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In this supplementary material, we provide additional qualitative results.
Please refer to the video and Sec. 1 for detailed. In Sec. 2, we demonstrate
the additional implementation details of our methodology. In Sec. 3, we provide
additional quantitative results on the Human3.6M [3] and HumanEva-I [6].

1 Qualitative Results with Video

We additionally provide richer qualitative results, including qualitative com-
parisons, visualizations of controllable motion predictions and visualizations of
diversity motion sampling. The video files are attached in the supplementary
material package and are named QualitativeComparisons.mp4, ControlablePre-
diction.mp4, and Sampling.mp4. Note that there are more cases shown in the
videos.

1.1 Qualitative Comparisons

As shown in Fig. 1, we summarize the initial and final frames of selected samples
from the video. The visualization includes initial poses of past human motions,
the ground-truth end poses, and the predicted end poses generated by various
methods across 10 samples. In qualitative comparisons, our method is compared
with DLow [9], START [7] and HumanMAC [2]. The red boxes in Fig. 1 indicate
accurate predictions, while the arrows represent abnormal predictions. These
baseline methods exhibit fewer accurately predicted end poses and occasion-
ally exhibit outlier poses, particularly evident in STARS. HumanMAC struggles
to accurately capture end poses in complex motions. The results consistently
demonstrate the ability of our approach to accurately capture the end pose
while preserving a decent level of diversity. Furthermore, our method predicts a
diversity of motions that are natural and coherent with past human motion.
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1.2 Controllable Motion Prediction

To further study the ability of our proposed SLD method for controllable motion
prediction, we show the results of editing two specific directions in Fig. 2. These
results illustrate how to adjust the coefficients to fine-grained control of motion,
specifically, the degree of arm tuck and hand lift height. These confirm that our
SLD method can achieve semantically controllable motion prediction, and can
even control only local motion while retaining global motion patterns.

1.3 Diverse Motion Sampling

To further study the versatility of motion patterns captured in our SLD by
motion queries. In Fig. 3 we can see that the motion patterns captured by the
motion queries include not only global motion patterns such as turning and
sitting, but also local motion patterns such as raising hands. These illustrate the
versatility of motion queries to capture global and local motion patterns in our
SLD, capable of encompassing human motion with high precision and fidelity.

2 Additional Details of Methodology

2.1 Training

In Sec. 3 of the main paper, we classify the loss functions into the following
three types: (1) Reconstruction loss Lr, including the reconstruction error with
the ground truth and the reconstruction error with the multi-modal ground
truth; (2) Diversity-promoting loss Ld; (3) Motion constraint loss Lc, including
historical reconstruction error for all generated motions, pose prior loss, limb
loss and angle loss for all poses in generated motions. Here, we provide detailed
formulations for these loss functions.

(1) Reconstruction error Lr(gt), represents the distance between the ground-
truth future motion and the best prediction among the K generated future mo-
tions, ensuring that SLD is able to capture accurate underlying future motion.
It is denoted as

Lr(gt) = min
k

∥Ŷk − Y ∥2. (1)

(2) The multi-modal reconstruction error [4] Lr(mmgt) represents the distance
between the multi-modal ground-truth [8] future motion and the best prediction
among the K generated future motions, encouraging that SLD can capture the
multi-modal accurate underlying future motion. It is formulated as

Lr(mmgt) =
1

M

M∑
m=1

min
k

∥Ŷk − Ym∥2. (2)
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The multi-modal ground truth is defined as {Ym}Mm=1 = {Ym|∥X−Xm∥ ≤ ϵ},
for future motions with similar starting poses clustering by a threshold ϵ , where
X is the past motion, the Ym are the future motions, and the Xm are the past
motion of Ym.

