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Abstract. Video action detection (VAD) aims to detect actors and
classify their actions in a video. We figure that VAD suffers more from
classification rather than localization of actors. Hence, we analyze how
prevailing methods form features for classification and find that they
prioritize actor regions, yet often overlooking the essential contextual
information necessary for accurate classification. Accordingly, we propose
to reduce the bias toward actor and encourage paying attention to the
context that is relevant to each action class. By assigning a class-dedicated
query to each action class, our model can dynamically determine where
to focus for effective classification. The proposed model demonstrates
superior performance on three challenging benchmarks with significantly
fewer parameters and less computation.

Keywords: Video action detection · Video transformer

1 Introduction

Video action detection (VAD) is the task of identifying actors and categorizing
their activities in a video. It has recently attracted increasing attention due
to its broad range of applications, such as surveillance video analysis or sports
activity recognition. Since a video is a sequence of images, it is not surprising
that solutions to video understanding tasks, including VAD, have been developed
largely based on image recognition models. In particular, since VAD resembles
object detection (OD) in an image, a large number of existing VAD models
consider the task as an extension of OD and follow common OD pipelines
accordingly [3, 5, 14,22,24,26,29,30,39,41,43].

Unfortunately, such straightforward extensions of OD are often not optimal for
VAD due to the distinct nature of VAD from OD: all instances conducting actions
in VAD are humans. Action localization in VAD focuses on identifying human-
shaped objects only, making it considerably simpler than localizing arbitrary
objects in OD [8]. In contrast, the classification of actions in VAD is significantly
more difficult than that of OD. Unlike object classification in OD, which usually
∗Work done while doing an internship at NAVER Cloud.
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class threshold 0.7

