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1 Detail about supplementary.

In this supplementary, we provide the following additional experiments and detail
about our work.

– Table 1: Comparison with open source CLIP variants on Classification and
Retrieval.

– Table 2: Comparison of SILC and baselines trained on open-source dataset.
– Section 2: Classification and Retrieval performance across different model

size.
– Section 3: Performance of Teacher vs Student.
– Section 4: SILC applied to CNN backbone.
– Section 5: Additional Results on Zero-Shot Semantic Segmentation including

PACL [14].
– Section 6.1: Importance of aligning all global views with text.
– Section 7: Additional Qualitative Results.
– Table 8: Comparison between SILC and MaskCLIP [7]
– Section 8: Additional details about evaluation, training and limitations.

2 Classification and Retrieval performance of additional
SILC models.

In our main manuscript Table 1, we show that SILC models improve on CLIP
and SigLIP at ViT/B16 size. We additionally train CLIP (WebLI), SILC-C*
and SILC-C with ViT/L16 to show that our improvements are consistent at
larger model size too. We also train SILC-C* and SILC-C at ViT/B8 to study
the trade off between model size vs patch size. We report the results in Ta-
ble 3. Comparing SILC-C* with CLIP (WebLI) at ViT/L16, we observe that our
model consistently improves over the baseline to set a new state-of-the-art at this
model size too. SILC-C* achieves a 1.3 points improvement over CLIP (WebLI)
on ImageNet zero-shot classification. Similar improvements are noted over other
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classification and retrieval metrics. Finetuning SILC-C* to get SILC-C shows
consistent improvements over all metrics showing that the cleaner subset ben-
efits the larger model too. We also train SILC-C* with ViT/B8. ViT/B8 has
the same number of learnable parameters for the Transformer as B/16 but uses
half the patch size. We observe that the smaller patch size allows this model to
consistently outperform the B/16 model. However, the smaller patch-size also
means that the transformer has to process a longer sequence of tokens at each
encoder block. As a result, ViT/B8 has approximately the same compute re-
quirement as ViT/L16. We observe that The B/8 model performs slightly worse
than the ViT/L16 model. Finally we see that the ViT/B8 model also benefits
from finetuning on the cleaner subset of WebLI and SILC-C ViT/B8 consistently
improves on SILC-C* ViT/B8.

3 Performance of Teacher vs Student for SILC*.

Our training setup consists of the student that is updated with gradient descent
and a teacher that is updated with an EMA update. For comparisons in our
main manuscript, we report the performance for the teacher. We additionally
compare the teacher with the student in Table 4. During training we observe that
the teacher converges faster than the student but both converge to about the
same performance towards the end of training for zero-shot classification, few-
shot classification and retrieval. However for zero-shot segmentation, the teacher
achieves superior performance compared to the student. Similar observation has
been made by earlier self-supervised works [3, 15] for self-supervised models.
However in their case, the teacher always outperforms the students. In our setup,
since the student is updated with image-text loss, it achieves similar performance
to the teacher on classification and retrieval.

4 SILC applied to CNN backbone.

To show SILC’s universality beyond ViT, we ablate SigLIP and and SILC-S*
for 2B Example-Seen at ResNetv2-50. SILC-S* achieves IM0shot/COCO I2T
Ret/ COCO T2I Ret 67.7/59.5/39.2 to SigLIP’s 64.9/57.9/38.2. We then
scale SILC-S* to RNv2-101 for 20B Example-Seen to get the best CNN based
VLM at this model size achieving IM0shot/COCO I2T Ret/ COCO T2I Ret
79.2/70.0/52.8.

