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Abstract. In the realm of stochastic human motion prediction (SHMP),
researchers have often turned to generative models like GANS, VAEs and
diffusion models. However, most previous approaches have struggled to
accurately predict motions that are both realistic and coherent with past
motion due to a lack of guidance on the latent distribution. In this paper,
we introduce Semantic Latent Directions (SLD) as a solution to this chal-
lenge, aiming to constrain the latent space to learn meaningful motion
semantics and enhance the accuracy of SHMP. SLD defines a series of or-
thogonal latent directions and represents the hypothesis of future motion
as a linear combination of these directions. By creating such an informa-
tion bottleneck, SLD excels in capturing meaningful motion semantics,
thereby improving the precision of motion predictions. Moreover, SLD
offers controllable prediction capabilities by adjusting the coefficients of
the latent directions during the inference phase. Expanding on SLD, we
introduce a set of motion queries to enhance the diversity of predictions.
By aligning these motion queries with the SLD space, SLD is further
promoted to more accurate and coherent motion predictions. Through
extensive experiments conducted on widely used benchmarks, we show-
case the superiority of our method in accurately predicting motions while
maintaining a balance of realism and diversity. Our code and pretrained
models are available at https://github.com/GuoweiXu368/SLD-HMP.

Keywords: Stochastic Human Motion Prediction · Generative Models
· Semantic Latent Directions

1 Introduction

Human motion prediction (HMP) aims to predict possible future motions from
the observed pose sequence, with a wide range of applications on autonomous
driving [40], human-computer interaction [6,27–29,48], healthcare [45], character
animation [44], and motion tracking [34]. Despite recent progress on this topic
[3,8,10,35,47,50,58,60], the nature of the underlying multimodal distribution of
human motion, makes it still challenging to predict accurate and diverse motions.
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Fig. 1: Traditional methods for stochastic human motion prediction typically involve
learning a generative latent distribution without appropriate constraints and guidance.
This often results in challenges in acquiring meaningful human motion representations,
leading to inaccurate predictions characterized by abnormal poses and incoherent se-
quences compared to past motion patterns. In contrast, our proposed Semantic Latent
Directions (SLD) framework leverages semantic latent directions to steer motion pre-
diction, enabling the generation of future motions with high precision, realism, and
coherence with past motion sequences. Moreover, SLD facilitates semantically con-
trollable human motion prediction by adjusting the weights of the semantic latent
directions, as illustrated in the bottom part.

A commonly utilized approach [4, 8, 10, 47, 50, 58] in this field involves the
development of robust generative models such as variational autoencoders, gen-
erative adversarial networks, and diffusion models. Taking variational autoen-
coders (VAEs) as an example, the encoder typically maps human motion to a
latent distribution, often constrained by KL divergence to match a prior distri-
bution like the Gaussian distribution. In predicting future motion, the VAE’s
decoder processes inputs from the embedding of past motion and a sampled
vector from the prior distribution. While this approach establishes a solid gen-
erative framework for the Human Motion Prediction (HMP) task, the lack of
appropriate constraints and guidance on the latent distribution hinders the mod-
els from learning meaningful human motion representations effectively. Conse-
quently, these methods often struggle to predict accurate human motions, as
they tend to focus on the major modes of the latent distribution with limited
precision and coherence to past motion patterns, a phenomenon known as mode
collapse. Some techniques, such as Dlow [58] and STARS [50], have introduced
post-hoc or deterministic strategies for diverse motion sampling based on the
learned latent distribution. However, even with these strategies, the models still
face challenges in accurately and realistically predicting human motions due to
the limited expressiveness of the learned latent distribution (Fig. 1, upper).

In this paper, we aim to address the limitations mentioned above by seeking
a suitable approach for latent motion representation that can not only encom-
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pass a wide range of hypotheses for prediction but also accurately capture the
distribution of future motion. Our approach involves constructing a set of or-
thogonal bases in the latent space and representing hypothesis motion as a linear
combination of these bases. To forecast future motion, we first predict the coef-
ficients of the orthogonal bases and then decode the latent representation into
a pose sequence. The constructed latent space offers several advantages. Firstly,
by imposing orthogonal constraints on the bases, we can effectively model the di-
verse motion distribution of the dataset by aligning different coefficients with the
bases. Secondly, unlike previous methods that often generate unrealistic motions
(see Fig. 1), the latent orthogonal space acts as a robust information bottleneck
for learning meaningful motion representations, thereby aiding in achieving more
accurate motion prediction. Thirdly, during the inference stage, controllable hu-
man motion prediction can be seamlessly achieved by manipulating the coeffi-
cients of the bases. Moreover, we made a surprising discovery that the learned
bases already encode certain semantic information about human motion. For in-
stance, as shown in Fig. 1, the predicted motion can be guided towards different
semantics by adjusting the coefficients. We therefore refer to this constructed la-
tent space as Semantic Latent Directions, or SLD in short. Expanding on SLD,
we introduce a set of learnable motion queries. These queries facilitate the sam-
pling of diverse motions, and when projected into the SLD space, more accurate,
diverse, and coherent motion predictions are enabled.