step Jinsung TubeR STMixer EVAD

Precision / iou threshold 0.5 0.3709 0.3327 0.3894 0.4042

Precision / iou threshold 0.6 0.4043 0.3386 0.3610 0.3951

Precision / iou threshold 0.7 0.3040 0.2972 0.3124 0.3221

Precision / iou threshold 0.8 0.1810 0.1676 0.2150 0.2247

Recall / iou threshold 0.5 0.1405 0.1720 0.1940 0.1646

Recall / iou threshold 0.6 0.1646 0.1790 0.1965 0.1759

Recall / iou threshold 0.7 0.1297 0.1637 0.1850 0.1582

Recall / iou threshold 0.8 0.0090 0.1187 0.1432 0.1278

Accuracy / iou threshold 0.5 0.9832 0.9853 0.9868 0.9856

Accuracy / iou threshold 0.6 0.9839 0.9859 0.9873 0.9862

Accuracy / iou threshold 0.7 0.9850 0.9867 0.9881 0.9870

Accuracy / iou threshold 0.8 0.9848 0.9866 0.9888 0.9869

average g-IoU / iou threshold 0.5 0.8755 0.8359 0.8952 0.6635

average g-IoU / iou threshold 0.6 0.8884 0.8575 0.9058 0.7038

average g-IoU / iou threshold 0.7 0.9074 0.8820 0.9202 0.7496

average g-IoU / iou threshold 0.8 0.9139 0.8859 0.9124 0.8226

AP per class

label type Class Jinsung (CSN-152) TubeR Jinsung (ViT-B) STMixer EVAD

OVERALL 33.48 27.70 32.90 32.86 32.43

pose bend/bow (at the waist) 50.03 44.85 50.77 50.24 50.18

pose crouch/kneel 35.64 28.21 27.55 34.02 32.96

pose dance 55.66 46.73 55.86 65.17 61.98

pose fall down 19.50 11.82 23.44 17.92 18.02

pose get up 33.65 25.34 40.07 36.91 36.92

pose jump/leap 15.33 6.08 20.75 23.40 13.78

pose lie/sleep 59.00 53.38 60.39 51.43 52.02

pose martial art 49.11 34.55 50.42 51.20 51.11

pose run/jog 58.91 38.68 61.36 63.66 64.37

pose sit 83.33 79.19 83.82 80.59 80.01

pose stand 84.58 79.53 86.23 85.45 84.52

pose swim 68.57 18.99 61.29 70.51 55.30

pose walk 78.56 62.77 80.63 81.09 80.20

pose 53.22 40.78 54.04 54.74 52.41

p2p fight/hit (a person) 54.50 46.47 54.78 51.98 50.90

p2p give/serve (an object) to (a person) 18.86 14.30 16.39 17.86 15.20

p2p grab (a person) 12.07 10.81 10.11 11.22 11.41

p2p hand clap 44.52 34.28 44.29 38.41 39.86

p2p hand shake 26.91 16.02 20.42 7.44 19.52

p2p hand wave 9.71 6.14 4.33 3.29 8.79

p2p hug (a person) 31.16 27.72 30.33 26.52 25.22

p2p kiss (a person) 49.41 46.74 42.13 41.63 39.14

p2p lift (a person) 13.36 5.39 8.82 4.67 8.77

p2p listen to (a person) 71.39 68.03 71.08 71.10 71.86

p2p push (another person) 4.54 4.82 3.29 3.24 4.29

p2p sing to (e.g., self, a person, a group) 35.49 29.39 30.38 40.79 37.05

p2p take (an object) from (a person) 12.81 9.28 10.24 11.88 11.23

p2p talk to (e.g., self, a person, a group) 83.92 82.22 84.36 83.82 83.56

p2p watch (a person) 71.81 64.91 72.31 72.61 73.68

p2p 36.03 31.10 33.55 32.43 33.37

p2o answer phone 78.99 74.32 78.31 81.38 80.02

p2o carry/hold (an object) 62.23 54.50 61.72 64.01 63.47

p2o climb (e.g., a mountain) 9.81 4.15 16.62 12.44 18.65

p2o close (e.g., a door, a box) 19.03 14.51 22.92 24.52 23.23

p2o cut 18.24 22.40 17.00 6.14 4.50

p2o dress/put on clothing 12.87 4.04 10.82 10.01 12.68

p2o drink 33.23 30.15 31.15 34.76 34.61

p2o drive (e.g., a car, a truck) 63.83 54.18 64.94 72.10 70.97

p2o eat 38.81 34.92 42.32 40.33 40.24

p2o enter 10.00 6.56 10.63 5.88 5.91

p2o hit (an object) 8.18 12.60 7.57 10.03 9.34

p2o lift/pick up 3.96 2.50 7.00 5.86 6.13

p2o listen (e.g., to music) 2.91 1.72 5.03 4.82 4.53

p2o open (e.g., a window, a car door) 29.94 23.46 31.46 30.78 34.78

p2o play musical instrument 65.12 61.60 68.08 65.61 65.45

p2o point to (an obect) 2.05 0.39 0.30 0.41 1.70

p2o pull (an object) 6.03 1.01 3.97 2.64 4.87

p2o push (an object) 7.39 1.61 9.97 9.49 10.00

p2o put down 6.89 2.90 7.25 4.65 4.14

p2o read 37.51 3.33 36.67 38.55 37.40

p2o ride (e.g., a bike, a car, a horse) 55.80 35.94 53.02 57.43 52.46

p2o sail boat 33.42 18.35 25.07 22.19 21.20

p2o shoot 19.37 18.35 18.79 24.71 23.53

p2o smoke 28.49 28.49 28.82 31.10 31.50

p2o take a photo 4.25 3.39 2.96 5.70 4.63

p2o text on/look at a cellphone 16.89 10.09 6.73 13.99 11.38

p2o throw 6.84 2.73 4.58 4.87 3.50

p2o touch (an object) 34.08 31.80 36.01 36.68 39.52

p2o turn (e.g., a screwdriver) 8.81 1.82 11.94 1.85 3.04

p2o watch (e.g., a TV) 24.34 27.83 27.36 17.28 15.89

p2o work on a computer 5.24 31.10 7.74 21.44 12.23

p2o write 22.06 14.78 11.54 11.80 12.32

p2o 24.27 19.86 24.01 24.17 23.87
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Fig. 1: Detection performance changes of the state-of-the-art methods (i.e., TubeR [43],
EVAD [2], STMixer [42]) on AVA [8] when ground-truth boxes or class labels are given.

depends more on general appearances of objects, action classification in VAD
requires identifying fine-grained details in both appearance and motion since
different action classes are all conducted by humans, and thus, their general
appearances are often not distinguishable clearly. We empirically verify the crucial
role of classification in improving VAD performance. As shown in Fig. 1, for all
the three latest VAD models we tested, providing ground-truth (GT) class labels
consistently yields more substantial improvement than providing GT bounding
boxes. This result implies that the room for improvement in VAD is mainly
occupied by classification rather than localization. However, only a few have paid
attention to such inherent challenge in classification for VAD [3,8, 30].

In this work, we propose a new model architecture that aims to improve
the classification performance for VAD. Our model first localizes each actor by
attending features globally and then seeks local regions that are informative for
identifying its action class. This procedure enables our model to actively focus
on local regions that provide greater assistance in classification, such as fine
details (e.g ., a cigarette for the ‘smoke’ action class) or other people interacting
with the actor (e.g ., a speaker for the ‘listen to’ action class). To this end, we
introduce class queries, each of which separately holds essential information about
each action class. These class queries learn to identify if a specific action class
takes place within the scene. Specifically, we first construct a feature map that
encompasses the interaction between each actor and the global context. Then,
each class query is learned to be highly similar with features on a particular
region of the feature map relevant to the action class, so that it extracts rich
and fine-grained features that are dedicated to each actor and each class. These
features help the model identify details at a granular level and context necessary
for action classification, while also offering interpretable attention maps for each
class that support the model’s decision-making concurrently. The consequent
attention map illustrates the model’s ability to capture details and interactions
relevant to the action happening in the scene, and the model seeks over regions
that are not bounded by the actor box. We additionally introduce components
that notably enhance the utilization of class queries, aiding in capturing details
and ensuring specificity to individual actors.

Our model is evaluated on three conventional benchmarks in the field: AVA [8],
JHMDB51-21 [11], and UCF101-24 [28]. Among the models with comparable
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backbones, our model shows superior performance while being more efficient.
Current best performing models [2,42] predict an instance per frame given a clip
of multiple frames, and thus adopt the sliding window strategy to localize an actor
in a whole video. In contrast, our model constructs the entire spatio-temporal
tube of an actor through a single feed-forward pass, which better aligns with the
objective of VAD and also leads to higher computational efficiency, in particular
when dealing with longer video clips.

In this paper, we present four key contributions.

– We analyze how existing methods in VAD process features for classification,
and perform a detailed investigation into their problematic behaviors.

– We introduce a novel classification module, Classifying Decoder Layer, that
effectively combines context, actor, and class queries to construct classification
features for each action class.

