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Abstract. Image-Text pretraining on web-scale image caption datasets
has become the default recipe for open vocabulary classification and re-
trieval models thanks to the success of CLIP and its variants. Several
works have also used CLIP features for dense prediction tasks and have
shown the emergence of open-set abilities. However, the contrastive ob-
jective used by these models only focuses on image-text alignment and
does not incentivise image feature learning for dense prediction tasks. In
this work, we introduce SILC, a novel framework for vision language pre-
training. SILC improves image-text contrastive learning with the simple
addition of local-to-global correspondence learning by self-distillation.
We show that distilling local image features from an exponential moving
average (EMA) teacher model significantly improves model performance
on dense predictions tasks like detection and segmentation, while also
providing improvements on image-level tasks such as classification and
retrieval. SILC models sets a new state of the art for zero-shot classifica-
tion, few shot classification, image and text retrieval, zero-shot segmen-
tation, and open vocabulary segmentation. We further show that SILC
features greatly benefit open vocabulary detection, captioning and visual
question answering.

Keywords: Vision Language Models · Self-supervised Learning · Open-
Vocabulary

1 Introduction.

Recent advancements in self-supervised learning [9, 11, 23, 45] and weakly su-
pervised learning on web data [26, 47, 64] has spearheaded the development of
foundational language [14, 48] and vision-language models [26, 47, 64]. These
methods get around the long term challenge of obtaining large labelled dataset
by developing self-supervision objectives. Developing open vocabulary computer
vision models that can reason beyond a pre-determined set of classes has been
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Fig. 1: SILC improves image-text contrastive learning with the addition of local-to-
global correspondence learning by self-distillation. As a result, SILC models learn more
locally aware visual features that are also grounded in language. SILC models offer sig-
nificant improvements over CLIP (WebLI) and SigLIP over a wide variety of computer
vision tasks including classification, segmentation, detection, captioning, VQA and re-
trieval.

a long-term challenge. The introduction of web image-text datasets and the
progress in compute have enabled significant advances in this field. Popularized
by CLIP [47], contrastive pretraining utilizes large datasets with paired image
and text from the web and trains a vision-language model (VLM) to embed them
to a shared latent space. Since these models are trained on a wide set of concepts,
the learned VLM allows for open vocabulary inference [47]. However, developing
open vocabulary dense prediction models for segmentation and detection is still
an open challenge, since internet-scale datasets do not have dense pixel-level la-
bels. Several works have found that incorporating VLMs in segmentation and
detection models can unlock some open vocabulary abilities [13, 16, 27, 57, 62].
Since CLIP is not trained for these tasks, these methods get around its limita-
tions by tuning the learned model with some dense prediction labelled dataset.
One set of methods utilizes a normal segmentation / detection model for class
agnostic inference and then predict the class logits with CLIP [13, 34]. Another
family of methods aims to distill VLMs directly into a dense prediction model
and utilize the text transformer to generate the class weights to predict log-
its [21, 28]. These works have been highly impactful towards expanding open
vocabulary abilities of dense prediction models. However, since the contrastive
pretraining objective does not explicitly encourage learning good local features
for dense prediction tasks, these methods are limited by the VLM’s intrinsic
performance [45] as we also show later in our experiments.

In the self-supervised literature, enforcing local-to-global consistency by self-
distillation has emerged as a powerful pretraining objective [9, 45, 73] to learn
vision backbones that are competitive on classification as well as dense predic-
tion tasks, e.g. segmentation and detection. However, these backbones can not
directly be used for zero-shot or open vocabulary inference as they do not contain
any notion of class or language in the model. In this work, we propose SILC,
which combines the advantages of these two branches and unifies image-text
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contrastive pretraining and local-to-global consistency learning. SILC utilises a
web image-text dataset to learn one model that improves VLM performance on
existing classification and retrieval tasks while especially improving performance
on zero-shot and open vocabulary segmentation, open vocabulary detection, cap-
tioning and Visual Question Answering (VQA).

Our contributions are as follows: 1. We propose a novel training framework for
VLMs that pairs contrastive pretraining on image-text data with self-distillation
on web images. 2. While conceptually very simple, we show that by learning
stronger visual features with better local understanding, SILC models offer con-
sistent improvements on multitude of computer vision tasks. These improve-
ments are especially apparent on tasks that require better local understanding
including zero-shot segmentation, open vocabulary segmentation, open vocabu-
lary detection, captioning and Visual Question Answering (VQA). 3. We con-
tribute a new foundation model that sets a new state of the art on zero-shot
classification, few-shot classification, image-to-text and text-to-image retrieval,
zero-shot semantic segmentation and open vocabulary semantic segmentation.