(3) Historical reconstruction error [5] Lh represents the distance between the
past motion and all the K generated past motions, encouraging that SLD can
capture future motions that are natural and coherent with past motion. It is
denoted as

Lh =
1

K

K∑
k=1

∥X̂k −X∥2. (3)

(4) Diversity-promoting loss [9] Ld represents pairwise distances between
K generated future motions, ensuring SLD can cover a wide range of motion
modes and simultaneously to learn different patterns for the motion queries. It
is computed as

Ld =
2

K(K − 1)

K∑
j=1

K∑
k=j+1

exp(−∥Ŷj − Ŷk∥1
α

). (4)

(5) Pose prior loss [4] Lnf measures the likelihood of the poses Ŷ pose
k of K

generated future motions Ŷk by using the normalizing flow pnf . It is denoted as

Lnf = −
K∑

k=1

log pnf (Ŷ
pose
k ). (5)

(6) Limb loss [7] Ll constrains the limb length L̂k of Ŷk to be consistent with
the limb length L of ground truth. It is denoted as

Ll =
1

K

K∑
k=1

∥L̂k − L∥2. (6)

(7) Angle loss [4] La limits the angle of human skeleton to valid ranges.
Pose prior loss Lnf , limb loss Ll, and angle loss La encourage SLD to learn
representations that satisfy physical constraints. For more details on pose prior
loss Lnf , limb loss Ll, and angle loss La, please refer to [4].

2.2 Additional Implementation Details

The numbers of channels of the 4 STGCN layers in encoder E and decoder D

start from C
(0)
E = 3, then 128, 64, 128, and finally C

(4)
E = 128 respectively.
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C
(0)
D = 384, then 128, 64, 128, and finally C

(4)
D = 3. We concatenate the 256-

dimensional semantic code at the output of the E. The numbers of channels of
the 3 STGCN layers in the Query to Latent Projection module (QLP) are start-
ing from C

(0)
QLP = 256, then 512, 768, and finally C

(3)
QLP = 1024. At the same time,

the feature map sizes of the 3 STGCN layers in QLP are T
(0)
QLP = N , then N , N

2 ,

finally T
(3)
QLP = N

4 and S
(0)
QLP = V , then V , V

2 , finally S
(3)
QLP = V

4 . The N and V
here represent the number of frequency domain components and the number of
joints. The channel numbers of QLP’s 3-layer MLP are C(0)

MLP = 1024, then 1024,
512, and finally C

(3)
MLP = 30. SLD is learnable parameters and the size of it is set

to 30×256, where 30 is the number of directions and 256 is the size of the direc-
tions. For Human3.6M, the weight of each loss term (λr, λmm, λh, λd, λnf , λl, λa)
is set to (2, 1, 50, 64, 0.01, 500, 100). For HumanEva-I, the weight of each loss term
(λr, λmm, λh, λd, λnf , λl, λa) is set to (8, 4, 10, 16, 0.002, 50, 10). Only the first 20
DCT coefficients are used for the two datasets. The number of direction is set
to 30.

3 Additional Quantitative Results

3.1 Additional Quantitative Comparisons

To evaluate the realism of the predicted motion by the baseline method, in ad-
dition to the visual analysis of the realism of predicted motions in the main
paper, we here quantitatively compare two additional metrics proposed in Bel-
fuion [1], namely APDE and CMD. APED measures to which extent the diversity
of predicted motions is properly modeled and CMD measures the plausibility of
predicted motions. As shown in Tab. 1, baseline methods mainly boost APD
by predicting unrealistic motions. In contrast, our method achieves the best ac-
curacy metrics and simultaneously performs favorably in terms of APDE and
CMD, validating the motivation of SLD to accurately predict the underlying
diverse motions.

Table 1: Quantitative comparison on APDE and CMD metrics

HumanEva-I Human3.6M

APD↑APDE↓CMD↓ADE↓FDE↓mADE↓mFDE↓ APD ↑ APDE↓CMD↓ADE↓FDE↓mADE↓mFDE↓

Belfusion 0.037 4.449 5.725 0.288 0.396 0.491 0.576 7.602 1.662 5.988 0.372 0.474 0.473 0.507
GSPS 5.825 1.415 3.675 0.233 0.244 0.343 0.331 14.757 6.749 10.758 0.389 0.496 0.476 0.525
DivSamp 6.109 1.488 4.422 0.220 0.234 0.342 0.316 15.310 7.479 11.692 0.370 0.485 0.475 0.516
STARS 6.031 1.610 5.001 0.217 0.241 0.328 0.321 15.884 7.833 14.206 0.358 0.445 0.442 0.471
Ours 4.066 1.204 4.426 0.193 0.209 0.305 0.293 8.741 1.518 7.508 0.348 0.436 0.435 0.463