– We provide additional components, 3D Deformable Transformer Encoder
and Localizing Decoder Layer, that augment our classification module and
significantly boost the model’s performance.

– Our model outperforms existing methods on challenging benchmarks with
greater efficiency.

2 Related work

Video action detection. Video action detection involves analyzing a video
clip and generating actor-specific spatio-temporal tubes while simultaneously
predicting the actions being performed by the actors. Earlier studies [14,24,38] try
to combine spatial and temporal information to obtain a good actor representation
and pass it directly to box regression and classification layers. As advancements
in object detection techniques continue, it has become common to employ 2D
person detectors to extract actors from the scene and utilize these features for
classification [5,6,32,35]. On the other side, a few studies [43] attempt to capture
spatio-temporal tubes instead of detecting actors frame-by-frame. Our approach
adopts the tube-based process not only to embrace the temporal property of the
task but also to enhance the computational efficiency.
Transformer-based architectures. In the field of object detection, DETR [1]
has suggested a framework that elevates cross-attention between queries and
image features to capture both object location and its class effectively. With
its notable performance and convenience, the advent of DETR has sparked the
emergence of various adaptations [16,21,37,44]. Among all, DAB-DETR [20] is
the most relevant research to our work, as it introduces a modulating function
that adjusts the positional information of queries. This approach enhances the
cross-attention mechanism, allowing for a more comprehensive representation
that encompasses the width and height of the anchor box prior. Our method
utilizes this positional prior differently by offering class queries the clues for
specifying actor, providing subtle guidance about which instance a class query
should be referring to.
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listen to 
(a person)

TubeR 
[43]

talk to 
(e.g., self, a person, a group)

Ours

carry/hold 
(an object)

answer phone

EVAD 
[2]

listen 
(e.g., to music)

Fig. 2: Sample detection results and classification attention maps of the previous
transformer-based model, TubeR [43], EVAD [2], and our model. Each attention map
signifies the regions where the model attends to classify the action of the actor marked
in the bounding box of the same color. Since our model creates an attention map for
each class, we mark the corresponding label under the map. Best viewed in color.

Methods that tackle the classification problem. To achieve better action
classification score, extensive research has been conducted on methods that
consistently explore the relationship between the actor and the contextual infor-
mation. In previous studies, this context has been categorized into two types:
actor-actor relationship and actor-context relationship, and the methods used to
establish these relationships often exhibit slight variations. In order to obtain the
relationship between the two, either detected instances and the global features
are concatenated [22, 30, 41] or fed to a transformer module [2, 10, 12, 31, 43].
While the transformer module is an advanced design to take instances’ relations
into account, previous methods based on transformers suffer from the problem
where the classification process attends to the regions that are prone to becoming
biased toward near the actor regions. In the subsequent section, we delve into a
detailed discussion of this issue describing its reason and implications.

3 Background

Following the popular OD models [1,16,44], it has become a de-facto standard in
VAD to employ the transformer architecture [34] in which query that represents
an actor (referred to as the actor feature in VAD) gathers information from the
video feature map (referred to as the context feature in VAD). In particular,
recent VAD models with this architecture [2,43] utilize transformers to search
regions that are relevant to each actor, and use the resulting attention map to
create their classification features.

However, this structure makes the classification of prevailing methods become
biased towards the context features near actor’s location. Since their output
classification features are derived from a single attention map, all action classes
share the same information of the context feature. Thus, instead of understand-
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ing class-specific knowledge, the transformer weights are often trained only to
embed commonly shared semantics across different classes. As mentioned in
Sec. 1, action classes of VAD share an obvious semantic element, the actor, and
this characteristic inevitably forces their models to include more information
related to actor itself, leading to higher attention values near actor regions. Such
classification feature may limit the model’s observation scope to actor regions,
which results in the model missing important regions that aid in classification.

The attention maps of TubeR [43] depicted in Fig. 2 clearly illustrate the
identified issue: the attention is primarily concentrated on the actor’s boundary
regardless of the action the actor performs. Similarly, in the case of EVAD [2],
the attention is mainly distributed over actor’s face and body parts, yet critical
regions essential for classification are overlooked. Furthermore, both prior methods
fail to extend their attention beyond the actor’s bounding box, where crucial
contexts that provide clues to distinguish action classes are located. The activated
regions may indicate the commonly shared semantics across different classes,
but their lack of class-specificity leads to the model missing important clues
for classification even when such clues are on the actor’s body. Therefore, we
aim to increase the class specificity of the classification feature and improve the
classification performance.

4 Proposed method

In this section, we introduce our model that addresses the aforementioned chal-
lenges. Fig. 3 provides an overview of the model’s architecture, consisting mainly
of a backbone, transformer encoder, and transformer decoder. Given an input
video clip X ∈ RT×H0×W0×3 of RGB frames and Nc action classes, our model
operates as a function that takes X as input and outputs Ŷ =

{(
B̂i, Ĉi

)
|B̂i ∈

RT×4, Ĉi ∈ [0, 1]T×Nc , i ∈ [1, NX ]
}
, where (T,H0,W0) is the temporal length,

height and width of the input video clip,
(
B̂i, Ĉi

)
represents a spatio-temporal

tube and per-frame action class prediction for the i-th actor, and NX is the total
number of actors appearing in the video X.