2 Related Works.

Image-Text Pretraining. Vision-language model (VLM) pretraining [12, 26,
30, 47] aims to learn generic multimodal representations that generalize to a
wide range of downstream tasks. Substantial progress has been made in this
field towards better pretraining objectives [26, 55] and better large-scale image-
text dataset [12, 47]. One of the most popular objective functions is contrastive
learning [26, 47] that pulls positive image and text pairs close and pushes negative
ones apart in the joint embedding space. It is capable of scaling to a large-scale
pretraining dataset and learning highly discriminative image and text features.
Many works [20, 33, 42, 43, 52, 60, 64, 65] in this direction have demonstrated
improvements across zero-shot image classification and retrieval benchmarks.

Another line of research focuses on generative learning via autoregressive
text generation [53–55]. Compared to the contrastive learning, generative learn-
ing usually performs better on text generation tasks e.g., image captioning and
VQA. Finally, there are hybrid methods [1, 30, 31, 35, 51, 61] that combine mul-
tiple objective functions including generative, contrastive and multi-task losses.
While many VLMs [47, 55] mainly focus on learning global image-text alignment
that benefit image-level downstream tasks, our work aims to develop a new VLM
that benefits both image-level and pixel-level tasks. There have been a few at-
tempts [17, 18, 36, 68] to improve VLMs for dense prediction tasks including
object detection and semantic segmentation. However, they are either modeling
the fine-grained patch-text interactions that are not scalable [18, 36] or rely on
additional bounding box annotations [32, 68]. In this work we propose to pair
image-text contrastive learning with self-distillation to learn a VLM.
Self-supervised Learning. Self-supervised learning is another popular pre-
training paradigm where features are learned from image data itself. One branch
of methods optimize the network to solve pretext tasks e.g., image coloring [67],
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inpainting [46], transformation prediction [22], and patch ordering [38]. Another
family of approaches adopt instance-level discriminative learning via contrastive
learning [11, 25] and clustering [7, 8]. Recently, [24] shows that masked autoen-
coder is also a scalable self-supervised learner. Several works have tried incorpo-
rating SSL in VLM pretraining with SimCLR loss [11, 40], distilling image cap-
tions [72] or distilling from masked images [17]. However, these works have not
incorporated the most promising local-to-global consistency learning paradigm
from this literature. We found that this requires careful design as outlined in our
method section. Comparisons with the strongest baseline MaskCLIP [17] are
available in Supplementary. Our work is inspired by DINO [9] which shows that
segmentation emerges from learning local and global-views consistency. However,
DINO cannot be directly used for zero-shot and open-vocabulary inference be-
cause it only learns image features. In contrast, our method is trained on image
and text data jointly. We show that together with text data, the DINO objec-
tive allows the model to develop an understanding of local features and their
semantic classes. Therefore our model can potentially directly benefit far more
computer-vision applications.

Zero-shot Semantic Segmentation. Zero-shot semantic segmentation aims
to segment arbitrary visual concepts in the wild without dense annotations [56].
Methods in this area rely on image-text pairs from a combination of image cap-
tioning and web image-text dataset. Since these datasets do not have dense
labels, they utilize a self-supervised image region to text attention criterion.
Group-VIT [56] proposes to introduce grouping tokens that cluster similar im-
age patches under each group token. MaskCLIP [71] and CLIPpy [49] found that
normal CLIP training results in zero-shot segmentation emerging. ReCo [50] pro-
poses a refinement process on top of MaskCLIP by retrieval and co-segmentation.
Finally, the current state-of-the-art TCL [10] learns a decoder to upsample the
grounded patch embeddings and learns a region to text attention.

