
Classification Matters: Improving VAD with
Class-Specific Attention
—Supplementary Material—

Jinsung Lee1
∗

, Taeoh Kim2 , Inwoong Lee2 , Minho Shim2 ,
Dongyoon Wee2 , Minsu Cho1 , and Suha Kwak1

1 Pohang University of Science and Technology (POSTECH), South Korea
2 NAVER Cloud, South Korea

https://jinsingsangsung.github.io/ClassificationMatters/

We present omitted experiments and details in this supplementary material
as below:

– Sec. A: Analyzing Previous Models’ Attention Weight Contributions to
Classification Logits

– Sec. B: Implementation for Single-label Datasets
– Sec. C: Detailed Logic of the 3D Deformable Encoder
– Sec. D: Detailed Logic of Localizing Decoder Layer (LDL)
– Sec. E: Detailed Logic of Classifying Decoder Layer (CDL)
– Sec. F: Details of the Hungarian Matching Process
– Sec. G: Comparison with Latest VAD Models
– Sec. H: Experimental Setup
– Sec. I: Additional Ablation Experiments
– Sec. J: Additional Qualitative Results
– Sec. K: Class-wise mAP Comparison

A Analyzing Previous Models’ Attention Weight
Contributions to Classification Logits

To further investigate the difference between prior transformer-based methods [2,
16] and our model, we analyze how attention weights of the previous models affect
the final classification logits. In summary, we find that prior methods allow their
each class logit to have comparably subtle differences within different classes with
respect to the acquired attention weights, and thus, enforce their transformer
outputs to include more commonly shared semantics across distinct classes.

In Fig. A1, we present how previous methods construct their classification
features. The notations defined in Sec. 4 of the main paper are adaptively reused
for a clearer comparison to our method: we denote the actor feature as f ∈ RNa×D

and the context feature as V ∈ RTHW×D. TubeR [16] constructs its classification
feature with a cross-attention layer whose input query is f and input key/value
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(a) Classification module of TubeR [16]
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(b) Classification module of EVAD [2]

Fig.A1: Two previous approaches for action classification using transformer.

are V. Then, the i-th actor’s classification attention map A is constructed as
follows:

Ai ∝ softmax
((

fTi WQ

)
(VWK)

T
)
, (A1)

where WQ and WK are D by D projection matrices of the transformer. Since
the same attention map is shared across to infer different classes, the final linear
layer, which we will denote its parameter as W cls ∈ RNc×D, needs to be involved
to further analyze the impact of attention weights to the classification logits. For
brevity, we disregard the bias term in this discussion. Let c-th class logit of the
i-th actor be ℓ(i,c), then it is derived from Eq. A1 as:

ℓ(i,c) ∝W cls
c

(∑
m

(
A(i,m) ⊙VmWV

))

=
∑
d

(
W cls

(c,d)

∑
m

ν(i,m,d)

)
,

(A2)

where m ∈ [1, THW ], d ∈ [1, D],WV is a projection matrix, and ν(i,m,d) is a
scalar that is conditioned to actor, region and channel dimension. As the class
index c varies in Eq. A2, the only relevant factor that influences the impact of
the attention weights on classification logits is W cls

(c,d), which is merely a scalar
value that varies across different classes. Although slightly different, such impact
is similarly derived in the case of EVAD [2]. Therefore, the weight responsible for
distinguishing distinct classes is solely dependent on the elements of W cls. Given
the limited variation that can be generated within classes at the final layer, the
transformer weights are trained to alleviate the burden of W cls by capturing the
commonly shared semantics (i.e., actors) across different classes, so that each
action class can be expressed with a unique combination of such semantics.

On the other hand, our model involves class-specificity during the generation
of attention weights, and thus, the distinction between action classes no longer
depends on the final linear layer. This effectively enhances the expressiveness of
the classification feature, eventually aiding in solving VAD, which particularly
requires the identification of subtle differences between individual action classes.

B Implementation for single-label datasets

The description of Sec. 4 of the main paper assumes that the given dataset has
a multi-label property, since it covers more general scenarios that include the
cases of single-label datasets. Still, we slightly change the model’s implementation
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to inject this single-label prior. To be specific, since the ground-truth label
{Ci ∈ {0, 1}T×Nc | i ∈ [1, NX ]} is a one-hot vector for each timestep, the model’s
classification output {Ĉi ∈ [0, 1]T×Nc | i ∈ [1, NX ]} is under the constraint of∑Nc

c=1 Ĉi[t, c] = 1 ∀i ∈ [1, NX ],∀t ∈ [1, T ]. Thus, the output q̃ ∈ RNc×1 (after
mean pooling) undergoes through a softmax layer instead of the sigmoid layer.

