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Abstract. Public datasets play a crucial role in advancing data-centric AI, yet
they remain vulnerable to illicit uses. This paper presents ‘undercover bias,’ a
novel dataset watermarking method that can reliably identify and verify unautho-
rized data usage. Our approach is inspired by an observation that trained mod-
els often inadvertently learn biased knowledge and can function on bias-only
data, even without any information directly related to a target task. Leveraging
this, we deliberately embed class-wise hidden bias via unnoticeable watermarks,
which are unrelated to the target dataset but share the same labels. Consequently,
a model trained on this watermarked data covertly learns to classify these wa-
termarks. The model’s performance in classifying the watermarks serves as ir-
refutable evidence of unauthorized usage, which cannot be achieved by chance.
Our approach presents multiple benefits: 1) stealthy and model-agnostic water-
marks; 2) minimal impact on the target task; 3) irrefutable evidence of misuse;
and 4) improved applicability in practical scenarios. We validate these benefits
through extensive experiments and extend our method to fine-grained classifica-
tion and image segmentation tasks. Our implementation is available at here3.

1 Introduction

Over the past decade, data-driven artificial intelligence (AI), through deep neural net-
works (DNNs), has seen remarkable advancements. Public datasets have played a sig-
nificant role in advancing this field, providing researchers with access to extensive data
pools that aid in training DNNs. Numerous datasets promote transparency and enable
objective evaluation of models against established benchmarks. Prominent datasets such
as ImageNet [6], MNIST [17], CIFAR10 [15], Pascal VOC [7], and MS-COCO [22]
have been instrumental in propelling DNN research forward.

Public datasets are generally allowed for only non-commercial and educational
use, often requiring additional permission and fee for commercial purposes. Despite
these ethical guidelines, unauthorized commercial exploitation persists. This problem
extends to challenges, where the use of test data for model training—explicitly prohib-
ited—results in unfairly high rankings due to cheating. Notable cases include interna-
tional challenges which faced cheating scandals [1, 2].
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Fig. 1: Illustration of the proposed undercover bias and verification scheme. Watermarking:
undetectable watermarks are added to benign images. Training: a cheating model is trained using
watermarked data, while a clean model is trained using benign data. Inference: both clean and
cheating models perform well on benign data. Verification: the clean model cannot classify the
watermark, while the cheating model can. This distinction enables the verification of cheating.

However, detecting and proving unauthorized usage of dataset is challenging. In the
context of a Black-box Test [33], we assume adversaries provide only predicted classes,
lacking details (i.e., network architecture, trained weights, and output logits), mirroring
real-world scenario. Thus, detecting unauthorized use must rely solely on input data
and one-hot encoded predictions, requiring strong evidence based on predicted outputs.

In this paper, we introduce ‘undercover bias,’ a novel dataset watermarking method
aimed at identifying models that cheat. Our work leverages data bias—a type of hidden
knowledge inherently present in datasets [28,45]. DNN models trained on such datasets
learn this bias and can even function with bias-only data, without any context about the
target task. Contrary to the typical goal of debiasing studies [18, 26, 27], which seek to
eliminate such biases (e.g., gender or race bias) for fairness, we intentionally embed
class-wise hidden biases as watermarks into the dataset for copyright protection. Note
that our intentional bias is very subtle to minimize its impact on performance of the
original task and cannot occur naturally by chance (Sec. 7.1).

By using class-wise undetectable watermarks created from auxiliary data and em-
bedding them within the target dataset, we can identify cheating models through their
ability to classify these hidden biases (watermarks), as illustrated in Fig. 1. Our con-
tributions are summarized as follows: 1) a novel way to verify unauthorized dataset
usage based on hidden bias classification, 2) a clean-labeled and model-agnostic wa-
termarking method, 3) validation through comparative experiments, and 4) successful
generalization even to varying datasets, architectures and tasks.

2 Related Work

Many studies have aimed at safeguarding intellectual property (IP) such as [19, 23,
31, 44]. Also, model attack methods involving data modification can serve as a means
of IP protection. In this section, we provide an overview of three categories about IP
protection and model attacks: backdoor attacks, data poisoning, and radioactive data.
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2.1 Backdoor Attacks

Backdoor attacks aim to make a network consistently classify any image with a hidden
signature into a predefined target class, regardless of its original class. This involves
adding a trigger to certain training data and changing their labels (the ”infection” pro-
cess). Numerous studies, such as [5, 10, 14, 19, 21, 24, 32], focus on finding less no-
ticeable but more effective signatures. These attacks can compromise network security
and protect open datasets from unauthorized use [20]. However, traditional backdoor
attacks [5, 10, 40] are detectable by visual inspection due to label noise [32]. Some
clean-labeled backdoor attacks, like Refool [25] and Hidden Trigger [32], address la-
bel noise limitations, with Refool drawing inspiration from natural reflections through
glass but facing real-world challenges, while Hidden Trigger mainly works for fine-
tuning the last few layers of a reference model. For generalization, Sleeper Agent [35]
employs ensemble reference models and multiple retraining, and Color Backdoor [14]
uses triggers in the color space instead of spatial triggers. Also, many backdoor attacks
work worse for attack multiple classes at once.