To compare the accuracy of baseline methods fairly, we tune the intensity of
diversity loss when training baseline methods, summarizing results in Tab. 2. As
seen, though with lower APD, baseline methods do not achieve better accuracy,
validating that simply sacrificing APD does not bring significant improvements
in accuracy. Since Belfusion didn’t report metrics on HumanEva-I, we repro-
duced their method based on released codes, showing results in Tab. 2. As seen,
Belfusion performs poorly in both diversity and accuracy. We analyze that Bel-
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fusion requires a large amount of data to learn the behavior representation while
the dataset size of HumanEva-I is relatively small compared to Human3.6M.

Table 2: Quantitative comparison with similar APD.

HumanEva-I Human3.6M

APD↑ADE↓FDE↓mADE↓mFDE↓ APD ↑ADE↓FDE↓mADE↓mFDE↓

GSPS 4.515 0.225 0.241 0.333 0.325 8.756 0.374 0.475 0.463 0.505
DivSamp 3.843 0.211 0.218 0.309 0.287 7.508 0.358 0.467 0.467 0.502
STARS 3.843 0.221 0.248 0.334 0.326 8.874 0.359 0.446 0.440 0.470
Ours 4.066 0.1930.209 0.305 0.293 8.741 0.3480.436 0.435 0.463

3.2 Additional Ablations

To further meticulously assess the impact of our proposed Semantic Latent Di-
rections (SLD), we here study two variants for constructing the latent space. 1)
We still use the QLP to predict the coefficients, and then directly employ an
MLP to predict the latent vector which is sent to the decoder. 2) We first train
an autoencoder without the QLP module, after which we conduct PCA decom-
position based on features of all training samples and extract the first K = 30
eigenvectors as the latent bases. We then train the QLP module to predict the
coefficients of the PCA bases. We name the above variants as MLP and PCA for
simplicity. The quantitative results are shown in Tab. 3. It should be noted that
SLD performs the best in terms of accuracy and diversity. We analyze that the
latent space of SLD is well-structured due to the regularization of the orthogonal
latent directions, while it’s harder for MLP and PCA’s autoencoder to directly
learn a good latent motion space. In addition, we here qualitatively compare
the controllability of different latent variants. In particular, we manipulate the
latent coefficients of MLP, PCA, and our SLD to obtain the prediction motions,
showing results in Fig. 5. Notably, both MLP and PCA tend to obtain low-
diversity manipulations (highlighted in boxes), while SLD can achieve diverse
and meaningful controllability, owing to the well structured and disentangled
latent motion space of SLD.

Table 3: Quantitaive comparison of different latent variants.

HumanEva-I Human3.6M

One-Stage TrainingAPD ↑ADE↓FDE↓mADE↓mFDE↓ APD ↑ADE↓FDE↓mADE↓mFDE↓

MLP ✓ 3.592 0.203 0.226 0.319 0.312 7.805 0.356 0.449 0.443 0.475
PCA × 3.304 0.207 0.228 0.309 0.301 7.841 0.354 0.446 0.439 0.471
SLD(Ours) ✓ 4.066 0.193 0.209 0.305 0.293 8.741 0.348 0.436 0.435 0.463

To further investigate the effects of SLD, we provide additional ablation
study on the number of directions. The results are summarized in Tab. 4. We set
the number of directions to 1, 2, 5, 10, and 30 respectively. When the number
of directions is small, such as when it is set to 1, 2, 5, a notable decrease in
performance is observed compared to the number of directions is set to 30. When
the number of directions is set to 10, similar performance is observed compared
to the number of directions is set to 30. However, we visualize the controllable
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Table 4: Additional ablation study on the number of directions in semantic latent
space.