Furthermore, classification outputs that are not matched with GT labels, i.e.,
Ĉω(i)∀i > NX , are trained to output zero probabilities for all classes. However,
it is not possible if the output is processed through the softmax layer. Thus, we
additionally involve the confidence score p̂i ∈ [0, 1] of each actor candidate to
refine the classification logits, so that the unmatched outputs can return zero
vector if necessary.

C Detailed logic of 3D Deformable Transformer Encoder

Due to the heavy nature of multi-scale spatio-temporal feature maps, we adopt
ideas from Deformable DETR [17] for an efficient encoding process. We extend
the idea to incorporate temporal dynamics, since the original approach only
allows the information exchange within a single frame. Note that every v ∈
{vl(t, h, w)|(t, h, w) ∈ [1, Tl]× [1, Hl]× [1,Wl]}Ll=1 ⊂ RD is regarded as the query
and goes through the identical encoding process, where vl(t, h, w) indicates the
1D feature located in the (t, h, w)-th position in vl. Let q index a query element
of the encoder where its normalized coordinates and its corresponding query
feature are denoted by p̂q ∈ [0, 1]3 and vq ∈ RD, respectively. Given V = {vl}Ll=1,
the 3D multi-scale deformable encoder module is applied for each vq as

3DMSDeformableEncoder
(
vq, p̂q, {vl}Ll=1

)
=

M∑
m=1

Wm

[ L∑
l=1

K∑
k=1

Amlqk ·W ′
mvl

(
ϕl(p̂q) +∆pmlqk

)]
,

(A3)

where m indexes the attention head, l indexes the input feature level, and k
indexes the sampling point. Similar to the previous work, W ′

m ∈ R(D/M)×D and
Wm ∈ R(D/M)×D are learnable weights that weigh across multiple attention
heads. Also, the offset ∆pmlqk ∈ R3 and the weight Amlqk ∈ R, which is dedicated
to each k-th sampling point at the l-th level of the feature map for the q-th
query’s m-th attention head, are obtained by applying linear projection layers to
zq. Note that ϕl(·) re-scales the coordinates to the l-th level input feature map,
and

∑K
k=1 Amlqk = 1.

D Detailed logic of Localizing Decoder Layer (LDL)

In this section, we provide details of Localizing Decoder Layer (LDL), of which
we omit the details in the main paper. Fig. A2 illustrates the transformation
process of LDL. Let the i-th actor box and zero-initialized actor embedding
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Fig.A2: Structure of Localizing Decoder Layer (LDL)

be Ai = (xi, yi, wi, hi) and AEi, respectively, where i ∈ [1, Na] and Na is the
number of actor candidates that are each assigned to capture a potential actor
that appears in the video. AEi ∈ RT×D is processed in a temporally parallel
manner to output prediction per frame. Hence, for brevity, we omit the time
index t and focus on how an individual frame is processed within the decoder
layer.

AE initially passes through a self-attention layer to ensure that each i-th
actor embedding represents different actors. The key and value are first embedded
with positional information provided by the actor box A, and then the AE is
updated with self-attention. Before concatenating the actor boxes to the updated
AE, the boxes undergo modulation [6] to incorporate more precise position and
size information of actors. This utilizes AE (before the self-attention), which is
trained to contain the actor’s information. To be specific, the box modulation
BM is applied to each i-th element of A as follows:

Pi = BM
([

PE(xi),PE(yi)
]
;AEi, Ai

)
=
[
PE(xi)

wi,ref

wi
,PE(yi)

hi,ref

hi

]
,

(A4)

where (wi,ref, hi,ref) is obtained by applying a fully connected layer to AEi, and
PE: R→ RD/2 is a sinusoidal positional encoding.