Open Vocabulary Segmentation and Detection. Open-vocabulary seman-
tic segmentation methods aim to segment images according to a vocabulary of
class categories provided at test-time containing additional unseen classes. In
contrast to zero-shot segmentation, open-vocabulary semantic segmentation has
access to a semantic segmentation dataset with a limited vocabulary for train-
ing. Recent methods transfer the open-vocabulary capabilities of CLIP from
image- to pixel-level predictions. LSeg [29] learns pixel-wise visual embeddings
that align with CLIP text embeddings while OpenSeg [21] learns class-agnostic
segmentation proposals to pool visual features for region-text grounding. Zeg-
Former [16] and ZSseg [57] introduce a two-stage framework, which first learns
class-agnostic segmentation mask predictions and classifies the corresponding re-
gion using a frozen CLIP. OVSeg [34] further finetunes CLIP on region-text pairs
to compensate for the appearance shift of masked crops. To avoid the overhead
of two stages, CAT-Seg [13] learns the aggregation of cost volumes between text
embeddings and dense image embeddings from CLIP. Towards open vocabulary
detection one family of methods, e.g. OWVLv2 [37], RegionCLIP [68], Detic [74],
3Ways [2], pseudolabel boxes for image caption data to use for localization pre-
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training. An orthogonal family of methods including [32, 58, 59, 66] pretrain
models to align class agnostic pseudoboxes to text as pretraining.
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Fig. 2: SILC is a two-tower transformer based VLM. The first component of our
training objective uses a global view of an image covering a large area and its paired
caption to optimise a batch-wise contrastive loss for images and texts. The second com-
ponent of our training objective enforces local-to-global consistency by self-distillation
between the main model (the student) and an Exponential Moving Average (EMA)-
based teacher. This local-to-global correspondence additionally allows the model to
learn good visual features. Together the two objectives allow the model to excel at
both traditional VLM tasks as well as tasks that require local understanding like seg-
mentation and detection.

3 Method.

SILC builds on the contrastive pretraining framework of CLIP [47] and SigLIP [64].
SILC consists of a two-tower transformer model with a shared embedding space.
We utilize a web-scale paired image-text dataset and rely on large-scale pretrain-
ing to learn the weights of the model. The first component of our pretraining
objective focuses on aligning matching image-text pairs close together and away
from other images and texts in the batch. This objective has been incredibly
successful in recent literature [47, 64]. However, the contrastive objective in its
current form does not focus on capturing rich local image semantics necessary for
dense prediction tasks like segmentation and detection. Therefore, we propose
to pair the contrastive pretraining objective with a local-to-global consistency
objective that uses self-distillation as shown in Figure 2. SILC gets its name
from the two training objectives consisting of Self-Distillation from Images and
Image-Language Contrastive Alignment from Image-Text pairs.
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3.1 Aligning Image and Text.

The contrastive pretraining objective relies on the Info-NCE framework [44].
It utilizes large amount of web-scale image-text dataset to learn an alignment
between paired image and text. Given a minibatch B = {(I1, T1), (I2, T2), . . . },
where (Ii, Ti) denotes a matching pair of image and text, the contrastive objec-
tive encourages matching image and text pairs to lie close together in a shared
embedding space. The image Ii is processed by a learnable Vision Transformer
F to get its feature embedding. Similarly, the tokenized text Ti is processed
by a learnable Text Transformer G to get its feature embedding. These feature
embeddings are normalized by their l2 norm to get fi =

F(Ii)
∥F(Ii)∥2

∈ RJ for the

image Ii and gi =
G(Ti)

∥G(Ti)∥2
∈ RJ for the paired text Ti where J is the feature

dimension of the shared embedding space. The dot product of fi and gi com-
putes their cosine similarity and is optimized with a pair of cross-entropy losses
as proposed by CLIP [47] or a sigmoid loss as proposed by SigLIP [64]. The
batch-wise contrastive losses of CLIP/ SigLIP, represented as Limage−text, rely
on a large batch size to align image-text pairs. This objective tuned over a large
amount of data learns a shared embedding space between image and text and
thus can be used for zero-shot transfer to multitude of computer vision tasks.

3.2 Distilling Local Image Features.

The image-text contrastive loss has shown to be very successful in learning zero-
shot transfer models [26, 47]. Models learned with this objective have also been
used to improve dense prediction tasks like open vocabulary segmentation and
detection. However, the contrastive objective alone does not explicitly focus on
learning good visual features for dense prediction tasks. These tasks require
local image semantics to be sufficiently encoded in the output image and patch
embeddings. Enforcing local-to-global consistency has emerged as a powerful
technique to accomplish this on large unlabelled image data [9, 45, 73] in self-
supervision literature. However, these methods can not be directly used for open
vocabulary models as they are trained without any language information. In
the second component of our training framework, we take inspiration from this
subset of literature and additionally add local-to-global consistency as a training
objective for images in our image-text dataset.