M = ∗ HumanEva-I Human3.6M

APD↑ ADE↓ FDE↓ MMADE↓ MMFDE↓ APD↑ ADE↓ FDE↓ MMADE↓ MMFDE↓

1 3.919 0.210 0.227 0.325 0.318 7.973 0.364 0.464 0.455 0.496
2 4.040 0.212 0.230 0.323 0.317 8.069 0.355 0.445 0.441 0.472
5 4.168 0.205 0.213 0.313 0.300 8.068 0.350 0.437 0.436 0.467
10 4.042 0.199 0.213 0.309 0.295 8.515 0.350 0.439 0.436 0.466
30 4.066 0.193 0.209 0.305 0.293 8.741 0.348 0.436 0.435 0.463

motion prediction when the number of directions is 10, as shown in Fig. 4. It
can be observed that the diversity of semantic control is still relatively limited.
When the number of directions is 30, the diversity of semantic control is already
rich, as shown in Fig. 2.

Table 5: Additional ablation study on the impact of loss functions.

Lr Lmm Lh Ld Lnf Ll La
HumanEva-I Human3.6M

APD↑ ADE↓ FDE↓ MMADE↓ MMFDE↓ APD↑ ADE↓ FDE↓ MMADE↓ MMFDE↓

✓ ✓ ✓ ✓ ✓ ✓ 3.315 0.264 0.255 0.332 0.310 14.553 0.398 0.459 0.448 0.474
✓ ✓ ✓ ✓ ✓ ✓ 2.377 0.205 0.260 0.415 0.440 9.615 0.345 0.459 0.471 0.501
✓ ✓ ✓ ✓ ✓ ✓ 5.156 0.202 0.213 0.305 0.290 9.279 0.356 0.441 0.437 0.466
✓ ✓ ✓ ✓ ✓ ✓ 3.783 0.194 0.209 0.306 0.295 7.523 0.350 0.440 0.436 0.467
✓ ✓ ✓ ✓ ✓ ✓ 4.354 0.198 0.211 0.308 0.296 9.077 0.348 0.436 0.435 0.463
✓ ✓ ✓ ✓ ✓ ✓ 24.600 0.206 0.217 0.312 0.299 48.631 0.359 0.457 0.445 0.482
✓ ✓ ✓ ✓ ✓ ✓ 4.367 0.199 0.210 0.308 0.295 9.523 0.351 0.438 0.436 0.463
✓ ✓ ✓ ✓ ✓ ✓ ✓ 4.066 0.193 0.209 0.305 0.293 8.741 0.348 0.436 0.435 0.463

To further study the impact of different loss terms, we provide additional
ablation study on the loss terms, as shown in Tab. 5. The reconstruction loss
terms Lr and Lmm have a significant impact on performance. After removing
Lr and Lmm, a notable decrease in performance is observed. In general, the
motion constraint loss terms Lnf , Lh, Ll and La will have different impacts on
diversity and accuracy. When Lnf , Lh, Ll and La are removed, a considerable
enhancement is observed in diversity, especially when Ll is removed. At the
same time, the accuracy decreases considerably. The current diversity is due
to unrealistic samples. When using the diversity loss term Ld along with the
motion constraint terms Lnf , Lh, Ll and La, a notable enhancement in diversity
is observed without compromising accuracy. As depicted in Fig. 3, the achieved
diversity is deemed satisfactory.
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Fig. 1: Additional qualitative comparison on Human3.6M. We emphasize the accurate
prediction with solid boxes and anomalous predictions are highlighted with arrows.
The best predictions of our method are closer to the ground truth than the baseline
methods. The black and purple colors in the poses represent the left half of the body,
and the red and green colors represent the right half of the body.
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Fig. 2: Additional visualization of controllable motion prediction on the Human3.6M.
Different degrees of semantic control can be achieved by adjusting the coefficients in
specific directions and the magnitude of coefficient change. In addition, semantic control
includes global semantics and local semantics.
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Fig. 3: Additional visualizations of motion patterns captured by motion queries on the
Human3.6M demonstrate the ability of different motion queries to accurately capture
a variety of motion patterns, both global and local motion patterns.

Fig. 4: Additional visualization of controllable motion prediction on Human3.6M.
When the number of semantic direction is set to 10, adjust the coefficient of the direc-
tion and the amplitude of the coefficient change, corresponding to the semantic control.
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Fig. 5: Additional visualization of controllable motion prediction with different latent
variants.
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