5 Additional Results for Zero-shot Semantic
Segmentation.

TCL [4], the previous state-of-the-art in zero-shot semantic segmentation, en-
sembles their learned model with MaskCLIP [24] by tuning a mixing factor on
the predictions of the two models. However, this mixing factor violates the zero-
shot protocol proposed by [19] as the model has access to segmentation labels
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ImageNet Retrieval COCO
Model ViT type Validation v2 ReaL ObjectNet I2T@1 T2I@1
CLIP [16] ViT/B16 68.3 61.9 - 55.3 52.4 33.1
OpenCLIP [11] ViT/B16 70.2 62.3 - 56.0 59.4 42.3
MetaCLIP [20] ViT/B16 72.1 65.1 - 61.4 59.4 41.3
EVA-CLIP [18] ViT/B16 74.7 67.0 - 62.3 58.7 42.2
DFN-2B [9] ViT/B16 76.2 68.2 - 63.2 60.4 43.4
CLIP (WebLI) [23] ViT/B16 74.1 66.8 80.9 69.6 61.7 43.9
SILC-C* (Ours) ViT/B16 75.3 68.4 82.5 74.1 62.5 44.9
SILC-C (Ours) ViT/B16 76.2 69.1 82.8 74.6 66.1 49.1
SigLIP [23] ViT/B16 75.1 68.0 81.9 70.1 62.6 44.9
SILC-S* (Ours) ViT/B16 75.8 68.7 83.0 73.6 63.0 44.6
SILC-S (Ours) ViT/B16 76.6 69.4 83.5 74.6 66.2 48.7
SILC-C* (Ours) ViT/B8 77.5 70.5 84.0 78.1 64.5 46.0
SILC-C (Ours) ViT/B8 78.2 71.6 84.4 78.7 67.3 50.3
CLIP [16] ViT/L14 75.5 69.0 - 69.9 56.3 36.5
OpenCLIP [11] ViT/L14 74.0 61.1 - 66.4 62.1 46.1
MetaCLIP [20] ViT/L14 79.2 72.6 - 74.6 60.0 43.8
CLIPA-v2 [12] ViT/L14 79.7 72.8 - 71.1 64.1 46.3
Datacomp1B [10] ViT/L14 79.6 73.1 - 69.9 65.1 47.0
EVA-CLIP [18] ViT/L14 79.8 72.9 - 75.3 63.7 47.5
DFN-2B [9] ViT/L14 81.4 74.6 - 74.0 65.6 48.6
SigLIP [23] ViT/L16 80.5 74.2 85.9 77.9 69.5 51.5
CLIP (WebLI) [23] ViT/L16 79.7 73.3 85.3 77.3 67.7 48.9
SILC-C* (Ours) ViT/L16 81.0 74.6 86.3 81.6 68.4 50.9
SILC-C (Ours) ViT/L16 81.4 75.5 86.7 82.2 70.1 52.8
OpenCLIP [11] ViT/G14 80.0 73.6 - 72.8 67.4 51.4
Datacomp1B [10] ViT/G14 82.7 77.0 - 76.9 67.8 50.0
EVA-CLIP [18] ViT/E14 82.1 75.6 - 79.4 68.7 51.1
SILC-S* (Ours) ViT/G16 83.7 77.8 87.9 85.4 73.2 54.7

Table 1: We compare our SILC models with publically available contrastive
image-text models and show that SILC models achieves the best performance. Best
number for each model configuration is bolded.

during the mixing factor tuning. We additionally report the performance of TCL
using author’s checkpoint by removing the ensemble with MaskCLIP in Table 5.
We show that this results in slight drop in performance. We advice future works
to not touch segmentation labels to tune parts of their models to be consistent
with the zero-shot protocol. The TCL [4] results reported by the authors in their
main paper additionally use PAMR to refine the predicted segmentation of their
model and remove some noise. The authors also report the performance of their
model without PAMR in their supplementary which we have reported in our
main manuscript. We also list TCL with PAMR numbers in Table 5 to show
that post refinement can give boost in performance but it can mask the actual
performance of the learned model. Refinement steps can improve all methods as
shown in TCL’s supplementary. Therefore, we do not use refinement in our work
as we are interested in the raw zero-shot segmentation performance of the model.
We additionally perform multi-scale evaluation for our best model SILC-C. Mul-
tiscale evaluation consists of the followings steps 1. Compute logits at multiple
scales. 2. Resize them to original label size. 3. Average the logits and compute
predictions. We observe that this further improves the zero-shot segmentation
performance of SILC-C.
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Model Dataset Example-Seen ImageNet 0 shot ImageNet Few shot COCO Retrieval
T1 1shot 5shot 10shot I2T@1 T2I@1

SigLIP [23] CC3M 50M 17.5 8.9 17.7 21.2 14.6 10.6
SILC-S* (Ours) CC3M 50M 25.2 14.8 26.5 30.5 22.0 17.4
MaskCLIP [7] YFCC15M 500M 44.5 - - - 41.4 25.5
SigLIP [23] CC12M 500M 38.4 19.4 35.1 39.9 37.4 25.2
SILC-S* (Ours) CC12M 500M 47.1 28.4 44.9 49.0 42.8 31.3
SigLIP [23] LAION400M 5B 67.4 33.5 53.5 58.0 58.7 41.2
SILC-S* (Ours) LAION400M 5B 70.8 37.8 57.5 61.1 61.5 43.2
OpenCLIP [11] LAION2B 13B 70.2 - - - 59.4 42.3
SigLIP [23] LAION2B 5B 68.9 34.6 54.8 59.3 62.3 44.4
SILC-S* (Ours) LAION2B 5B 72.4 38.9 58.6 62.4 64.4 46.2
SILC-S* (Ours) LAION2B 20B 74.6 42.0 61.1 65.2 66.0 47.9

Table 2: Consistency on open source datasets. We show that SILC models con-
sistently outperforms baselines when trained on open-source datasets. SILC-S* trained
for 5B E-S on LAION2B already outperforms the much more tuned OpenCLIP which
was designed on this dataset. SILC-S* trained for 20B E-S achieves the best reported
performance on open source datasets at ViT/B16. This further shows the strong per-
formance of SILC models.