The basic idea of this objective is as follows. A teacher network gets a global
view of the image representing the scene as a whole and produces a feature em-
bedding. A student model gets a partial view of the same image and produces a
feature embedding. A self-distillation objective is introduced where the student
needs to match the prediction of the teacher while only having partial infor-
mation. This enforces the model to learn local semantics and their relation to
global semantics of the scene. We add this criterion for the image encoder F . We
add a projection as a learnable MLP on top of the image encoder to map from
the original shared embedding space of dimension J to K where K > J . The
student FS is the main image encoder with a learnable projection head. Since
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we rely on noisy web scale image-text data, we do not have an oracle teacher for
the student to match. We therefore construct our teacher FT as a exponential
moving average of the student FS from the previous training iterations to realize
our self-distillation framework:

FT ← λFT + (1− λ)FS , (1)

where λ controls the update step of the teacher. For a given image Ii, the teacher
processes its global crop to produce pt

i ∈ RK and the student processes its local
crop to produce ps

i ∈ RK . To prevent the teacher from collapsing to a trivial
solution, we apply sharpening on the outputs of teacher with τt and student with
τs. To encourage each feature dimension to contribute to the output feature, we
additionally introduce a centering operation on the prediction of the teacher.
The centering term c ∈ RK is initialized with 0 and is updated by a momentum
update with a factor of m with the first order batch statistics of the teacher’s
prediction at each step as follows: c← mc+ (1−m) 1

|B|
∑|B|

i=1 p
t
i.

To learn local-to-global correspondences, the student is faced with an in-
formation asymmetry. The student is given a local view of an image which is
realized as a random crop over a small region of the image. The teacher, however,
has access to a global view of the image containing more information about the
scene. The student is tasked with matching the semantics of the teacher while
only having partial information. Therefore, for a given image, the model needs
to learn local semantics of the image and how it would fit in the global context
of this image. This is realized as a knowledge-distillation loss where the student
and the teacher’s feature vectors are first converted to a probability distribution
by applying a softmax on the teacher prediction Pt(I

gl
i ) = softmax((pt

i − c)/τt)
and student prediction Ps(I

lc
i ) = softmax(ps

i/τs). The student is optimized to
match the teacher with a cross-entropy loss,

Lself−dist = −Pt(I
gl
i )⊺log(Ps(I

lc
i )). (2)

This self-distillation objective incentivises the image encoder to learn local se-
mantics of images over the large web scale dataset. Since the teacher is con-
structed with the student’s weights, and the image level features are pooled from
patch embeddings in a Vision Transformer, this allows for richer local semantics
to be captured in the image level as well as the patch level features.

While this objective has been explored in self-supervised learning [9, 45],
to the best of our knowledge, we are the first work to show its complimentary
nature to image-text contrastive learning on web-scale dataset. We show that
when combined with text, this objective allows the model to develop a local
understanding of the semantics of an image grounded in language. We find two
important modifications compared to previous works that allows it to be compli-
mentary to image-text contrastive learning. 1. Each global view used in Lself−dist

needs to be aligned with text, otherwise the two objectives diverge. This is re-
alized by computing the image-text contrastive loss for each global view while
maintaining the same batch size. 2. The momentum scheduler of the EMA should
not converge to 1.0. Otherwise the teacher stops learning from image-text loss as
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Zero-Shot Classification Few-shot classification Retrieval
Model ImageNet CIFAR100 ImageNet CIFAR100 COCO

T1 T1 1shot 5shot 10shot 1shot 5shot 10shot I2T@1 T2I@1
CLIP (WebLI) [64] 74.1 68.4 42.8 63.2 67.3 39.4 59.6 64.6 61.7 43.9
SILC-C* (Ours) 75.3 71.0 44.6 64.3 67.8 42.8 64.6 69.6 62.5 44.9
SILC-C (Ours) 76.2 72.3 45.3 65.0 68.5 45.2 66.9 71.3 66.1 49.1
SigLIP [64] 75.1 69.8 44.0 64.2 68.4 39.0 61.7 66.3 62.6 44.9
SILC-S*(Ours) 75.8 69.2 45.2 64.6 68.4 40.3 63.3 67.4 63.0 44.6
SILC-S(Ours) 76.6 70.6 45.9 65.2 68.9 41.8 64.9 68.9 66.2 48.7

Table 1: Comparing SILC* with baselines, we observe that our pretraining frame-
work results in a significant improvement over both CLIP and SigLIP objectives. We
reproduce both CLIP and SigLIP on the same WebLI dataset [12] to quantify the
improvements from our proposed training objective. We further finetune SILC* on a
cleaner subset to get our final model SILC and see that it unlocks additional perfor-
mance without significant extra retraining. The best performance for each variant is
bolded, the second best is underlined.

the update step becomes too small in the later stage of the training. We therefore
use a fixed momentum.

4 Experiments.

We compare our SILC pretraining framework with both CLIP [47] and SigLIP [64]
on the same test bench and perform extensive experimentation. SILC models
based on the CLIP objective are represented by SILC-C and the SigLIP ver-
sions are represented by SILC-S. We show that SILC sets a new state of the
art on a variety of tasks: zero-shot classification, few-shot classification, retrieval,
zero-shot segmentation and open vocabulary segmentation. We further show that
SILC models also improve other local semantic understanding tasks including
open vocabulary detection, captioning and VQA.