2.2 Data Poisoning

Data poisonings [3, 8, 13, 34] address the label noise problems mentioned in Section
2.1. These attacks aim to make a network classify specific benign samples as a prede-
fined adversarial class (targeted attack). Data poisoning involves three steps: 1) using
a reference model trained on a benign dataset, 2) selecting an adversarial class, and 3)
choosing victim samples. To poison the data, some training data with an adversarial
class is subtly modified to be near the victim samples in latent space, using adversarial
attack methods. Fine-tuning the network with the poisoned data adjusts the decision
boundary to classify the area around victim samples as the adversarial class, making
it likely to predict the victim samples as the adversarial class. However, there are two
drawbacks: 1) heavy burden for adversarial attacks, and 2) limited effectiveness for a
few selected samples, making the verification less confident.

2.3 Radioactive Data

Radioactive data [31] was proposed to detect unauthorized use of public datasets. Like
data poisoning, radioactive marking needs a reference model trained on benign data. Us-
ing this reference model, radioactive data [31] estimates latent space and slightly moves
training data toward an isotropic unit vector u on the latent space through adversarial
attack. A network trained on the radioactive-marked dataset shows better performance
on the marked test data than the benign test one. The authors of [31] insists that it is
possible to detect unauthorized use based on the difference between performances for
radioactive and benign datasets. However, there are two drawbacks, 1) heavy burden for
adversarial attacks, and 2) requiring access to output logits unlike our black-box setting.

2.4 Limitations of the Prior Works in Verification

Clean-labeled watermarking is formulated as:

x̂ = x+w, and ŷx = yx, (1)
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where (x,yx) signifies a benign sample and its corresponding ground truth, sampled
from (X,YX). w is the negligible watermark (||w|| < ϵ, with ϵ as a small value), and
x̂ denotes the watermarked data. ŷx is the ground truth label of x̂ and is equal to yx.

For verification, prior works verify based on intentional degradation. Let F sym-
bolizes a DNN model, and θF denotes its weights. Backdoor attacks aim to induce
misclassifications in F(x + w, θF ). Data poisoning selects a subset of clean data for
intentional misclassifications. Radioactive data exploits the enhanced performance of
F(x+w, θF ) in comparison to F(x, θF ), leveraging this improvement to verification.

However, our observations highlight the unreliability of verification that depends
on intentional degradation. This is due to the fact that the degree of degradation is
contingent upon the performance of F(x, θF ). The probability of such degradation oc-
curring is inversely related to the model’s accuracy on the clean data, expressed as
1 − Acc(F(x, θF ),y

x). High Acc(F(x, θF ),y
x) makes degradation unlikely, while

low Acc(F(x, θF ),y
x) increases the chance of degradation. Also, the process of in-

tentional degradation itself poses risks, potentially impairing the model’s accuracy on
clean data. Thus, a reliable and non-damaging verification method is essential.

3 Motivation

Our method is conceived from recognizing the effects of data bias. A biased dataset is
characterized by data that encapsulates unintended knowledge. Take, for instance, the
CIFAR10 dataset, which has a ‘ship’ category where most images feature a ‘sea’ back-
ground. Similarly, most images within the ‘airplane’ category share a ‘sky’ background.
In such situations, a network trained on the CIFAR10 dataset has a tendency to identify
the ‘sea’ background as a significant feature of ‘ship’ class.