Note that in the cross-attention layer, the role of the modulated actor box
P is to guide the actor embedding AE to gather information relevant to the



Classification Matters: Improving VAD with Class-Specific Attention 5

i-th instance from the encoded feature maps Venc. Accordingly, we compose
actor-specific context features x ∈ RNa×T×H×W×D, where xi is a feature map
dedicated to the i-th actor. Specifically, we apply the weighted summation on
Venc while conditioning the weights to AEi:

xi =

L∑
l=1

ωl
iv

l
enc ∈ RT×H×W×D, (A5)

where (ω1
i , ω

2
i , . . . , ω

L
i ) = MLP(AEi). Constructing distinct values that are spe-

cific to each actor enhances actor-specificity, helping the model to generate
different features for each actor. Afterwards, the cross-attention integrates the
features composed so far as follows:

AEi ← f loc
CA

(
q =

[
AEi, Pi

]
, k =

[
xi, PV

]
, v = xi

)
, (A6)

where Pi is from Eq. A4 and PV ∈ RT×H×W×D is a 3D positional embedding of
the video feature maps V.

Before the output AE undergoes a feedforward network, it is passed to the
CDL, and we denote this vector f as an actor feature. Afterwards, AE contributes
to refine the anchor box A as follows:

A← σ(FFN(AE) + σ−1(A)), (A7)

where FFN(·), σ : R → [0, 1] and σ−1 : [0, 1] → R are a feedforward network,
sigmoid function, and its inverse that normalizes and unnormalizes the input,
respectively.

E Details of the Classifying Decoder Layer (CDL)

We provide details of Classifying Decoder Layer (CDL), describing its miscel-
laneous operations that are omitted in the main paper. Fig. A3 describes the
process of CDL. For brevity, we explain how CDL operates to infer the i-th actor’s
action class (i ∈ [1, Na]). Classifying decoder layer (CDL) takes as inputs the
actor feature fi ∈ RD, the actor positional query Pi ∈ RD, and the actor-specific
context features xi ∈ RT×H×W×D, that are generated in LDL. It additionally
takes as its input the learnable embeddings q ∈ RNc×D, which we denote as class
queries, to embed class-specific information. To elaborate, CDL aims to construct
a classification feature q̃ ∈ RNc×D for each i-th actor, where q̃c ∈ RD implies
the feature used to detect c-th action performed by the i-th actor.

First, the actor feature passes through a standard feedforward network to be
refined for classification. However, it has been noted that optimization of the
classification feature can sometimes interfere with localization [9, 14]. Thus, the
gradient flow is halted before this feature enters the classifying decoder layer.

We begin with creating features that incorporate the interaction between the
i-th actor and the actor-specific context feature xi. To this end, we spatially
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Fig.A3: Structure of Classifying Decoder Layer (CDL)

duplicate the actor feature fi to the spatial extent of xi and take the sum of
these two features to obtain (f + x)i ∈ RH×W×D. (f + x)i is processed through
multiple convolutional layers to embed local relationships between features in
(f + x)i. Let us denote the flattened resulting tensor zi as follows:

zi = Conv2D
(
(f + x)i

)
∈ RHW×D. (A8)

On the other hand, class queries are trained to encode class-specific information
as the layers proceed. Also, the self-attention mechanism between these queries
enables them to exchange information among different classes and obtain enriched
class-specific features that are aware of the occurrence of other classes. To be
specific, the class queries q are passed to the self-attention layer f cls

SA(q, k, v),
serving themselves as the query, key, and value. The output class queries q are
then joined with zq and xq to construct a triplet of inputs for cross-attention
layer f cls

CA(q, k, v), in which the class queries collect information about each class
from the features that represent the video context.

In the following cross-attention layer, q and zq act as the query and key,
respectively. They are trained so that qc and zi[m] (m ∈ [1, HW ]) becomes
semantically similar when the location m is relevant to the c-th action class.
Specifically, the resulting attention map Ai ∈ RHW×Nc signifies informative
regions for each class and is multiplied with the value xi to output class-specific
features q̃ ∈ RNc×D. However, we have discovered the c-th class query qc often
activates region where the c-th actions happen, but not the ones necessarily
performed by the i-th actor. Since the c-th class query learns to activate the
region Ai[m] whenever the region m is relevant to the c-th action, it occasionally
confuses to which actor’s action it should react. To handle this actor confusion
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problem, we concatenated the global positional embedding PV and the modulated
actor positional queries Pi to key and query, respectively. Consequently, the
resulting cross-attention f cls

CA happens as follows:

q̃ ← f cls
CA

(
q =

[
q, Pi

]
, k =

[
zi, PV

]
, v = xi

)
. (A9)

As the LDL’s output feature of Eq. A6 is subject to localization, the spatial
parts PV and Pi are trained to obtain the positional information of the i-th actor.
Hence, concatenating these positional information provides subtle cues about the
actor’s position to class queries and adds actor-specificity to the output q̃.

