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Supplementary Material

In this supplementary material, we provide details omitted in the main text
including:

– Section A: Comparison with similar datasets from previous work;
– Section B: Implementation and results of the mid-layer representation com-

pression, where we compress representations with minimal performance drop;
– Section C: Empirical study on the similarity between mid-layer features and

patch embedding;
– Section D: Ablation study on the trajectory loss, non-equidistance pose of

image triplets and the backbone architecture;
– Section E: Additional results on a large-scale dataset Objaverse [19].

A Dataset Comparison

Our benchmark proposes a dataset generation/rendering configuration that 1)
adheres to the self-supervised learning (SSL) setting where neither semantic nor
geometric labels are used for training; 2) allows evaluation on out-of-domain data
with the introduction of the relative pose. We demonstrate the configuration on
the ShapeNet dataset [8] as an example. There exist similar datasets derived from
ShapeNet, such as 3DIEBench [26] and 3DIdent [59]. Although such datasets are
designed for or suitable for benchmarking SSL geometric representations, we still
provide comparisons in Table 4 given they are also derived from ShapeNet.

Table 4: Comparison with other datasets consisting of rendered images of objects from
ShapeNet [8]. Our dataset 1) does not use pose labels for training and adheres to SSL
geometric representation evaluation setting; 2) enables evaluation on out-of-domain
data; 2) has complete and even pose coverage for rendered images.

Our dataset 3DIEBench 3DIdent
Out-of-domain evaluation Yes No No
Pose coverage (−π, π) (−π/2, π/2) (−π/2, π/2)

Pose sampling method even uneven uneven
Numer of images 1.5M 2.5M 275k

B Compressing Mid-Layer Representations

Motivations and Methods. While mid-layer representations in networks like
ResNet18 offer improved pose estimation accuracy, their large dimensions lead to
inefficiencies. For instance, the “conv3” layer’s dimension is twice that of “conv4”
and 32 times larger than the pooled “feature” layer, resulting in inefficiency
due to high dimensionality. To address this, we propose compressing mid-layer
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Table 5: Mid-layer representations have higher pose estimation accuracies but lower
efficiency due to high dimensionality. We show they can be compressed to lower dimen-
sions with minimal performance drop for absolute pose estimation. For relative pose
estimation, compressed features have a larger gap (4-5%) but outperform representa-
tions from the feature layer.

embedding # dim abs. pose acc. (%) rel. pose acc. (%)

conv3 16,384 92.5 87.8
compressed conv3 512 91.4 (↓1.1) 82.4 (↓5.4)
conv4 8,192 91.9 85.2
compressed conv4 512 90.8 (↓1.1) 81.2 (↓4.0)

feature 512 87.8 77.5

representations to lower dimensions using projection heads with multi-layer per-
ceptrons. As depicted in Fig.3, we denote the “conv3” layer representation as z3

and the “conv4” layer representation as z4. We then use a projection head gϕ to
reduce the dimensionality of these representations: for “conv3”, y3 = g3ϕ(z

3); and
similarly for “conv4”, y4 = g4ϕ(z

4). More details are available in the supplemen-
tary.

Then the trajectory loss Ltraj (Eqn.3) can be adapted for compressed feature
y, e.g., when using “conv3” as the final representation, we can use the following
trajectory loss:
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Results. For fair comparison, we make the compressed mid-layer representation
y has dimension of 512, the same as the dimension of feature-layer z. Our findings
in Table 5 demonstrate that mid-layer features can be effectively condensed
32x into smaller dimensions as “feature”-layer with only a slight reduction in
performance regarding absolute pose estimation (1%). In the case of relative
pose estimation, while there is a more noticeable difference in performance (4%-
5%) with compressed features, they still outperform the representations derived
from the feature layer.

Implementation Details. For clarity, we provide details on compressing
mid-layer representations of SimCLR [10] (Fig.9). For the semantic loss and
downstream semantic classification, we always follow the baseline setting and
make no changes. We take SimCLR as an example. For pose estimation, we use
an MLP-based head to compress mid-layer features and the compressed feature
to classify pose. Trajectory is also put post-compression-head.