To replicate this phenomenon, we generated two sets of synthetic images, one fea-
turing ‘sea’ and the other ‘sky’ without ‘ship’ and ‘airplane’, utilizing stable diffu-
sion [29]. We then trained a ResNet18 on the CIFAR10 dataset. Subsequently, we eval-
uated the trained ResNet18 on the synthetic images. As results, 56.10% of synthetic
‘sea’ images were identified as ‘ship’, and 65.29% of synthetic ‘sky’ images were clas-
sified as ‘airplane’ despite there was no ‘ship’ and ‘airplane’. Also, Fig. 2 shows some
class activation maps (CAM), highlighting the unintended knowledge about sea hori-
zon, waves, and clouds. These are not features inherent to the objects ‘ship’ and ‘air-
plane’, but they were learned. If the model had solely learned ‘ship’ and ‘airplane’ ob-
jects without taking the background into account, it would have randomly classify these
synthetic images. Drawing from the results of the background image classification, we

Fig. 2: Synthetic background images and their Class Activation Maps (CAM) .
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devised a method for clean-labeled dataset protection that capitalizes on this unintended
knowledge. When we introduce a unique bias to a dataset on a class-by-class basis, a
network trained on this biased dataset is likely to learn the bias. Consequently, it may
classify data containing only the bias without target information (such as background
images) as belonging to each respective class.

4 Method

Bias has historically been perceived negatively, primarily because it can degrade DNN
performance and raise ethical issues, such as gender or race bias. Consequently, numer-
ous studies have focused on debiasing techniques [18, 26, 27]. However, our approach
deviates from this conventional viewpoint by intentionally embedding class-wise hid-
den biases within datasets, utilizing these biases as a means of copyright protection. In
the following section, we outline the step-by-step process of implementing our method.

4.1 Noise Patch Placement: Class-wise Bias Embedding

Our initial step involved leveraging biases by introducing noise patches into a benign
dataset. Each class was assigned a unique noise pattern, which was injected as follows:

x̂ = x+ λn s.t. yx = yn, (2)

where n and yn denote the class-specific noise image and its corresponding label. The
noise n was generated as zero-mean Gaussian random noise, N (0, I), and positioned
at predefined, class-specific areas as illustrated in Fig. 3. This noise was injected into
randomly selected 50% training data, utilizing noise patches with a coefficient λ =
0.01. To validate this approach, we trained a ResNet18 on the CIFAR10 dataset starting
from a random initialization for 100 epochs using the Adam optimizer, cosine decay,
and data augmentation. We then tested the model on the noise images.

The results, as presented in Table 1, lead us to three critical insights. First, it’s
possible to embed hidden knowledge via noise placement without altering the label
(clean-labeled). Despite the significant difference between n and x, the trained models
exhibited higher accuracy for the noise images, validating the feasibility of dataset pro-
tection. Second, the accuracy was higher for λn + µ(X) than λn, where µ(·) denotes

Fig. 3: Examples of noise patch placement.

Watermark Random Flip Val Acc on Val Acc on
Image Horizontal Vertical Benign (%) Watermark (%)

λn
✗ ✗ 92.63±0.17

62.14±15.54
λn+ µ(X) 71.69±13.60

λn
✓ ✗ 94.07±0.11

20.26±2.68
λn+ µ(X) 22.28±3.69

λn
✓ ✓ 92.31±0.23

9.15±1.88
λn+ µ(X) 12.94±4.03

Table 1: Results of watermarks based on
noise placement. The “Random Flip” indi-
cates whether horizontal and vertical flip were
used in data augmentation or not.
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the average function. Given that we used small noises, the average magnitude for λn
was nearly zero, but that wasn’t the case for x+λn. This disparity created a sort of do-
main gap, causing the trained model to often disregard λn. To bridge this gap, we added
µ(X) to λn, which led to more successful classification, thereby indicating a more ef-
fective dataset watermark. Third, the placement of noise is significantly affected by
spatial transformations. Interestingly, classification accuracy was highest, around 60%,
when no flip was used in data augmentation. When a horizontal flip was applied, the
accuracy dropped to approximately 20%, due to the presence of five pairs of mirrored
patterns in the noise patches used. When both horizontal and vertical flips were used,
the confusion of many patches due to combined flips resulted in a 12% accuracy. If we
utilized more precise positions, the verification could be further influenced by rotation
and translation. This suggests an issue of robust pattern of watermark.

4.2 Overlaying Auxiliary Dataset: Robust Bias to Augmentation

To mitigate the vulnerability to data augmentation, it’s necessary to define more robust
patterns. However, manually generating diverse patterns that satisfy: 1) having the same
number of classes, 2) unrelatedness between any two classes, and 3) robustness to spa-
tial transformation, is challenging. We instead opted for an auxiliary dataset. Given the
plethora of available datasets in the research field, we used overlaid data as follows:

x̂ = (1− λ)x+ λz s.t. yx = yz, (3)