4.1 Implementation Details.

We implement our model in jax in the big_vision codebase [4, 5], following
the contrastive pretraining setups from [64], and use the WebLI dataset[12] for
our experiments. We utilize two global views cropped between (0.4− 1.0) of the
original image area and eight local views cropped between (0.05 − 0.4) of the
original image area for the self-distillation loss. The global views are resized to
(256× 256) and the local views are resized to (96× 96). The teacher momentum
λ is kept fixed at 0.966 and the center update momentum m is kept fixed at
0.9 through the training. The teacher temperature τt is fixed at 0.04 and the
student temperature τs is fixed at 0.1. K is 65536. We resize the original image
to (256×256) for the contrastive loss between image-text pairs. We trained with
a batch size of 16k on Google TPUs. We use example-seen to represent how
many image and text pairs are drawn from the dataset throughout the training.
We train all baselines in our main comparisons in Table 1 for 20 Billion example-
seen on the WebLI dataset [12] following [64]. Our models trained on WebLI
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are marked as SILC*. We use a rsqrt learning scheduler [63] with base learning
rate of 0.001 with 50000 warm up and 50000 cooldown steps. Additional training
details including compute cost are discussed in the supplementary.

We additionally finetune our model using a smaller but cleaner WebLI sub-
set [12] for 1 Billion additional example-seen and represent this model as SILC.
The smaller WebLI subset contains 100 million image-text pairs with finer-
grained text filters etc.

4.2 Classification and Retrieval.

We compare our pretraining framework with CLIP and SigLIP under the same
training and evaluation protocol in Table 1. We compare at ViT/B16 and see
that the introduction of self-distillation to both consistently improve their per-
formance on zero-shot classification, few shot classification and retrieval. On
zero-shot classification on ImageNet, SILC-C* improves on CLIP (WebLI) by 1.2
points, similarly we notice an improvement of 2.6 points on CIFAR-100 showing
the benefit of local feature self-distillation. Similar improvements are noted for
few-shot classification where SILC-C* improves over CLIP (WebLI) by 1.8, 1.1
and 0.5 points on ImageNet 1 shot, 5 shot and 10 shot classification respectively.
We make similar observation on retrieval where SILC-C* shows improvements
on image to text as well as text to image retrieval. Moving to SigLIP versions
of the model, we see a similar trend where the introduction of self-distillation
objective allows SILC-S* to consistently improve almost all metrics over the eval-
uated tasks. We therefore conclude that capturing better local semantics results
in learning stronger visual features which also helps tasks that require global
understanding of the image.

Comparing SILC* models with SILC, we notice that the finetuning on the
cleaner subset unlocks additional performance for the model without signifi-
cant extra training. For the CLIP based SILC-C, We notice another 0.9 point
improvement over SILC-C* on zero-shot ImageNet classification. We observe
improvements of the same magnitude on few-shot classification. Comparing re-
trieval performance, we see a significant increase in retrieval performance on
COCO where SILC-C achieves a 3.6 and 4.2 points improvement on Image to
Text and Text to Image Recall@1. The SigLIP based SILC-S follows a similar
trend and consistently improves on SILC-S* on all metrics. SILC models set a
new state-of-the-art for these tasks at ViT/B16 model size. We additionally pro-
vide system level comparison with open-source CLIP variants in Supplementary
Table 1, and performance of SILC trained with open source datasets (LAION
and Conceptual Captions) in Supplementary Table 2. We show that SILC pro-
vides consistent improvements over all CLIP variants.

4.3 Zero-Shot Semantic Segmentation.

Zero-shot semantic segmentation aims to measure the grounding performance
of a VLM usually from its patch embeddings. MaskCLIP [71] and CLIPpy [49]
found that this grounding naturally emerges as a consequence of image-text
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Fig. 3: Qualitative results on zero-shot segmentation show that SILC-C achieves
significant improvements over CLIP (WebLI). SILC-C produces less noisy segmentation
and better distinguishes semantic classes. This semantic segmentation emerges without
any segmentation supervision.