The output q̃ ∈ RNc×D of the cross-attention passes the ordinary feedforward
network and is subsequently passed to the next layer to serve as class queries
again. To derive the probability for each class, q̃ from the last layer is mean
pooled across the channel dimension and then processed through a sigmoid layer.
Thus, the final output q̃ ∈ [0, 1]Nc becomes the classification score for the i-th
actor.

F Details of the Hungarian matching process

For the Hungarian matching between the i-th element Yi =
(
Bi,Ci

)
in the

padded ground-truth labels and the j-th element Ŷj =
(
B̂j , Ĉj

)
in the model

predictions, we consider three matching costs, Hbox
i,j , Hgiou

i,j , and Hclass
i,j , which are

defined as follows:

Hbox
i,j = ∥Bi − B̂j∥1,

HGIoU
i,j = −GIoU(Bi, B̂j

)
,

Hclass
i,j = BCELoss(Ci, Ĉj),

(A10)

where GIoU(·, ·) is a generalized IoU [8] between boxes and BCELoss(·, ·) is a
binary cross entropy loss between two multi-hot vectors. Then, the Hungarian al-
gorithm aims to find the optimal assignment ω̂ = argminω∈ΩNa

∑Na

i=1

(
ηboxHbox

i,ω(i)

+ ηGIoUHGIoU
i,ω(i) +ηclassHclass

i,ω(i)

)
, where ηbox, ηbox, and ηbox are coefficients that bal-

ance the matching cost for each term. In the case of AVA, we figure that setting
Hclass

i,j as binary cross entropy loss leads to a slow convergence, which is potentially
due to its multi-label property. Thus, we set Hclass

i,j as −p̂j , since the confidence p̂j

is learned to have a higher value if j-th element is matched with a ground-truth
label. Note that such matching method inherits the way from TubeR [16].

G Comparison with latest VAD models

We provide a comparison analysis between ours and latest VAD models, Tu-
beR [16], STMixer [13], and EVAD [2].
Ours vs TubeR. TubeR is similar to ours in that it is established on DETR [1]
architecture along with tube-shaped queries. Furthermore, it outputs multiple
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Table A1: Comparison with other models [2, 16] in terms of module components. ‡ is
to indicate that its weight is pretrained on COCO [5]. CSN-152 [11] backbone is used.

Method Encoder Decoder mAP
- Transformer DETR [1] 28.6
- Transformer LDL 29.1
- Transformer LDL + CDL 31.4
TubeR [16] Transformer‡ + LSTR Decoder [15] DETR‡ + Transformer 31.1
EVAD [2] Transformer + KTP [2] FPN [4] + Transformer N/A
- 3D Deformable Transformer LDL 31.3
STMixer [13] Adaptive Feature Sampling [13] Adaptive Feature Mixing [13] 32.8
Ours 3D Deformable Transformer LDL + CDL 33.5

frames with a single feed-forward as well, showing greater efficiency compared
to other methods. However, the encoder stage of TubeR consumes substantial
memory since it performs self-attention over spatio-temporal features.
Ours vs STMixer. Our model and STMixer are similar in that they both utilize
multi-scale feature maps to capture fine details of an actor’s action. While ours
has the deformable encoding process (Sec. C), STMixer does not explicitly have a
distinguishable encoding module. However, it has an Adaptive Feature Sampling
module, which resembles the deformable encoding process: it also determines
which feature points to sample from the multi-scale feature maps with learnable
parameters.
Ours vs EVAD. EVAD, in contrast, does not employ multi-scale feature maps.
Instead, EVAD takes advantage of encoding the video features in a dense manner:
although it prunes the features and makes the self-attention process less heavy,
EVAD still exhaustively computes self-similarities between each feature vector
and obtains richer encoded features. In addition, EVAD uses the final localization
output to obtain classification features, which differs from ours in which the
localization and classification features evolve together in the decoder module.
Comparison in a module-level. We provide a module-level comparison
Table A1 for a thorough comparison with ours and previous methods. Details for
each model are as follows:

– TubeR [16]
• uses traditional transformer encoder, but also utilizes Long Short-Term

Transformer [15] for temporal aggregation.
• employs DETR [1] weights pretrained on COCO [5].