where (z,yz) represents the auxiliary data and its label. We overlaid data while taking
into account the labels of the two datasets. For example, CIFAR10 and Fashion MNIST
[43] are independent datasets, each with ten distinct classes. If we selected x from
the ‘airplane’ class in CIFAR10 and z from the ‘pullover’ class in Fashion MNIST,
their corresponding yx and yz could both be denoted as ’Class 0’, regardless of their
semantic meanings. We trained ResNet18 using an overlay of the CIFAR10 dataset
(target) and the Fashion MNIST dataset (auxiliary) using the same training recipe of
the noise placement case. Fig. 4 and Table 2 show some examples of overlaid images
and the training results. As shown, the results clearly demonstrate robustness to spatial
transformation. However, the overlaid data is overly conspicuous and deviates from the
benign data, significantly undermining the original task as represented by the validation
accuracy on benign data. Further, they can be filtered by visual inspection. Therefore,
it’s crucial to make invisible watermarks.

Fig. 4: Examples of overlaid image (λ = 0.3).

λ
Random Flip Val Acc on Val Acc on

Horizontal Vertical Benign (%) Watermark (%)

0.3
✗ ✗ 90.47±0.24 83.45±0.78
✓ ✗ 92.09±0.22 81.59±2.14
✓ ✓ 89.34±0.41 69.05±5.17

0.5
✗ ✗ 89.36±0.21 86.92±0.80
✓ ✗ 91.03±0.29 85.52±1.16
✓ ✓ 87.73±0.72 76.58±4.64

0.7
✗ ✗ 88.52±0.16 88.96±0.84
✓ ✗ 89.97±0.49 87.64±1.36
✓ ✓ 87.43±0.33 86.10±0.53

Table 2: Results of watermarks based
on data overlay.
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Fig. 5: Architecture of the proposed Dataset Watermarking Network. The network is com-
posed of two auto encoders and two classifiers. The proposed watermark can be obtained by
subtracting the target data from watermarked data and adding mean of the target dataset. Note
that this is a scheme of dataset watermarking network (DWN), not cheating model.

4.3 Undercover Bias: Invisible Bias Embedding

Given the lessons learned from previous approaches, we concluded that a watermark
based on hidden bias must be 1) robust to spatial transformation, and 2) nearly invisible.
To address these requirements, we developed our proposed watermarking method using
image steganography [4] and an auxiliary dataset. The process is as follows:

x̂ = DWN(x, z),

w = x̂− x, and yw = yz,
(4)

where (w,yw) represents the watermark and its label. It’s crucial to create undetectable
watermarks and their corresponding labels. To this, we developed a network called
"Dataset Watermarking Network (DWN)" with consideration for reconstruction-aware
and perceptual constraints, as shown in Fig. 5. This network consists of two autoen-
coders: one for hiding (Gw) and the other for reconstruction (Gr). Gw takes x and z, and
produces an output x̂, which closely resembles x. Gr reconstructs x′ and s′ from x̂ as:

x̂ = Gw(x, z, θGw), and x′, z′ = Gr(x̂, θGr ), (5)

where θGw
, θGr

are weights of the autoencoders. Two classifiers, Hx and Hw, are used
as perceptual constraints. Training an numerous classifiers for model-agnostic water-
marking is computationally challenging. Instead, we adopted a simpler approach using a
basic architecture incorporating spatial dropout [38] and dropout [36]. All autoencoders
and classifiers were simultaneously trained using ℓ1 loss and cross entropy (LCE).

min
θGw ,θGr ,θHx ,θHw

λG
1 |x− x̂|+ λG

2 |x− x′|+ λG
3 |z− z′|

+ λH
1 LCE(Hx(x, θHx),y

x) + λH
2 LCE(Hx(x̂, θHx),y

x)

+ λH
3 LCE(Hx(x

′, θHx),y
x) + λH

4 LCE(Hw(x′ − x+ µ(X), θHw),y
z),

(6)
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where λG’s and λH’s are weighting factors and θ’s are the weights of the autoencoders
and classifiers. Once trained, the generation of watermarked images and watermarks
can be performed without additional training.

4.4 Discussion

Issue about the number of classes. To ensure that yx = yw, it’s necessary to pair in-
stances of the two datasets to share the same label. This presents a challenge because the
watermark set must have more classes than the target dataset for class-by-class pairing.
To overcome this challenge requirement, we employed the modulo operation, which re-
turns the remainder of a division. This allows us to replace the condition with yx ≡ yw

(mod Nwcls), where Nwcls represents the number of classes in W. This allows for
effective pairing even when the number of classes differs between the datasets.