The key component of the model lies in the classification module, which
we denote as Classifying Decoder Layer (CDL). It distinguishes itself from
other approaches through the utilization of class queries, which are learnable
embeddings designed to encapsulate information specific to each class label. Class
queries help the model’s classification in two aspects. First, they allow transformer
architecture to create more variation between features that represent different
action classes and mitigates the issue of being biased towards common semantics
(i.e., the actor) of multiple classes. Thus, class queries provide opportunities to
explore beyond actor locations (e.g ., ‘listen to (a person)’ and ‘listen (e.g., to
music)’ in the third row of Fig. 2). Second, they acknowledge diverse characteristics
of each class and grant the model more opportunities to browse over regions that
are particularly conditioned to individual classes. More details into the use of
class queries are presented in Sec. 4.2.
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Fig. 3: Overview of the proposed model

CDL is strategically placed within the transformer decoder layers to enable
access to features crucial for classification while allowing the acquisition of enriched
information as layers are stacked. To ensure that CDL receives informative
features, we introduce essential modifications to the conventional transformer
encoder and decoder layers, hereby referred to as 3D Deformable Transformer
Encoder and Localizing Decoder Layer (LDL), respectively. In the following
sections, we will delve into how each module operates, providing insights into
their functions and contributions to the overall framework.

4.1 Backbone and transformer encoder

The input X is passed through the backbone network and 1D convolutions,
and we integrate the outputs from intermediate layers to produce multi-scale
feature maps V =

{
vl ∈ RTl×Hl×Wl×D| l ∈ [1, L]

}
, where L is the number of

feature map scales and D is the output channel dimension. Given the established
benefits of utilizing multi-scale feature maps for effectively capturing various
levels of semantics and details [9, 18,23,36], we leverage the multi-scale feature
maps to achieve more precise classification. Accordingly, we modify the ordinary
transformer encoder to efficiently handle these feature maps, which we dubbed 3D
Deformable Transformer Encoder. It processes the feature maps V and produces
encoded feature maps V

′

enc of the same shapes. To mitigate the computational
memory demands associated with multi-scale spatio-temporal features, we draw
inspiration from Deformable DETR [44], where a query gets encoded with the
features gathered from distant points that are determined by offsets and weights
generated by the query itself. Since the original work utilizes (∆h,∆w)-shaped
2-dimensional offsets for its encoder, we extend this offset to (∆t,∆h,∆w) so
that the query can be encoded with temporally distant features. A detailed logic
of the encoder is described in Sec. C of the supplementary materials.

After V go through the encoder layers, the output feature maps V
′

enc are
scaled by interpolation to match the same spatio-temporal dimension across
different levels: Venc =

{
vl

enc ∈ RT×H×W×D| l ∈ [1, L]
}
. Note that the temporal

dimension is recovered to the original length T in order to output boxes and class
labels for each timestep.



Classification Matters: Improving VAD with Class-Specific Attention 7

Actor Positional  
Query Pi

Actor Boxes 
 A

Actor Embeddings
AE

Positional  
Embeddings

PV

query
C

Na × D

Na × D

Na × 4

⋅

Actor-specific  
Context 
Features x

value

MLP

key

L × H × W × D

Na × HW × D

Box Modulator 
[20]

Actor  
Positional  
Queries P

C

HW × D

Na × D

Actor 
Features

f

Actor  
Feature

key

Cross-attention

Actor-specific  
Context Feature

Class  
Queries

Actor  
Positional  
Query Pi

2D conv.

query

Positional  
Embeddings

xifi

value
C

q

PV

C

H × W × D
Nc × D D

D

H × W × D

Nc × D

HW × Dzi

Nc × D

HW × D

Encoded Video 
Features Venc

q̃

Class (of the -th actor)i

Cross-attention

Na × L

(a) Localizing Decoder Layer (LDL)

Actor Positional  
Query Pi

Actor Boxes 
 A

Actor Embeddings
AE

Positional  
Embeddings

PV

query
C

Na × D

Na × D

Na × 4

⋅

Actor-specific  
Context 
Features x

value

MLP

key

L × H × W × D

Na × HW × D

Box Modulator 
[20]

Actor  
Positional  
Queries P

C

HW × D

Na × D

Actor 
Features

f

Actor  
Feature

key

Cross-attention

Actor-specific  
Context Feature

Class  
Queries

Actor  
Positional  
Query Pi

2D conv.

query

Positional  
Embeddings

xifi

value
C

q

PV

C

H × W × D
Nc × D D

D

H × W × D

Nc × 2D

HW × Dzi

Nc × D

HW × D

Encoded Video 
Features Venc

q̃

Class (of the -th actor)i

Cross-attention

Na × L

(b) Classifying Decoder Layer (CDL)

Fig. 4: Structure of transformer decoder layers of our model. We use c○, ⊙, and ⊕ to
indicate concatenation, multiplication, and summation. In (b), we denote variables with
the actor index i to describe the process simpler.

4.2 Transformer decoder

The decoder architecture serves as the fundamental design that embodies our
objective of achieving improved classification. It is divided into two modules:
localizing decoder layer (LDL) and classifying decoder layer (CDL). LDL spe-
cializes in gathering actor-related features from the encoded feature maps Venc
and constructs localization features. In contrast, CDL leverages the intermediate
outputs of LDL, alongside class queries, to generate classification features. The
subsequent sections elaborate on each module. Note that we simplify the notation
by omitting the time index t and focus on how an individual frame is processed
within the decoder layer.