– STMixer [13]
• has no explicit encoding module, but based on the roles of their modules,

we categorize Adaptive Feature Sampling and Adaptive Feature Mixing
modules as its encoder and decoder, respectively.

• introduces Adaptive Feature Sampling, which resembles the mechanism
of Deformable-DETR [17] in that features are encoded by sampling from
the feature map.
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Table A2: Comparison with other models [2,16] in terms of computational complexity.

Method Encoder Decoder Na K
TubeR [16] O((HW )2) O((HW )2 +HW ×Na) 15 -
EVAD [2] O((ρ× THW )2) O((ρ3 × THW +Na)

2) 100 -
STMixer [13] O(Na ×K) O(K ×D +Na ×D) 100 32
Ours O(HW ×K) O(HW ×Na +Na ×Nc) 15 4

• decodes the sampled feature with Adaptive Feature Mixing, where the
queries generate parameters of the modules through which they pass,
similar to Sparse R-CNN [10].

– EVAD [2]
• tokenizes video frames and prunes the tokens inside its encoder module.

The tokens are mainly dropped besides the keyframe of the clip, hence it
is named Keyframe-centric Token Pruning (KTP).

• employs Feature Pyramid Network [4] for its localization module.
• does not report its performance on CSN-152, so it is marked ‘N/A’.

Efficiency analysis. We present computational complexities of the latest models
in Table A2. The major bottleneck of TubeR [16] and EVAD [2] comes from
exhaustive self-attention between HW feature vectors. Specifically, regarding
that the flattened spatial size HW , which typically falls in between 300 and
400, is larger than other variables such as Na or K, this operation creates a
significant computational burden on both encoder and decoder architecture. On
the other hand, STMixer [13] and ours resolve such computational burden of the
encoder by sparsely collecting features from multi-level feature maps. However,
STMixer generates adaptive parameters in its decoder architecture, and it results
in complexities involving the channel dimension D, which typically is set to 256.
Ours does not involve D, but still performs dense cross-attention using HW
feature vectors. Yet, ours acquires greater efficiency by occupying much smaller
number of actor candidates Na.

In fact, the reason for our model being able to surpass other methods with
comparably smaller Na is benefited from the utilization of class queries. EVAD
and STMixer extensively increase their number of actor candidates to obtain a
pool of sufficiently diverse classification maps, which eventually improves their
performance since such diversification increases a chance of capturing overlooked
context needed to classify the action of the target actor. It is a crucial strategy
for these models: because they expect the classification attention map for each
actor to capture shared semantics of every action class, clues to identify some
action classes (e.g ., clues that are distant from the actor) are easily missed when
Na is small. In contrast, our model can generate more precise attention maps for
each actor and does not need to rely on large number of actor candidates. We
utilize this saved memory to enable our model to process multiple frames with a
single feedforward, maximizing the efficiency created from using class queries.
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Table A3: Network configurations for each dataset.

Hyper- Description AVA JHMDB UCFparameter

W0
resized resolution 256 288 256(length of the shorter side)

T0 clip length 32 or 16 40 32
Na number of actor candidates 15 5 15
Nenc number of encoder layers 6 3 3
Ndec number of decoder layers 6 3 3

Nc
number of class queries 80 21 24(number of classes)

H Experimental setup

Network configurations. We set the channel dimension D to 256, number of
feature levels L to 4, number of sampling points in the encoder K to 8. Otherwise,
the model hyperparameters differ across three datasets, so we specify them in
Table A3.

Training details. We use AdamW [7] optimizer and linearly warm up the
learning rate in earlier epochs. The step scheduler is applied, so the learning rate
decays by 0.1 every step milestone. Following prior work [2,13], standard data
augmentation techniques such as color jittering, random horizontal flipping, and
PCA jittering [3] are applied. We present further training configurations in A4.