Verification metric. We utilized a strict Black-box Test [33], assuming that malicious
users provide only predicted classes without additional information. Considering class
imbalance, we implemented mean class accuracy (mAcc) on µ(X) +w with yw as:

1

Nw
cls

Nw
cls∑

c=1

P(F(µ(X) +w, θF ) = c|yw = k) > τ, (7)

where P(·) indicates probability. If there is no cheating, F cannot perform well on
µ(X) + w. On the contrary, suspicion arises when the model exhibits a higher mAcc
than a predetermined threshold τ . If the two datasets, X and Z have different numbers
of classes, we can use F(µ(X) +w, θF ) ≡ k (mod Nw

cls).

Threshold determination. For verification, it is important to define a threshold that is
unattainable for clean models by chance. We assume an ideal scenario where the mAcc
of a clean model follows a Gaussian-like distribution, peaking at 1

Nw
cls

, with negligi-
ble probability at 0% mAcc. Given this assumption, it’s unlikely for a clean model to
achieve 2× 1

Nw
cls

. This assumption is based on the secret dataset being distinct from the

target dataset, allowing us to set a minimum threshold at 2
Nw

cls
. We validate this assump-

tion empirically in Section 7.1. While empirical rule can determine thresholds based
on standard deviations, approximating the distribution requires extensive training and
computation. The practical solution of 2

Nw
cls

offers a cheap alternative.

5 Experiments I: Comparison with Prior Works

In this section, we compared our work to backdoor attacks data poisoning, and radioac-
tive data in various aspects such as computing time, invisibility, harmlessness, verifi-
cation ability using CIFAR10 dataset. For all method, we marked 50% of the training
data. For backdoor attacks, there are two main approaches: clean labeled and label-
noised. We used label-noised backdoor attacks like badnets [10] and blended [5] for
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Method Time Cost Clean Model Unlimited Invisibility
(sec/image) Labeled? Agnostic? # Verification? (avg. SSIM)

BadNets [10] 1.67e-7 ✗ ✓ ✓ 0.8569
Blended [5] 2.50e-6 ✗ ✓ ✓ 0.9775

Hidden Trigger [32] 4.40e-1 ✓ ✗ ✓ 0.8859
Sleeper Agent [35] 1.27e+0 ✓ ✗ ✓ 0.8751
PoisonFrogs [34] 2.31e-1 ✓ ✗ ✗ 0.8738
MetaPoison [13] 1.70e+0 ✓ ✗ ✗ 0.8576

Bullseye [3] 2.90e-1 ✓ ✗ ✗ 0.8737
Gradient Matching [8] 6.86e-1 ✓ ✗ ✗ 0.8722
Radioactive Data [31] 1.36e-1 ✓ ✗ ✓ 0.9202

Proposed 1.07e-3 ✓ ✓ ✓ 0.9785

Table 3: Basic Specification of Various Methods.

only assessing basic specification. For clean labeled backdoor attacks, including hidden
trigger [32] and sleeper agent [35], we affixed ten distinct triggers to the training data,
assigning one unique trigger per class. Regarding data poisoning (i.e. poison frogs [34],
meta poison [13], bullseye [3], gradient matching [8]), we selected one verification im-
age per class, resulting in a total of ten verification images (multi-target setting with a
5% budget per verification image). For radioactive data [31], we marked 50% of the
training data and the entire test data. The prior works require reference model, so we
adopted a ResNet18 trained on benign CIFAR10 as it. Official codes of [8,31,35] were
used. In our approach, we concealed Fashion MNIST behind the CIFAR10 dataset using
a pre-trained DWN. As the pre-trained DWN, we employed U-Net [30] as autoencoders,
and Vanilla CNN with four convolution layers and dropouts as classifiers. Please note
that we applied watermarking to 50% training data for every experiment.

5.1 Comparison in Fundamental Specifications

We first assessed about fundamental properties. The harmlessness was gauged based
on the validation accuracy on benign data, with a higher validation accuracy signifying
less impact on the target task. The time cost includes only watermarking time per image,
excluding training time for DWN and the reference model. Then, Structured Similarity
(SSIM) [42] between benign and watermarked images was used to measure invisibility.
Table 3 summarizes specifications of every methods. Label-noised backdoor attacks can
be identified through visual inspection of images due to incorrect labels. Clean-labeled
backdoor attacks, data poisoning and radioactive data rely on reference models, ren-
dering them model-dependent and time-consuming, with visible watermarks. Data poi-
soning has limitations regarding the number of victim images. Our proposed approach
outperforms these methods by generating less visible, model-agnostic watermarks, ex-
ecuting faster, and having no restrictions on the number of verification images.

