable in the downsampled
image ("false positive" cases) and originally reachable pairs of points to become
unreachable ("false negative" cases).

We conduct experiments by randomly choosing 200 pairs of starting and
ending pixels in each of the 542 binary images in the CNCB dataset. We use
Boost Graph Library [21]’s Dijkstra implementation. Note that we allow choosing
two pixels in different black components (no paths in between). We show testing
results in Table 3. Note that time saving happens because typically shortest path
computation are done many times in a binary image, and total time saving will
be greater than the time spent on doing downsampling once per image.

6 Conclusion and Future Work

In summary, our method generates downsampled binary images that are guaran-
teed to have the same RAG as the original. This is in fact a stronger guarantee
then just having the same Betti numbers - as two 2D graphs with the same RAG
must have the same Betti numbers, but the inverse is not necessarily true (e.g.,
same number of holes but appear in different connected components).

A main limitation is to handle binary images with very thin structures such as
road networks and blood vessels. Currently, such structures may not be satisfac-
torily preserved because our objective function design preserves black and white
components with the same preference. Therefore, an interesting research direc-
tion may be to design alternative cost functions to handle such binary images.
Codes are available at: github.com/pengchihan/BinaryImageDownsampling.
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