Comparison with PACL (WebLI). We report zero-shot semantic segmenta-
tion results on an additional baseline PACL [14] in Table 5. Since PACL check-
points and code are not available, we contacted the authors and closely followed
their instructions in our implementation. We train a small MLP as a residual on
top of our CLIP (WebLI) B/16 model similar to the authors. We use the cleaner
small subset of WebLI with 100 Million image-text pairs for this experiment and
report the performance in Table 5. We observe that PACL performs worse than
TCL and SILC models. Since our reproduced numbers are different from the
reported numbers in PACL manuscript, we contacted the authors and discussed
their evaluation protocol in detail. PACL uses segmentation label supervision
at test time and tunes a threshold on the model’s prediction to only extract
image regions where the model has a high confidence. The segmentation perfor-
mance is then only evaluated over these regions and not the full label from the
dataset. Hence the PACL [14] performance reported in their main manuscript
is not directly comparable with our protocol. Since we are interested in the raw
zero-shot semantic segmentation performance of the model over the full image,
we do not perform this step and show that SILC models outperform PACL for
our protocol.

6 Additional Ablation.

6.1 Impact of not aligning all global views with text.

We utilize multiple global views in our local-to-global correspondence learning
branch similar to previous works in self-supervised learning [3, 15]. However, for
this objective to be complimentary to image-text contrastive learning, we found
that we need to align all global views with text. Otherwise the two objectives
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Zero-Shot Classification Few-shot classification Retrieval
Model ImageNet CIFAR100 ImageNet CIFAR100 COCO

T1 T1 1shot 5shot 10shot 1shot 5shot 10shot I2T@1 T2I@1
CLIP (WebLI) [23] ViT/B16 74.1 68.4 42.8 63.2 67.3 39.4 59.6 64.6 61.7 43.9
SILC-C* (Ours) ViT/B16 75.3 71.0 44.6 64.3 67.8 42.8 64.6 69.6 62.5 44.9
SILC-C (Ours) ViT/B16 76.2 72.3 45.3 65.0 68.5 45.2 66.9 71.3 66.1 49.1
SigLIP [23] ViT/B16 75.1 69.8 44.0 64.2 68.4 39.0 61.7 66.3 62.6 44.9
SILC-S*(Ours) ViT/B16 75.8 69.2 45.2 64.6 68.4 40.3 63.3 67.4 63.0 44.6
SILC-S(Ours) ViT/B16 76.6 70.6 45.9 65.2 68.9 41.8 64.9 68.9 66.2 48.7
SILC-C* (Ours) ViT/B8 77.5 72.6 48.9 67.3 70.7 47.9 68.6 73.1 64.5 46.0
SILC-C (Ours) ViT/B8 78.2 73.2 49.5 67.8 71.1 49.3 69.7 73.8 67.3 50.3
CLIP (WebLI) [23] ViT/L16 79.7 77.5 52.9 72.1 75.5 42.6 69.3 73.7 67.7 48.9
SILC-C* (Ours) ViT/L16 81.0 80.5 54.8 73.9 76.8 53.2 75.8 79.5 68.4 50.9
SILC-C (Ours) ViT/L16 81.4 81.4 55.6 74.2 76.9 53.7 77.2 80.5 70.1 52.8

Table 3: Performance of additional SILC models. We show that SILC-C* out-
performs CLIP (WebLI) at ViT/L16 too. Moreover, we show that SILC-C achieves
consistent improvement over SILC-C* at ViT/B8, ViT/B16 and ViT/L16. Best num-
ber for each model configuration is bolded. Second best is underlined.