5.2 Comparison in Effectiveness of Watermark

Purpose and Setting. We conducted a comparative analysis on CIFAR10 focusing
on harmlessness and verifiability across different methods, including backdoor attacks,
data poisoning, radioactive data, and our work. For all method, we watermarked ran-
domly selected 50% of the training data. The experiments were carried out under three
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scenarios: ResNet18 from scratch for 100 epochs, MobileNetV2 from scratch for 300
epochs, and MobileNetV2 from ImageNet pre-trained weights for 100 epochs. Each
scenario was repeated 10 times with data augmentation. Harmlessness was evaluated
by measuring the validation accuracy on a benign dataset, excluding ten images used
for verification in data poisoning to ensure accuracy. For Verification ability, we mea-
sured own metrics of backdoor attacks, data poisoning, radioactive data, and our work.
The ASR, which is the success rate of intended misclassifications, was used as a metric
for backdoor attacks and data poisoning. For radioactive data, we compared the differ-
ence between the validation losses of the benign and the radioactive-marked dataset.
For our work, we measured all of mAcc, ASR, and the difference between losses.
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Fig. 6: Comparisons of performance to recent works using Left: ResNet18 from scratch, Mid-
dle: MobileNetV2 from scratch, and Right: MobileNetV2 from ImageNet pre-trained. Each dot
represents a training result of each trial. “Performance of Hidden Training” means “mAcc” for
the proposed method and “ASR” for others.

Results. The results are depicted in Fig. 6. Note that the ResNet18 was used as a ref-
erence for clean-labeled backdoor attacks, data poisoning, and radioactive data. In con-
trast, our method works without the need for any reference model. For backdoor at-
tacks, both the hidden trigger consistently failed for all cases. The sleeper agent showed
a marginally higher ASR only for the known architecture (ResNet18), but failed for un-
seen architectures. Regarding data poisoning, most attempts were unsuccessful except
for gradient matching. The gradient matching often achieved higher ASR, but lower
validation accuracy on benign CIFAR10. Please note that data poisoning can affect
only few verification images, whereas our method has no limit on the number of water-
marks. Our method outperformed all prior works, achieving higher validation accuracy
for both benign CIFAR10 and watermarked data. Further, our approach consistently
reported significant accuracy on the watermarks in every trial, underscoring its relia-
bility. In contrast to radioactive data, our work showed lower validation loss on benign
CIFAR10 and a more significant difference between validation losses of benign and
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Dataset Method
Val Acc on Val mAcc on Val

SSIM
Benign (%) Watermark (%) mASR(%)

CIFAR100

Clean 71.79±0.18 N/A N/A 1.0000
Sleeper Agent 66.59±0.46 N/A 4.20±0.84 0.8821

Gradient Matching 66.53±0.25 N/A 32.00±5.88 0.8797
Proposed 68.27±0.15 30.35±1.04 N/A 0.9710

FER2013

Clean 68.89±0.29 N/A N/A 1.0000
Sleeper Agent 62.68±0.37 N/A 11.02±3.05 0.8392

Gradient Matching 63.36±0.30 N/A 47.62±19.34 0.8197
Proposed 64.63±0.45 38.15±0.64 N/A 0.9833

*FMNIST

Clean 94.21±0.10 N/A N/A 1.0000
Sleeper Agent 93.55±0.14 N/A 0.00±0.00 0.7882

Gradient Matching 93.35±0.21 N/A 6.67±5.48 0.7771
Proposed 93.66±0.21 22.31±2.02 N/A 0.9744

*FMNIST: Fashion MNIST

Table 4: Applicability to various datasets.

Val Acc on Val mAcc on
Architecture Benign (%) Watermark (%)

EfficientNetB0 Clean 96.43±0.24 9.89±0.08
(Transfer) Cheating 96.27±0.29 54.18±2.15
PVTv2-B0 Clean 95.00±0.37 10.29±0.12
(Transfer) Cheating 94.54±0.42 51.39±2.32

ResMLP-12-224 Clean 96.14±0.21 10.19±0.31
(Transfer) Cheating 95.44±0.40 53.10±1.74
PiT Tiny Clean 94.78±0.39 9.71±0.32
(Transfer) Cheating 94.59±0.32 48.09±3.21

Table 5: Applicability to various architectures

watermarked data. From the results, we can conclude that our work outperforms prior
works in terms of harmlessness, reliability in verification.

6 Experiment II: General Applicability

The prior experiment showed feasibility and superiority of our work in limited settings.
This section introduces extensions to further datasets, architectures and tasks.