C Mid-Layer Features and Patch Embedding

As mentioned earlier, the improved SSL geometric representation quality by
mid-layer representations could be partly attributed to the similarity to the
patch embedding. Empirically, for the VICReg [4] baseline, we partition the
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Fig. 9: We compress mid-layer representation from “conv4” layer, taking SimCLR [10]
as an example. For the semantic loss, we follow SimCLR’s setting and add the loss
after SimCLR projector. For the pose loss, we use an MLP-based head to compress
mid-layer features and the compressed feature to classify pose. Trajectory loss is put
after the compression head.
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Fig. 10: Mid-layer representations improve SSL geometric representation quality,
which could be partly attributed to the similarity to the patch embedding. Empirically,
a similar trend of pose estimation accuracy gain was observed with patch embedding.
The metric is relative pose estimation accuracy on in-domain data.

input image to m × m patches (m = 1, 3, 4 in our experiment). As in Fig.10,
using patch embedding has a similar effect as mid-layer representation and also
improves the pose estimation accuracy.

D Ablation Study

Our examination focuses on VICReg with proposed trajectory regularization,
using relative pose estimation as the task and the feature layer for evaluation.
Layer for Trajectory Loss. In Fig.11U, we vary the layer utilized for the
trajectory loss Ltraj during training. Note that this is different from the setting
in other experiments where trajectory loss is always constrained on feature z
during training, and we change the layer as the representation for evaluation.
The influence is < 2% for different layers.
Trajectory Loss Weight. In Fig.11L, the method exhibits a low sensitivity to
changes in λ.
Non-Equidistant Poses. Our method works when the adjacent views in the
trajectory loss are sampled from smooth trajectories, where the speed varies
gradually. We show this with an empirical experiment in Table 6. Adjacent views
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Fig. 11: Hyperparameter analysis on the trajectory-regularized VICReg, which is eval-
uated for relative pose estimation with representation being the feature-layer z. Left:
While fixing the feature layer for the downstream task of pose estimation, we change
different layers to impose the trajectory loss Ltraj. Feature-layer gives the best per-
formance, although the difference is less than 2%. Right: The highest performance is
achieved at trajectory loss weight λ = 0.01, though the method is not very sensitive to
λ.

exhibit non-equidistant poses during training: we randomly sample cubic Bézier
curves with the starting pose pL and ending pose pR, where the angle between
pL, pR is (5◦, 20◦). The middle pose pC is randomly sampled from the curve to
simulate the speed variation. Non-equidistant pose trajectory regularization also
gives 4% gain.
Different Backbones. We study if the performance gain of mid-layer repre-
sentations generalizes to other network/backbone architectures. For VICReg [4]
with trajectory loss, on ResNet50 backbone we also observe a similar trend of
improvement with mid-level features as the ResNet18 backbone (Table 7).

Table 6: We render adjacent views that
exhibit non-equidistant poses. Similar to
equidistant poses, the trajectory loss with
non-equidistant poses also gives 4% gain for
relative pose estimation.

Rel. pose acc(%)
VICReg 76.7
VICReg+equidistant traj. 80.5
VICReg+non-equidistant traj. 80.3

Table 7: For VICReg [4] with the
proposed trajectory loss, we use dif-
ferent backbones and also observe
performance gains of relative pose
estimation accuracy with mid-layer
representations.

Rel. pose acc(%) feature conv4 conv3
Res18 80.5 88.3 89.4
Res50 82.6 90.1 91.0

E Objaverse Results

We consider a 3D dataset with more diversity, Objaverse [19], with visual com-
parisons in Fig.12. We carry out the experiment on a subset of Objaverse [19],
and the improvement is universal on every category. The semantic categories
used in this experiment: airplane, bench, car, chair, coffee table and gun. Results
show that the proposed trajectory regularization is effective and using mid-layer
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Table 8: Our trajectory regularization improves
1.3% relative pose estimation accuracy; with feature
layer, ours has a 3.3% gain
Objaverse acc. conv4 feat

method VICReg VICReg+traj. VICReg VICReg+traj.

airplane 86.4 87.0(↑0.6) 77.9 81.9(↑4.0)
bench 90.3 92.1(↑1.8) 85.0 88.6(↑3.6)
car 91.0 91.9(↑0.9) 87.3 90.2(↑2.9)
chair 88.7 90.6(↑1.9) 83.2 87.3(↑4.1)
coffee table 88.6 90.0(↑1.4) 82.0 84.7(↑2.7)
gun 81.4 82.8(↑1.4) 70.6 73.2(↑2.6)
avg 87.8 89.1(↑1.3) 81.0 84.3(↑3.3)

Fig. 12: Objaverse (left) has
higher diversity than ShapeNet
(right).

representation helps: with conv4 layer, our trajectory regularization improves
1.3% relative pose estimation accuracy; with feature layer, ours has a 3.3% gain
(Table 8). The full-scale Objaverse experiment with comprehensive comparison
will be included in the revision.
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