Model ImageNet zero shot CIFAR100 zero shot ImageNet Few shot COCO Retrieval ZS Segmentation
T1 T1 1shot 5shot 10shot I2T@1 T2I@1 A-150 Stuff PC-59

SILC-C*Teacher 75.3 71.0 44.6 64.3 67.8 62.5 44.9 17.2 18.2 29.3
SILC-C*Student 75.3 71.0 44.6 64.3 67.8 62.5 44.9 16.1 17.3 27.4

Table 4: Comparing SILC*Teacher and Student performance, we observe that
both teacher and student behave similarly on classification and retrieval tasks. However,
the teacher achieves superior performance on zero-shot segmentation.

diverge. The image-text loss for unaligned global views start to increase as the
model over-fits them for local-to-global correspondence learning. This hurts the
model performance as shown in Table 6 (last row).

7 Additional Qualitative Results.

7.1 Additional Qualitatives on Zero-Shot Semantic Segmentation.

We report additional qualitative results for Zero-Shot Semantic Segmentation
in Figure 1 for A-150 and Figure 2 for PC-59. They demonstrate that SILC-C
produces less noisy segmentations compared to CLIP and is less prone to class
confusions such as booth/computer, field/grass, road/screen, swivel chair/chair,
blind/curtain, counter/countertop, counter/kitchen, rock/mountain, rock/sand,
animal/sea, armchair/sofa, and food/glass.

7.2 Additional Qualitatives on Open Vocabulary Semantic
Segmentation.

We report additional qualitative results for Open Vocabulary Semantic Segmen-
tation in Figure 3 for A-150 and Figure 4 for PC-459. They demonstrate that
SILC-C better distinguishes semantically similar classes such as bookcase/shelf,
countertop/counter, cabinet/shelf, swivel chair/ chair, stool/chair, pier/bridge,
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Model A-150 PC-59 Cityscapes VOC-20 COCO-Stuff
TCL + PAMR [4] 17.1 33.9 24.0 83.2 22.1
PACL (WebLI) [14] 13.2 21.0 16.0 60.4 12.9
TCL no ensemble [4] 14.1 28.7 22.0 76.7 18.6
TCL [4] 14.9 30.3 23.1 77.5 19.6
SigLIP [23] 13.6 22.9 20.8 64.7 13.4
SILC-S* (Ours) 16.7 28.6 23.4 72.1 17.3
SILC-S (Ours) 18.6 30.9 25.2 76.3 19.7
SILC-C* (Ours) 17.2 29.3 25.1 73.5 18.2
SILC-C (Ours) 19.3 31.6 26.9 77.5 20.8
SILC-C+ Multiscale (Ours) 22.5 36.2 33.5 83.8 24.1

Table 5: Additional Zero-shot Semantic Segmentation comparisons. We re-
port additional results for the previous state-of-the-art TCL. We additionally report
result for another baseline PACL. SILC consistently outperforms the baselines on the
same evaluation protocol i.e. raw predictions of the model.

Model ImageNet 0 shot ImageNet Few shot COCO Retrieval
T1 1shot 5shot 10shot I2T@1 T2I@1

CLIP (WebLI) 71.7 36.4 57.7 62.5 59.1 42.9
+ additional views 73.6 38.7 60.8 65.7 60.6 43.2
+ EMA 73.7 38.4 60.7 65.5 61.3 43.1
+ Self Dist (SILC-C*) 74.3 39.9 61.2 65.7 62.7 43.9
CLIP (WebLI) + EMA + Self Dist 67.7 24.6 40.6 45.8 52.3 36.9

Table 6: We ablate over each component of our model to verify our design choices.
The addition of image augmentation and EMA to CLIP (WebLI) improves classification
and retrieval metrics while only slightly impact the segmentation. Adding local-to-
global consistency by self-distillation, we observe an improvement across the board
especially on segmentation metrics. On the other hand, directly adding self-distillation
without aligning all the global views with contrastive loss (additional views) hurts
performance.

desk/shelf, train/metal, building/shed, wall/brick, sign/poster, cloth/plastic, ground/sand,
and boat/water.

8 Additional Details.

8.1 Evaluation Protocol.

We follow the original CLIP [16] paper for the zero-shot classification and re-
trieval evaluations. We follow the original ViT [8] paper for few-shot classification
evaluation. The evaluation code is used from the big_vision codebase [1, 2].
For our segmentation evaluations, we export our model weights to PyTorch. We
follow previous works [4, 17, 21, 24] and implement our zero-shot segmentation
evaluation in MMSeg [6] with Sliding-Window evaluation. We directly use the
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Initialization Training data COCO LVIS
AP APall APrare

CLIP (WebLI) WebLI N-grams 40.4 31.9 29.2
SILC-C*(Ours) WebLI N-grams 41.8 33.3 30.4
SILC-C(Ours) WebLI N-grams 42.3 33.4 30.0
SigLIP WebLI N-grams 40.9 32.8 30.4
SILC-S*(Ours) WebLI N-grams 42.7 34.2 32.4
SILC-S(Ours) WebLI N-grams 42.5 34.3 32.1

Table 7: Training OWLv2 for Object Detection with SILC models offers consis-
tent improvement over CLIP and SigLIP for open vocabulary object detection. These
models are trained with pseudo labels from WebLI N-grams [13] and evaluated zero-
shot on COCO and LVIS.