6.1 Application to Further Architectures and Datasets

Purpose and Setting. To broaden the scope of our evaluation beyond the initial lim-
ited settings, which focused on a few architectures and solely the CIFAR10 dataset, we
expanded our analysis to include additional architectures and datasets, thereby affirm-
ing the widespread applicability of our work. We incorporated CIFAR100, FER2013
[9], and Fashion MNIST for this extended evaluation. CIFAR100 (100 classes) and
FER2013 (7 classes) were assessed against the most effective previously identified
methods: sleeper agent for backdoor attacks and gradient matching for data poison-
ing. The reference models included ResNet18 and a Benign CNN, while the cheating
models utilized DenseNet-BC [12], trained from scratch. CIFAR100’s auxiliary dataset
comprised Fashion MNIST and MNIST (10 classes each), while FER2013’s auxiliary
dataset consisted of the first 7 MNIST classes. Also, we tested the following archi-
tectures as cheating models on CIFAR10 (target) and Fashion MNIST (auxiliary): Ef-
ficientNet [37], PVTv2 [41], ResMLP [39], and PiT [11]. We trained each architec-
ture 35 epochs starting from ImageNet pre-trained weights, employing SGD optimiza-
tion, warmup, label smoothing, and data augmentation (i.e., spatial transformation and
mixup), repeated multiple times to ensure robustness and reliability of the results.
Results. Table 4 demonstrates that our work excels in three key aspects: 1) harmless-
ness, 2) invisibility, and 3) verifiability across all datasets. Also, our work consistently
outperforms in mAcc on the watermark across various architectures, as presented in Ta-
ble 5. These findings lead us to conclude that our work effectively operates on diverse
architectures and datasets, making it universally applicable. In all cases, our proposed
threshold attained 100% accuracy for distinguishing cheating models from clean ones.
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Tiny ImageNet
Val Acc on Benign (%) Val mAcc on Watermark (%)

Clean 48.23±1.46 8.84±2.29
Cheating 46.84±1.14 34.37±5.61

ImageNet
Val Acc on Benign (%) Val mAcc on Watermark (%)

Clean 70.42±0.41 11.90±1.33
Cheating 70.14±0.72 43.95±3.21

Table 6: Validation accuracy of MobileNetV2
on Tiny ImageNet and ImageNet.
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Fig. 7: Results on segmentation and an exam-
ple, with emphasized watermark for clarity.

6.2 Application to Fine-grained Classification

Purpose and Setting. To address the limitation of requiring the auxiliary dataset to
contain more classes than the target dataset, we employed the modulo operation. We
validated the solution using both Tiny ImageNet, which consists of 100 classes, and
ImageNet, which comprises 1,000 classes. Fashion MNIST was used as a auxiliary
dataset, and 50% of training datasets were watermarked. We trained MobileNetV2 on 1)
watermarked Tiny ImageNet [16] (0.9883 avg. SSIM) from scratch and 2) watermarked
ImageNet (0.9570 avg. SSIM) from a benign ImageNet pre-trained model.
Results. Table 6 shows the average performance results from 30 and 5 trials for each
dataset. As shown, training MobileNetV2 on watermarked data leads to a marginal
decrease in accuracy on the benign validation dataset, but demonstrates significant per-
formance improvements in detecting watermarks. Conversely, the accuracy of the clean
model is significantly diminished, nearing the chance level. This finding proves the ver-
ifiability of our work, even when the target dataset contains a greater number of classes
compared to the auxiliary dataset. Therefore, it is not necessary to prepare a auxiliary
dataset that matches the target dataset in terms of the number of classes.

6.3 Application to Image Segmentation

Purpose and Setting. To extend our work to image segmentation, we adapted our
method to create spatially varying watermarks. We resized the auxiliary data to a smaller
scale, such as 8x8 pixels, and repeatedly stitched it to segments of the 50% PASCAL
VOC 2012 data, considering each segment’s label. This produced segment-wise water-
marked images, as shown in Fig. 7. To adjust the DWN for segmentation, we replaced
the two classifiers with simple autoencoders featuring dropout. We trained a segmen-
tation autoencoder with a MobileNetV2 backbone from scratch on this watermarked
dataset, employing the Adam optimizer with learning rate decay starting from 1e-3, a
batch size of 60, and data augmentation. In image segmentation, meaningful informa-
tion resides in silhouettes, requiring a higher threshold compared to 2