Model A-150 PC-59 Cityscapes VOC-20 COCO-Stuff
GroupVIT [56] 9.2 23.4 11.1 79.7 11.1
MaskCLIP [71] 9.8 26.4 12.6 74.9 16.4
ReCo [50] 11.2 22.3 21.1 57.7 14.8
TCL [10] 14.9 30.3 23.1 77.5 19.6
CLIP (WebLI) [64] 15.0 24.0 22.6 69.5 15.0
SILC-C* (Ours) 17.2 29.3 25.1 73.5 18.2
SILC-C (Ours) 19.3 31.6 26.9 77.5 20.8
SigLIP [64] 13.6 22.9 20.8 64.7 13.4
SILC-S* (Ours) 16.7 28.6 23.4 72.1 17.3
SILC-S (Ours) 18.6 30.9 25.2 76.3 19.7

Table 2: Comparing Zero-Shot Segmentation performance we see that SILC*
models trained on noisy web image-text data already outperform several ZS segmenta-
tion baselines that use cleaner image-text data. When we tune our model on a cleaner
subset of image-text data to get SILC-C, we see that it sets the absolute state-of-the-
art on 4 out of 5 datasets.

contrastive training. We use a Vision Transformer with a MAP pooling head [63].
We observe that grounding for our model emerges in the values of the MAP
head instead of the last encoder block. For a given set of possible classes in a
segmentation dataset, we obtain the corresponding text embeddings by querying
our text encoder with a standard prompt. We compute the cosine similarity
between the image patch embeddings and the text features of each class name
to generate a segmentation map in zero-shot. We report the mean-IOU (mIOU)
performance of our model in Table 2 and compare with baselines at ViT/B16
similar to previous works. We follow the evaluation protocol of TCL [10] without
the background class. However, we do not use any post-refinement e.g. PAMR
as we argue that the raw segmentation of a VLM is the true depiction of its
zero-shot performance.
Comparing against CLIP and SigLIP, we see that both SILC-C* and SILC-
S* show significantly superior zero-shot semantic segmentation performance.
In fact, both variants achieve multiple mIOU points improvements over all 5
datasets. This validates our hypothesis that the combination of image-text con-
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VLM Method A-847 PC-459 A-150 PC-59 VOC-20 VOC-21

CLIP-B/16 ZegFormer [16] 5.6 10.4 18.0 45.5 89.5 65.5
CLIP-B/16 ZSseg [57] 7.0 - 20.5 47.7 88.4 -
CLIP-B/16 OVSeg [34] 7.1 11.0 24.8 53.3 92.6 -
CLIP-B/16 CAT-Seg [13] 8.4 16.6 27.2 57.5 93.7 78.3
SILC-C-B/16 CAT-Seg [13] 13.4 (+5.0) 22.0 (+5.4) 36.6 (+9.4) 61.2 (+3.7) 95.9 (+2.2) 80.4 (+2.1)
SILC-S-B/16 CAT-Seg [13] 13.5 (+5.1) 21.9 (+5.3) 37.0 (+9.8) 61.2 (+3.7) 96.1 (+2.4) 80.9 (+2.6)

CLIP-L/14 ZSseg [57] 7.1 10.2 21.7 52.2 92.3 -
CLIP-L/14 OVSeg [34] 9.0 12.4 29.6 55.7 94.5 -
CLIP-L/14 CAT-Seg [13] 10.8 20.4 31.5 62.0 96.6 81.8
SILC-C-L/16 CAT-Seg [13] 15.0 (+4.2) 25.8 (+5.4) 37.7 (+6.2) 63.5 (+1.5) 97.6 (+1.0) 82.5 (+0.7)

CLIP-G/14 CAT-Seg [13] 13.3 21.4 36.2 61.5 97.1 81.4

Table 3: Comparing Open Vocabulary Semantic Segmentation performance,
we observe that SILC models improve over CLIP by significant margins on all unseen
test sets. SILC particularly improves the performance for challenging test sets with
large vocabularies. SILC-L/16 even outperforms the much larger CLIP-G/14. All mod-
els are trained on COCO-Stuff.

trastive learning and local-to-global correspondence learning allows the model
to develop better understanding of local semantics of the image grounded in lan-
guage. From Table 2, we observe that the CLIP objective in general results in
superior zero-shot segmentation than the SigLIP objective. This is also appar-
ent as we compare SILC-C* with SILC-S*. Moreover, we observe that finetuning
on a cleaner subset further improves the zero-shot segmentation performance of
both SILC-C and SILC-S. We observe that the CLIP variant SILC-C also out-
performs SILC-S here. We show the improvements of SILC on CLIP (WebLI)
qualitatively in Figure 3. We can observe that SILC is better at segmenting
and labeling semantic classes in images. We would like to emphasize that SILC
achieves this without any segmentation ground truth.