Zero-Shot Classification Retrieval Zeroshot segmentation
Model ImageNet CIFAR100 COCO A-150 PC-59 Cityscapes VOC-20 COCO-Stuff

T1 T1 I2T@1 T2I@1
MaskCLIP (WebLI) [7] 74.4 69.0 61.4 43.6 16.3 27.2 23.0 72.8 15.9
CLIP (WebLI) [23] 74.1 68.4 61.7 43.9 15.0 24.0 22.6 69.5 15.0
SILC* (Ours) 75.3 71.0 62.5 44.9 17.2 29.3 25.1 73.5 18.2
SILC (Ours) 76.2 72.3 66.1 49.1 19.3 31.6 26.9 77.5 20.8

Table 8: Comparing SILC*with MaskCLIP [7], we observe that our pretraining
framework consistently outperforms this baseline too. We reproduce MaskCLIP with
WebLI data and observe that it improves on baseline CLIP (WebLI) for zero-shot
classification and zero-shot segmentation. However, SILC-C* and SILC-C consistently
outperform it on all metrics. The best performance is bolded, the second best is
underlined.

model’s prediction for segmentation and do not perform any refinement. For
Open Vocabulary segmentation, we directly use the codebase from Cat-Seg [5]
and do not perform any hyper-parameter tuning. All results for Cat-Seg are
reported using the training protocol from the authors.

8.2 Additional Training Details.

We provide training detail for SILC* and SILC in the main manuscript. We
provide additional training detail in this supplementary. SILC* at ViT B/16 can
be trained on 256 TPUv4 chips meanwhile the B/8 and L/16 models require 512
chips. The training takes around 5 days. For the fine-tuning stage for SILC, we
use a initial learning rate of 1e−4 and use a rsqrt scheduler [22] with 50000 cool
down steps. We do not use warm up or weight decay at this stage. The MLP
used for our self-distillation loss consists of two layers with gelu activation and
dimension of 2048. This is followed by a bottleneck of dimension 256 followed
by a projection to the output dimension K of size 65536. We do not perform
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Model Classification Captioning Question Ans.
ImageNet SUN397 COCO GQA VQAv2

CLIP (WebLI) 82.3 82.4 118.1 52.5 63.5
SILC-C*(Ours) 83.8 83.4 120.8 53.1 64.6
SILC-C(Ours) 83.9 83.4 122.0 53.6 64.7
SigLIP 82.5 82.2 117.5 51.9 63.0
SILC-S*(Ours) 83.7 82.9 121.2 53.2 64.5
SILC-S(Ours) 83.9 83.2 122.0 54.2 65.2

Table 9: Evaluating SILC visual representation with LiT-Decoder in a multi-task
setup, we observe consistent improvements on all tasks compared to CLIP and SigLIP.
These improvements are especially apparent for tasks that require local understanding
of the image i.e. Captioning and Question Answering.

tuning of each loss’s contribution and directly optimise the sum of loss coming
from our model’s two components.

8.3 Limitations.

While SILC models improve on limitations of CLIP to better encode local se-
mantics, they still come with limitations of contrastive image-text framework.
While we significantly improve on zero-shot semantic segmentation performance,
the performance is still far away from practical usage. We still require to train
the model for open vocabulary segmentation to get better performance. Sim-
ilarly, object detection, captioning etc. needs to be trained separately on top.
Finally,SILC requires significant compute to train. Future works can focus on
making the pretraining more compute efficient.
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Image CLIP SILC G.
Truth

Image CLIP SILC G.
Truth

Fig. 1: Additional qualitative results for zero-shot segmentation on A-150.

Image CLIP SILC G.
Truth

Image CLIP SILC G.
Truth

Fig. 2: Additional qualitative results for zero-shot segmentation on PC-59.
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Image CLIP-L SILC-L G.
Truth

Image CLIP-L SILC-L G.
Truth

Fig. 3: Additional qualitative results for open-vocabulary segmentation on
A-150.

Image CLIP-L SILC-L G.
Truth

Image CLIP-L SILC-L G.
Truth

Fig. 4: Additional qualitative results for open-vocabulary segmentation on
PC-459.
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