Nz
cls

.
Results. Fig. 7 provides an example image and shows the performances on the be-
nign Pascal VOC dataset and the watermarked dataset after training. In the context of
image segmentation on Pascal VOC, we adopted mIoU as the evaluation metric. As
shown, there is almost no damage to the original task. For verifying cheating mod-
els, we adopted the mean class pixel accuracy on the masked region. The watermark
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(a) ResNet18 on CIFAR10 (b) DenseNet on CIFAR100

Fig. 8: Histogram of mAcc on watermark of clean and cheating models. For both cases, the clean
models hardly achieved higher mAcc than 2

Nz
cls

, but all of the cheating models achieved.

was surreptitiously learned in most of the trials, enabling successful verification of the
cheating models. While the clean models reported accuracies lower than 0.2, 79% of
the cheating trials exhibited accuracies higher than 20%. This outcome indicates the
potential applicability of our watermarking to other tasks beyond image classification.

7 Ablation Studies

This section introduces some ablation studies. In the supplementary material, we pro-
vide additional studies, including analyses on robustness to defense and debiasing.

7.1 Histogram Analysis of mAcc on Watermark

Purpose and Setting. This study aims to validate our threshold criterion. We trained
ResNet18 on CIFAR10 and DenseNet on CIFAR100, both with and without water-
marks, from scratch multiple times. Then, we assessed the mAcc of these models on
our watermark. For each setting, we performed over 300 training runs using the Adam
optimizer, 1e-3 learning rate, and 100 epochs. By histogram analysis of the mAcc val-
ues, we were able to reveal their distribution.
Results. Fig. 8 shows the histogram analysis results, clearly indicating a Gaussian dis-
tribution of collected mAcc values. Notably, there are no occurrences at 0% mAcc or

2
Nz

cls
mAcc, though peak points may slightly deviate towards 2

Nz
cls

mAcc for clean mod-

els. On the contrary, all cheating models reported the higher mAcc than 2
Nz

cls
. The pro-

posed threshold, 2
Nz

cls
, is approximately 7 times and 5 times the standard deviation of

the mean for both watermarked cases. In other words, clean model can achieve mAcc
higher than 2

Nz
cls

with less than 3e-5% by empirical rule. Hence, if a model shows higher

than 2
Nz

cls
mAcc, it can be confidently deemed as a cheating model.

7.2 Visualizations

Purpose and Setting. We applied visualization techniques, t-SNE and CAM, to under-
stand how watermark functions. To visualize, two ResNet18 models were trained: one
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t-SNE
(Clean Model)

t-SNE
(Cheating Model) Class Activation Map

Fig. 9: Visualization results. In the CAM figure, each row represent Top: benign image, Middle:
CAM for watermarked image, and Bottom: CAM for watermark. Then, each column indicates
1st&4th: input image, 2nd&5th: CAM of clean model, and 3rd&6th: CAM of cheating model.

on the benign CIFAR10 dataset (Clean) and the other on the watermarked CIFAR10
dataset (Cheating). Then, we extracted the last latent features, and visualized them as
2D t-SNE plot and CAM.
Results. Fig. 9 shows t-SNE, example watermarked images and CAM. In t-SNE, fea-
ture vectors from benign data, whether from clean or cheating models, form distinct
and discriminative clusters. However, for the watermarks, cheating models exhibit par-
tial clustering patterns, while clean models lack such clustering tendencies entirely.
For CAM, the cheating model responds to all three types: benign, watermarked, and
watermark. In contrast, the clean model disregards the watermarks. This validate the
unintended knowledge about hidden bias and provides additional evidence of cheating.

8 Conclusion

This paper presents “undercover bias,” an innovative approach involving embedding
class-wise hidden bias as a watermarks to detect model trained on a specific dataset.
When a model is trained on our watermarked dataset, it subtly learns and reacts to the
embedded watermarks, offering evidence of cheating. Initially, we observed high per-
formance on classification of background images, demonstrating unintentional learning
of bias. We then developed two preliminary approaches of injecting class-wise hid-
den bias, noise placement and dataset overlaying. From the approaches, we found the
requirements: robustness to spatial transformation and invisibility. By addressing the re-
quirements, we established our undercover bias. We validated that our proposed method
is more effective at verifying cheating models across various conditions compared to
existing methods, despite the watermark being less visible and less disruptive. We also
provided ablation studies and visualizations. Further, we successfully applied the un-
dercover bias to fine-grained image classification, and image segmentation.
Limitation. Our work is applicable only to ordinal or numerical data, but not applica-
ble to nominal data (i.e., text) because small differences can drastically change mean-
ings. Additionally, our watermarking method causes only slight performance degrada-
tion compared to models trained on benign data.
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