Localizing decoder layer (LDL). LDL aims to construct features containing
the information related to actors and provides informative features to CDL. In
a nutshell, LDL resembles the decoder layer of DETR [1]: it consists of a cross-
attention layer that takes learnable queries and the encoder output Venc as its
inputs to embed the actor information. Though, it differs from the original DETR
decoder in two aspects. First, it constructs query and key by concatenating the
content and spatial parts [21], where each part plays a different role in embedding
actor’s appearance feature and actor’s positional feature, respectively. Such a
design is essential in our model since class queries utilize actor-specific positional
features for accurate classification, which we will describe in the next section.
Second, it aggregates multi-scale feature maps to create feature maps that are
specific to each actor. Due to the space limit, we briefly explain the roles and
implications of LDL’s input and output, and encourage readers to refer to Sec. D
of the supplementary material for details.
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We describe the structure of LDL in Fig. 4(a). Let Na denote the number of
actor candidates, then LDL takes as its query input A ∈ RNa×4 and AE ∈ RNa×D,
which we each denote as actor box and actor embedding. A and AE are utilized
as the spatial part and the content part of the input query, and learn to embed
appearance and positional information of actors, respectively. Thus, the output
of LDL, which we denote as actor features f ∈ RNa×D, results in containing the
information related to each actor.

During its process, we transform A from coordinate space to D-dimensional
space so that we can construct the actor positional queries P , which act as the
spatial part of the input query while containing spatial information of the actor.
At the same time, the multi-scale feature map Venc is aggregated to obtain
single-scale feature map for each actor. The weight utilized for the aggregation is
acquired by applying a linear layer to AE, adding actor-specificity to key and
value. We denote the aggregated output as actor-specific context feature x.

Classifying decoder layer (CDL). CDL is designed to enable the model to
selectively attend to class-specific information. As mentioned in Sec. 3, the process
for constructing classification features in the contemporary approaches [2, 43]
introduces bias towards the actor’s body parts. By introducing class queries, our
decoder determines on which context the model should focus for each action class,
thus allowing for an expanded scope of observation that may extend beyond the
bounding box of the actor. However, adopting class queries in a naïve manner
leads to the problem of actor-agnostic activation; class queries may activate
the class-specific context belonging to wrong actors, thereby gathering clues
that are not relevant to the target actor the model aims to classify (Fig. 6(a)).
Therefore, the objective of CDL is to enhance specificity of both actor and class
simultaneously. As class queries improve the class-specificity, we additionally
incorporate actor positional queries P and actor-specific context features x to
address the actor-specificity.

We present the structure of CDL in Fig. 4(b). As CDL creates classification
features for each actor in a parallel manner, we index features that correspond to
each actor with i ∈ [1, Na] and describe how the module operates for the i-th actor.
CDL is a cross attention layer whose input query is comprised with class queries
q ∈ RNc×D and the actor positional query Pi ∈ RD. Since the input query is a
combination of both class-specific and actor-specific features, the output feature
of CDL grants information dedicated to each class and the actor concurrently. To
further enhance the actor-specificity of the output, we utilize the actor-specific
context feature xi as the input key and value of CDL. We first broadcast the
actor feature fi ∈ RD to match the spatial dimension of xi ∈ RH×W×D, and
take sum of these two features to pass it through subsequent convolutional layers.
Hence, the resulting feature map, which we denote as zi ∈ RHW×D, represents
the interaction that happens between the i-th actor and the context. Finally,
zi is paired with positional embeddings PV ∈ RHW×D to form the input key’s
spatial part, and enter the following cross-attention layer.
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In the cross-attention layer, the i-th actor’s classification attention map
Ai ∈ RNc×HW is constructed as follows:

Ai ∝ softmax

 PT
i

q
...

PT
i

WQ

([
zi PV

]
WK

)T , (1)

where WQ and WK are query and key projection matrices of the cross attention,
respectively. Since WQ and WK directly transform the features specific to both
actor and class, the attention weight’s contributions to each class logit become
significantly more diverse than prior methods [2, 43] where such contributions of
attention weights only differ by a scale within different classes.1 To be specific,

(Ai)(c,m) ∝ softmax
((

νT(c,i)WQ

)(
ηT(i,m)WK

)T
)
, (2)

where m ∈ [1, HW ] indexes a spatial region, ν(c,i) is a vector that is conditioned
to class and actor, and η(i,m) is a vector that is conditioned to actor and region.
As the class index c and the actor index i changes in Eq. (2), the following
variation of the attention map can be trained with the transformer weights
dynamically, and thus, we achieve the goal of obtaining both class-specificity and
actor-specificity.

The output of CDL q̃ ∈ RNc×D is subsequently passed to the next layer to
serve as class queries again. To derive the probability for each class, q̃ from the last
layer is mean pooled across the channel dimension and then processed through a
sigmoid layer. Thus, the final output q̃ ∈ [0, 1]Nc becomes the classification score
for the i-th actor.