Comparing with current SOTA, we observe that SILC-C consistently beats
all specialized zero-shot segmentation baselines on 4/5 datasets to set a new state
of the art (SOTA). Compared to the previous state of the art TCL, SILC achieves
a remarkable 4.3 mIOU points improvement on A-150 [69, 70], 2.9 points im-
provement on PC-59 [39], and 4.9 points improvement on CityScapes [15]. Similar
improvements are noted on VOC-20 [19] and COCO-Stuff [6], however Group-
VIT maintains the best result on VOC-20. These methods use relatively cleaner
image captioning datasets for their segmentation specific training objectives. We
noticed that the improvements in zero-shot segmentation are achievable by just
finetuning on a cleaner subset of data. We did not observe superior performance
by learning an expensive patch-wise attention as proposed by PACL [41]. We
show in the supplementary that SILC models also outperform PACL trained on
WebLI. Methods like TCL and ReCo, which are designed to improve the zero-
shot segmentation performance of a frozen VLM, can in theory further improve
the performance of our model. However, since we aim to improve vision-language
pretraining over all tasks, this is out of the scope of this work.
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Fig. 4: Comparing qualitative examples for open vocabulary segmentation,
we observe that SILCw/ CAT-Seg better distinguishes semantically similar classes such
as field/grass, runway/road, grandstand/chair and sand/water than CLIP.

Initialization Training data COCO LVIS
AP APall APrare

CLIP (WebLI) WebLI N-grams 40.4 31.9 29.2
SILC-C*(Ours) WebLI N-grams 41.8 33.3 30.4
SigLIP WebLI N-grams 40.9 32.8 30.4
SILC-S*(Ours) WebLI N-grams 42.7 34.2 32.4

Table 4: Training OWLv2 for Object Detection with SILC models offers consis-
tent improvement over CLIP and SigLIP for open vocabulary object detection. These
models are trained with pseudo labels from WebLI N-grams [37] and evaluated zero-
shot on COCO and LVIS.

4.4 Open-Vocabulary Semantic Segmentation.

Open Vocabulary Semantic Segmentation aims to develop segmentation models
that can segment novel classes beyond the training vocabulary. Most recent
methods in this area rely on a pretrained CLIP due to its open-vocabulary
capabilities and adapt it for segmentation task. To evaluate the open vocabulary
segmentation potential of SILC, we take the current state-of-the-art model CAT-
Seg [13] and replace the CLIP model used by the authors with SILC. The models
are trained on COCO-Stuff-164k with 172 classes and tested on unseen datasets
with different vocabularies: ADE-20k with 847 or 150 classes (A-847/A-150),
Pascal Context (PC-459/PC-59), and Pascal VOC (VOC-20/VOC-21).

From Table 3, we observe that SILC significantly improves over CLIP [47].
In fact, SILC-C-B/16 performs on par with the much bigger CLIP-G/14 on
the three most challenging test datasets A-847, PC-459 and A-150. Moreover,
we observe that while SILC-S performed slightly worse than SILC-C in zero-
shot segmentation, it achieves slightly better performance when trained for open
vocabulary segmentation. SILC-S-B/16 further improve on the performance of
SILC-C-B/16. The observed improvements of SILC-C also transfer to the larger
ViT-L variant, where CAT-Seg with SILC-C-L/16 outperforms CAT-Seg with
CLIP-L/14 on all datasets by a significant margin. In particular, it achieves
more than +4 mIOU improvement on the challenging A-847, PC-459, and A-
150. SILC-L/16 even significantly outperforms the much bigger CLIP-G/14 on
all tested datasets. The improvements of SILC-C over CLIP are also reflected
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Model Classification Captioning Question Ans.
ImageNet SUN397 COCO GQA VQAv2

CLIP (WebLI) 82.3 82.4 118.1 52.5 63.5
SILC-C*(Ours) 83.8 83.4 120.8 53.1 64.6
SigLIP 82.5 82.2 117.5 51.9 63.0
SILC-S*(Ours) 83.7 82.9 121.2 53.2 64.5

Table 5: Evaluating SILC visual representation with LiT-Decoder in a multi-task
setup, we observe consistent improvements on all tasks compared to CLIP and SigLIP.
These improvements are especially apparent for tasks that require local understanding
of the image i.e. Captioning and Question Answering.