Additionally, we have observed that the model struggles to converge from
scratch at once. Hence, we follow the training practice introduced in TubeR [16].
TubeR utilizes DETR [1] weights pretrained on COCO [5] for its transformer
module and fine-tune these weights on AVA before the actual training. The fine-
tuned transformer weights are then used for the final training: the transformer
module of the model is trained from the pretrained weights, while the remaining
modules are trained from scratch. Similarly, we first train the model from scratch,
possibly on smaller backbones for ease of training, and then use the transformer
weights acquired from the first stage for the final training.

I Additional Ablation Experiments

Effectiveness of box modulation. We adopt the box modulator function [6]
to effectively utilize the positional prior of the actor box. Specifically, it enhances
the modulation process by involving the height and width information of the
actor box. Hence, the actor positional queries can also be applied without the
box modulator, thereby encoding the positional information with positional
coordinates without its height and width prior. It turns out that such modulation



Classification Matters: Improving VAD with Class-Specific Attention 11

Table A4: Training configurations for each dataset.

Training configurations AVA JHMDB UCF

learning rate 1e-4 2e-4 2e-4
learning rate milestone [8,11] [50] [12]

warmup start learning rate 1e-5 2e-6 2e-6
weight decay 1e-4 2e-4 2e-4

epochs 12 100 14
warmup epochs 3 10 3

loss coefficient for class (λclass) 10 4 4
loss coefficient for box (λbox) 5 5 5

loss coefficient for GIoU (λgiou) 2 2 2
loss coefficient for confidence (λconf) 1 6 3

Table A5: Ablation experiments on utilizing
the box modulator [6].

Method AVA UCF
w/ modulated actor positional queries 33.5 85.9
w/ ordinary actor positional queries 32.7 84.8

Table A6: The effect of self-
attention between class queries.

Method AVA UCF
w/ class query SA 33.5 85.9
w/o class query SA 31.6 83.2

open  
(e.g. a window, 

a door)

dress/put on  
clothing

Fig.A4: Failure cases are marked with red boundaries.

improves the performance by 0.8% in AVA and by 0.2% in UCF, as demonstrated
in Table A5.

Effectiveness of class query self-attention. We allow class queries to attend
to each other before they enter the transformer module. The motivation behind
this process is to let the model consider the relationship between different classes.
For example, while the class ‘stand’ and ‘sit’ can never co-occur at the same
time, ‘eat’ and ‘carry/hold (an object)’ frequently happen simultaneously. The
effect of the self-attention between the class queries is shown in Table A6.
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give/serve drink take a photo bend/bow

play musical instrument play musical instrument play with pets push

hand shake listen to hand shake talk to

smoke carry/hold (an object) talk to (e.g., self, a person, a group) sit

Fig.A5: Classification attention map on AVA.

J More qualitative results

Failure cases. We observe that our model occasionally uses spurious biases,
especially in cases where a class covers various scenarios: e.g ., the class ‘open’ is
labeled not only when an actor opens an ordinary door but also a car door or a
book. The same happens for ‘dress/put on clothing’, in which there are many
ways to dress up various clothing (Fig. A4).
Classification attention map on other datasets. Fig. A5, A6, and A7 illus-
trate the classification attention map visualization results from AVA, JHMDB51-
21, and UCF101-24, respectively. Our model concentrates on areas that are crucial
for classification and they are not necessarily on the actor’s body. For example,
the model sees an animal (Fig. A5: play with pets, Fig. A7: walking with dog) or
an object (Fig. A5: push, Fig. A6: pour, Fig. A7: pole vault, trampoline jumping,
biking) which is an essential clue to understand the action happening in the video
clip.

K Class-wise mAP comparison

We provide the comparison chart (Fig. A8) by the class labels in AVA. As the
comparison group, we choose EVAD [2] and STMixer [13] trained on ViT-B [12].
Out of total 60 class labels, our model demonstrates the best performance on
33 labels, while EVAD and STMixer show their superiorities on 24 and 3 labels,
respectively.
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walk kick ball shoot gun clap pull up

swing baseball brush hair catchpour wave

Fig.A6: Classification attention map on JHMDB51-21.

fencing fencing soccer juggling walking with dog biking

rope climbing diving skijetpole vault trampoline jumping

Fig.A7: Classification attention map for UCF101-24.
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Fig. A8: Class-wise comparison among latest VAD models, STMixer [13] and EVAD [2].
Red bars are mean value that aggregates for each category type: pose, person to person,
and person to object.
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