4.3 Training objective

The outputs of the decoder, q̃, Ai, and fi all contribute to the calculation of the loss.
The confidence score p̂ ∈ [0, 1]Na×1 for each actor is derived from fi to determine
the validity of the i-th actor’s classification and box regression results. The final
box and class outputs Ŷ =

{(
B̂i, Ĉi

)
|B̂i ∈ RT×4, Ĉi ∈ [0, 1]T×Nc , i ∈ [1, Na]

}
are first processed with Hungarian algorithm [15] to ensure the model to output a
single optimal detection result per actor. We describe the details of the matching
procedure in Sec. F of the supplementary materials. The prediction results that are
matched with ground truth boxes and classes receive loss signals to output correct
answers, while the remaining predictions are trained to output zero probabilities.
Let Y be a padded ground truth labels of size Na, i.e., Y =

{(
Bi,Ci

)
|i ∈ [1, Na]

}
where Bi = 0T×4 and Ci = 0T×Nc

for i ∈ [NX + 1, Na]. Additionally assume
that the Hungarian matcher assigns the i-th ground truth label of Y to the index
ω(i) of Ŷ , then each prediction Ŷω(i) is passed to the following loss function:

L(Yi, Ŷω̂(i)) = λclassLclass(Ci, Ĉω̂(i))

+ 1i≤NX
λboxLbox(Bi, B̂ω̂(i)) + 1i≤NX

λgiouLgiou(Bi, B̂ω̂(i))

+ 1i≤NX
λconfLconf(1, p̂ω̂(i)) + 1i>NX

λconfLconf(0, p̂ω(i)),

(3)

1See Sec. A. of the supplementary material for details.
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where

Lclass(Ci, Ĉω̂(i)) = BFLoss(Ci, Ĉω̂(i)), Lbox(Bi, B̂ω̂(i)) = ∥Bi − B̂ω̂(i)∥1,

Lgiou(Bi, B̂ω̂(i)) = −GIoU(Bi, B̂ω̂(i)

)
, Lconf(·, p̂ω̂(i)) = BCELoss(·, p̂ω(i)).

(4)

Notice that BFLoss, BCELoss, and GIoU are a binary focal loss [19], binary
cross-entropy loss, and generalized IoU [25], respectively, and the corresponding
lambdas are hyperparameters to balance the loss term. Since L(Yi, Ŷω(i)) ∈ RT ,
the final loss L is represented as:

L =
1

|T ||Na|

T∑
t=1

Na∑
i=1

L(Yi, Ŷω̂(i))t. (5)

5 Experiments

5.1 Experimental setup

Datasets. The model’s performance is evaluated on three conventional public
benchmarks: AVA, JHMDB51-21, and UCF101-24. AVA [8] is a large scale dataset
of 430, 15-minute film/TV show clips. To be specific, it consists of 211K frames
for training and 57K frames for validating. Due to the large scale of the AVA
dataset, it is sparsely annotated at a rate of 1 frame per second (FPS). Following
a standard evaluation protocol, we evaluate the model only at the frame level.
Furthermore, we report the performance based on the refined annotation AVA
v2.2. JHMDB51-21 [11] provides 928 short video clips from YouTube and movie
clips. All videos of JHMDB51-21 are fully annotated with one of 21 actions,
and actor’s bounding box. Additionally, videos are trimmed to only contain
frames where actions occur, removing the need for temporal localization of
the task. UCF101-24 [28] provides 3,207 untrimmed YouTube videos, which
means it contains frames where no action is taking place. Therefore, the dataset
requires model to be able to distinguish between frames with and without actions.
Following the customary convention, we utilize the corrected annotations [27].
Evaluation criteria. The model is evaluated with mean Average Precision
(mAP) under IoU threshold of 0.5. Following the convention, mAP is applied on
either a frame-level (f-mAP) or a video-level (v-mAP).

5.2 Ablation studies

We carry out ablation studies to justify our choice of design. A CSN-152 [33]
backbone pretrained on Kinetics-400 [13] and Instagram65M [7] is used for the
experiments on AVA, and a ViT-B [4] backbone pretrained on Kinetics-400 is
used for the experiments on UCF101-24.
Effectiveness of model components. We demonstrate the efficacy of each
proposed component of our model. The baseline configuration of the vanilla model
is set to include an ordinary transformer encoder [34] and a DETR decoder [1],
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Table 1: Ablation experiments on each
module of the model.
Encoder Decoder mAP
Transformer DETR 28.6
Transformer LDL 29.1
Transformer LDL + CDL 31.4
3D Deformable Transformer LDL 31.3
3D Deformable Transformer LDL + CDL 33.5

Table 3: Effect of attaching the actor posi-
tional queries to class queries.

Method AVA UCF
w/ actor positional queries 33.5 85.9
w/o actor positional queries 31.7 82.9

Table 2: Ablation experiments on ways
to aggregate multi-scale feature maps.

Method AVA UCF
actor-specific 33.5 85.9
weighted sum 32.9 82.0
mean pooling 32.0 82.8

Table 4: Ablation experiments on ways
to combine actor and context features.

Method AVA UCF
summation 33.5 85.9
concat + 1d conv [30] 31.8 84.7
cross-attention [43] 31.3 81.3
self-attention [2] 30.8 81.0

Fig. 5: Detection results from the model
that uses a single-scale feature map (left)
and multi-scale feature maps (right). De-
tection threshold is set to 0.5.