Model ImageNet 0 shot ImageNet Few shot COCO Retrieval ZS Segmentation Open Vocab Seg
T1 1shot 5shot 10shot I2T@1 T2I@1 A-150 Stuff PC-59 PC-459 A-150 PC-59

CLIP (WebLI) 71.7 36.4 57.7 62.5 59.1 42.9 11.8 12.9 20.1 18.6 30.5 57.7
+ additional views 73.6 38.7 60.8 65.7 60.6 43.2 11.7 13.0 20.0 19.2 32.1 57.8
+ EMA 73.7 38.4 60.7 65.5 61.3 43.1 11.9 13.3 20.5 19.0 32.2 57.5
+ Self Dist (SILC-C*) 74.3 39.9 61.2 65.7 62.7 43.9 12.2 15.3 21.1 21.0 33.3 60.7

Table 6: We ablate over each component of our model to verify our design choices.
The addition of image augmentation and EMA to CLIP (WebLI) improves classification
and retrieval metrics while only slightly impact the segmentation. Adding local-to-
global consistency by self-distillation, we observe an improvement across the board
especially on segmentation metrics.

in the qualitative examples in Fig. 4. We observe that SILC-C better distin-
guishes semantically similar classes such as grandstand/building, field/grass,
runway/road and grandstand/chair. Further, it improves segmentation in dif-
ficult cases and better handles transparent segments as shown in supplementary.
Results on additional WebLI models are also provided in supplementary with
similar conclusions.

4.5 SILC for Open-Vocabulary Detection.

We utilize OWLv2 [37] as a framework to test the open vocabulary detection po-
tential of SILC models. OWLv2 initializes a detection model with a contrastive
image-text model’s weights and utilizes pseudo labelled boxes from WebLI (We-
bLI N-grams [37]) to learn an open vocabulary detection model. We utilize the
test bench of the authors and retrain OWLv2 initialized from our VLM baselines
to report results in Table 4. We evaluate these models zero-shot on COCO and
LVIS without doing any finetuning on respective dataset to test their open vocab-
ulary performance. From Table 4 we observe that SILC models also benefit open
vocabulary detection thanks to learning better local semantics. SILC-S* achieves
an improvement of +1.8AP on COCO. The improvements are also consistent on
the challenging LVIS benchmark where SILC-S* achieves an improvement of
+1.4AP on all classes and a remarkable +2.0AP on rare classes. We make sim-
ilar observations as we compare SILC-C* with CLIP (WebLI) where SILC-C*
offers consistent improvements. This further validates that SILC models offer
better performance for dense tasks.
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4.6 Evaluating SILC features with LiT-Decoder.

LiT-Decoder [3] proposes to utilise a frozen image encoder and train a single
autoregressive decoder to learn a multi-task model for Classification, Caption-
ing and Visual Question Answering. We use LiT-Decoder as a framework to
evaluate the quality of visual representations learned by SILC models against
baseline CLIP (WebLI) and SigLIP. We use the authors’ implementation and
only replace the ViT with the respective baselines. We report results in Table 5.
We observe that SILC models offer consistent improvements in this multi-task
setup as well. Compared to SigLIP, SILC-S* improves classification by +1.2
points on ImageNet and +1.0 point on SUN397. The improvements are even
more profound on captioning (+3.6 CIDEr score on COCO) and Visual Ques-
tion Answering (+1.3 on GQA and +1.5 on VQAv2). These tasks greatly benefit
from SILC features’ ability to better encode local semantics. Similar improve-
ments are noted for CLIP based baselines. This further validates that SILC
features can simultaneously benefit multiple computer vision problems.

4.7 Ablation on Model Components.

We ablate on the various design choices of our model and their impact on various
tasks. We train all models for 5 Billion example-seen and report the performance
in Table 6. Since our method processes additional image augmentations in the
contrastive loss, we first test if our improvements are a consequence of process-
ing more augmentations. We observe that the introduction of additional image
augmentations (second row) improve the classification and retrieval metrics but
their impact on zero-shot segmentation and open vocabulary segmentation is
not as significant. When we add an EMA over this model’s weights similar to
our model (third row), we notice a slight improvement as seen in previous SSL
literature. Finally when we add the self-distillation from local crops, we see an
improvement across the board on all tasks. In particular, we observe the strongest
improvement on segmentation tasks highlighting our proposal’s impact on them.

5 Conclusion.

We propose to integrate local-to-global correspondence learning by self-distillation
as a complementary objective to the popular VLM contrastive objective of
CLIP [47] and SigLIP [64]. We show that the introduction of this results in
remarkable performance improvements on several computer vision tasks. We see
a consistent performance improvement on zero-shot classification, few-shot clas-
sification, and retrieval. We further test our VLM on zero-shot segmentation and
show that our training framework results in significant improvements without
using any dense ground truth. Finally we show that SILC models as pretrained
backbones significantly improve a model’s performance on open vocabulary seg-
mentation, open vocabulary detection, captioning and VQA. SILC models set a
new state of the art in Vision-Language Foundational Models.
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