(a)

(b)

(c)

original image

Fig. 6: Attention visualizations of the class,
‘sit’. (a) shows the model without the attach-
ment of the actor positional queries to class
queries, and (b) depicts the model with this
attachment.

which are commonly observed baseline structures in recent transformer-based
VAD models [2,43]. The impact of each module is assessed through a comparative
analysis of the rows in Table 1 where the respective modules have been ablated.
As the CDL module is dependent to LDL, we add CDL on top of LDL to measure
its effectiveness. The most prominent improvement comes from the use of 3D
Deformable Transformer Encoder and CDL. Our encoder module takes multi-
scale feature maps and enables the model to capture fine details. Fig. 5 illustrates
the detection results of the third and fifth row of Table 1, demonstrating the
effectiveness of utilizing multi-scale feature maps. Still, without the aid of CDL,
the advantage of utilizing multi-scale feature maps is not fully maximized: the
fourth row shows significantly lower performance than the current model. In fact,
the current state of the art STMixer [42] also utilizes multi-scale feature maps,
but it underperforms compared to our model (Table 5).
Different ways to aggregate multi-scale feature maps. In LDL, we aggre-
gate multi-scale feature maps into single-scale feature maps, while conditioning
them to each actor to provide actor-specific context to CDL. Actor-conditioned
aggregation helps identifying context features that are relevant to the actor of
interest and mitigates the issue of mistakenly gathering context that is relevant
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Table 5: Performance comparison on three benchmarks [8, 11, 28]. The column labeled
“D” signifies whether a model utilizes an off-the-shelf detector or not.

Model D Input Backbone Pre-train mAP
SlowFast [6] ✓ 32× 2 SF-R101-NL K600 29.0
ACAR [22] ✓ 32× 2 SF-R101-NL K600 31.4
AIA [31] ✓ 32× 2 SF-R101 K700 32.3
VideoMAE [32] ✓ 16× 4 ViT-B K400 31.8
MeMViT [40] ✓ 32× 3 MViTv2-B K600 32.8
WOO [3] ✗ 32× 2 SF-R101-NL K600 28.3
TubeR [43] ✗ 32× 2 CSN-152 IG65M, K400 31.1
STMixer [42] ✗ 32× 2 CSN-152 IG65M, K400 32.8
STMixer [42] ✗ 16× 4 ViT-B K400 32.6
STMixer [42] ✗ 16× 4 ViT-B [35] K710, K400 36.1
EVAD [2] ✗ 16× 4 ViT-B K400 32.3
EVAD [2] ✗ 16× 4 ViT-B [35] K710, K400 37.7
Ours ✗ 32× 2 CSN-152 IG65M, K400 33.5
Ours ✗ 16× 4 ViT-B K400 32.9
Ours ✗ 16× 4 ViT-B [35] K710, K400 38.4

(a) Performance comparison on AVA v2.2.

Model D Input Backbone f-mAP / v-mAP

JHMDB UCF JHMDB UCF

MOC [17] ✓ 7× 1 DLA34 70.8 / 77.2 78.0 / 53.8
AVA [8] ✗ 20× 1 I3D-VGG 73.3 / 78.6 76.3 / 59.9
ACRN [30] ✗ 20× 1 - SF-R101 77.9 / 80.1 - / -
CA-RCNN [41] ✓ 32× 2 - R50-NL 79.2 / - - / -
YOWO [14] ✗ 16× 1 3DResNext-101 74.4 / 85.7 80.4 / 48.8
WOO [3] ✗ 32× 2 - SF-R101-NL 80.5 / - 78.8 / -
AIA [31] ✓ - 32× 1 R50-C2D - / - 78.8 / -
ACAR [22] ✓ - 32× 1 SF-R50 - / - 84.3 / -
TubeR [43] ✗ 32× 2 CSN-152 - / 82.3 83.2 / 58.4
STMixer [42] ✗ 32× 2 SF-R101-NL 86.7 / - 83.7 / -
EVAD [2] ✗ 16× 4 ViT-B 90.2 / 77.8 85.1 / 58.8
Ours ✗ 40× 1 32× 1 ViT-B 86.9 / 88.5 85.9 / 61.7

(b) Performance comparison on JHMDB and UCF.

to same actions of different actors. Table 2 shows its effectiveness: providing
actor-specific context demonstrates superior results on both datasets.
Effectiveness of using the actor positional queries for classification. As
explained in Sec. 4.2, we attach the actor positional queries to class queries in
order to provide class queries with information regarding the actor the model
aims to classify. Similarly to actor-conditioned aggregation from the previous
section, the attachment of the actor positional queries improves actor-specificity
of the class queries and prevents the activation of the context that belongs to
wrong actors. Fig. 6(a) shows the case where the actor positional queries are
not attached to class queries: class queries activate regions where a similar actor
performs the same action. In contrast, Fig. 6(b) illustrates the impact of the
actor positional queries, mitigating the issue of actor-agnostic activation. The
results from Table 3 also support our claim: detaching the actor positional queries
compromises the performance by a significant margin.
Different ways to combine actor and context features. Merging the actor
and context feature is an essential step in VAD to model the interactions between
the actor and the background. We explore various methods to merge the actor
and context features to justify our chosen approach. Each method we chose in
Table 4 corresponds to a way used in prior approaches [2,30,43]. Interestingly,
we discover that simple summation yields superior performance overall.

5.3 Comparison to the state-of-the-art methods

Table 5(a) summarizes the experiment results on AVA v2.2. We compare our model
with recent video backbones widely used in video action detection, ViT-B [4, 35]
and CSN-152 [33]. Among the models that utilize ViT-B as their backbones,
our model surpasses other models [2, 42] that have identical settings to ours.
Out of the models employing CSN-152 as well our model exhibits a superior
performance, highlighting its competitive edge.

Table 5(b) shows the results on JHMDB51-21 and UCF101-24. Our model
demonstrates comparable or superior performance to current state-of-the-art
models on both datasets. We conjecture the lower performance compared to
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Table 6: Efficiency comparison on JHMDB and
UCF. Each frame’s resolution is set to 256 × 360.

Method Backbone Input
(T × τ)

Params FLOPs Inf. time
(ms)

f-mAP/v-mAP

JHMDB: inferring a 40-frame tube
TubeR CSN-152 32× 2 91.8M 6.99T 1263.1 - / 82.3
STMixer SF-R101-NL 32× 2 219.2M 7.64T 2088.2 86.7 / -
EVAD ViT-B 16× 4 185.4M 10.68T 8363.1 90.2 / 77.8
Ours ViT-B 40× 1 117.8M 3.26T 432.0 86.9 / 88.5
UCF: inferring a 32-frame tube
TubeR CSN-152 32× 2 91.8M 5.60T 1161.9 83.2 / 58.4
STMixer SF-R101-NL 32× 2 219.2M 6.12T 1671.5 83.7 / -
EVAD ViT-B 16× 4 185.4M 8.54T 6797.8 85.1 / 58.8
Ours ViT-B 32× 1 117.8M 3.73T 370.0 85.9 / 61.7

Table 7: Performance compari-
son on the latest VAD models.

Method Backbone f-mAP when GT box
is provided

TubeR CSN-152 31.1 33.1(+2.0)

STMixer ViT-B 32.6 34.7(+2.1)

STMixer ViT-B [35] 36.1 38.7(+2.6)

EVAD ViT-B 32.3 34.5(+2.2)

EVAD ViT-B [35] 37.7 40.0(+2.3)

Ours CSN-152 33.5 37.2(+3.7)

Ours ViT-B 32.9 36.9(+4.0)

Ours ViT-B [35] 38.4 42.1(+3.7)

the prior method [2] is due to the low class diversity of JHMDB51-21, since
the strength of our model comes from its ability to create diverse classification
feature conditioned to each action class.

Moreover, the tube-creating property of our model largely improves the
model’s efficiency. Table 6 shows the amount of computation utilized by current
models to generate a single tube. Note that the input size T×τ signifies the number
of frames T and sampling rate τ . The current best-performing models [2, 42]
produce predictions only for a single frame within a single feedforward, while
ours produce a whole tube at once. Thus, although the input size differs, taking
the input with larger T with sampling rate 1 is to infer a tube with a single
feedforward, thereby compensating for the multi-feedforwarding property of other
models that process smaller input sizes, thus ensuring fairness in comparison.
Specificially, for JHMDB51-21, with its longest clip comprising 40 frames, we
set T = 40, while for UCF101-24, where the longest clip spans 900-frame long,
thus we adopt T = 32, following the standard practice. Accordingly, we measure
the amount of computation and speed needed for generating a 40-frame tube for
JHMDB51-21 and a 32-frame tube for UCF101-24. Notably, our model achieves
competitive results with fewer parameters and the least FLOPs. Due to the page
limit, we provide a detailed explanation of the model’s efficiency in Sec.G of the
supplementary material.

5.4 Attention visualization and analysis

One of key advantages of our model is its ability to provide interpretable attention
maps for individual class labels. Fig. 7 shows the classification attention maps
the model provides across various scenarios. The model dynamically focuses on
crucial regions; for example, when classifying actions like ‘hand shake’ or ‘write,’
it tends to examine the areas near the actor’s hands and arms. If necessary, the
model also directs its attention towards regions outside the actor’s body such
as ‘listen to (a person)’ in the first and second row, or ‘watch (e.g., TV)’ in the
fourth row. Moreover, it differentiates class-relevant context of actors well in
multi-actor scenarios, even when multiple actors are performing identical actions.
Is performance improvement really from classification? Since average
precision (AP) simultaneously measures a model’s localization and classification
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play musical instrument play musical instrument play musical instrument

hand shake listen to (a person)hand shake

talk to (e.g., self, a person, a group)carry/hold (an object) listen to (a person) sail boat

write

write

watch (a person) text on/look at a cellphonecarry/hold

watch (e.g., TV) watch (e.g., TV) watch (e.g., TV)watch (e.g., TV)

talk to (e.g., self, a person, a group)

Fig. 7: Classification attention map visualization results on AVA v2.2. Each map
represents the region where the model has observed to classify the action of the actor,
marked with the same color as the bounding box.

ability, we conduct experiments to measure the model’s classification ability
explicitly (Table 7). The model outputs are Hungarian-matched with the ground-
truth (GT) instances using the same matching cost, and their predicted box
coordinates are replaced with that of GT annotations. The experiment results
show that the performance gap between ours and other methods has increased,
implying that our model’s performance improvement is mainly due to its enhanced
classification ability.

6 Conclusion and limitations

We have introduced a model designed for effective classification, constructing
features dedicated to each class and each actor. Our approach adeptly manages
classification features by considering context not bounded by the actor’s location,
while still capturing information specific to the targeted actor. We achieve the
state-of-the-art performance on the most challenging benchmark, while being the
most efficient network when inferring a tube.
Limitations. However, there still exists room for further improvement. The
current decoder architecture does not exchange information across frames due to
the restricted size of memory. As a result, a role of capturing temporal dynamics
is solely dependent on the encoder architecture, placing a significant burden on
the encoder. Thus, further studies might aim to achieve greater performance by
sparsely collecting class information from the spatial domain, leaving residual
memory available for capturing temporal dynamics.
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