In summary, our main contributions are threefold:
1. We uncover that the latent motion space within current generative frame-

works lacks the necessary constraints to effectively learn meaningful human mo-
tion representations for prediction.

2. We introduce a novel approach called Semantic Latent Directions (SLD),
which constructs a latent semantic motion space, enabling accurate and con-
trollable human motion prediction. Additionally, SLD is lightweight and can be
seamlessly integrated into existing frameworks.

3. Through extensive experiments conducted on the HumanEva-I and Hu-
man3.6M datasets, we showcase that our method attains state-of-the-art perfor-
mance in stochastic human motion prediction.

2 Related Work

2.1 Human motion prediction

Early works [1,7,9,11,12,14,22,33,37–39,49,59,61] treat the HMP task as a deter-
ministic regression problem that predicts a single human motion based on past
human motion. While these methods fail in modeling the underlying multimodal
distribution of the future motion, recent works [8,10,16,35,47,50,51,58,60] made
efforts in predicting diverse future motions for each observed motion (a.k.a.,
stochastic human motion prediction or SHMP). To be specific, these methods
assume that the hypothesis of underlying future motion obeys a latent distribu-
tion, and design generative models to learn such latent motion distribution, such
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as generative adversarial networks [16,35], variational autoencoders [4,10,58,60]
and denoising diffusion probabilistic models [3, 8, 47]. While the choice of gen-
erative models for SHMP is crucial, the specific properties of the latent motion
distribution that are advantageous for SHMP remain unclear. Many existing
works [8, 10, 16, 35, 47, 51, 58, 60] incorporated a prior Gaussian distribution into
the latent motion representation and focused on developing robust generative
models or diverse sampling strategies. However, these approaches struggled to
learn meaningful motion representations for accurate predictions in the absence
of proper guidance on the latent distribution. Consequently, while they may
achieve high diversity in motion predictions, they often generate inaccurate mo-
tions that are unrealistic and incoherent to past motion patterns (see Fig. 1). A
recent study, Belfusion [3], has put forward an approach to disentangle human
behavior within the generative latent space. Specifically, they extract behavior
representations by combining future motion with the last three frames of past
motion. Subsequently, a diffusion model is devised to capture the distribution
of these behavior representations. This explicit representation imposes a strict
constraint on the latent motion representation, leading to behavior-realistic pre-
dictions. Similarly, our goal in this paper is to attain a meaningful latent motion
representation for precise SHMP. However, instead of enforcing explicit con-
straints like behavior representations, we define a set of semantic latent direc-
tions, enabling the model to autonomously learn these directions to imbue them
with meaningful semantics.

2.2 Controllable Motion Prediction

Controllable human motion prediction has wide applications in the area of com-
puter graphics, like virtual character control and games [18, 19, 32]. Previous
works [8,13,35,50,58] mainly focus on low-level control on SHMP. For instance,
DLow [58] and GSPS [35] control the generated future human motion by sepa-
rating upper and lower body parts. HumanMAC [8] achieves pose interpolation
between two sequences. The recent Belfusion [3] involves human behaviors. While
in this work, we propose to control SHMP in the latent semantic level for the
first time. Benefit from the novel motion representation SLD, we could easily
achieves this by editing the latent coefficients.

2.3 Disentangled Representation Learning

Our SLD is motivated by disentangled representation learning [5, 17, 23–25, 46,
53], an important task in generative modeling. For example, the well-known β-
VAEs [5,17] make a thorough study on training regularizations of VAEs to learn
disentangled representations. StyleGANs [23–25] disentangle the style factors in
the so-built latent w space. Recent methods [54, 55] also explore disentangled
representation in diffusion models. In this paper, given the highly semantic and
structured nature of human motion, we construct the latent disentangled space
using Semantic Latent Directions (SLD), allowing us to achieve a disentangled
semantic representation without the need for complex training regularizations.
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3 Methodology

Given the past motion X = [x1, ..., xTp
], where Tp denote the sequence length,

xi ∈ RV×3 represents the 3D human pose with V joints. The objective of SHMP
is to predict K future motions [Ŷ1, ..., ŶK ] with length Tf . To ensure the accuracy
and diversity of the predictions, one of the {Ŷi}Ki=1 should be as close as possible
to the groundtruth Y and the K sequences should be diverse and realistic.

In this section, we first review the general formulation of the human motion
prediction task in Sec. 3.1. Based on the general framework, we then in Sec. 3.2
introduce our core module Semantic Latent Directions (SLD) equipped with
diverse motion queries. At last, we summarize the training and inference process
in Sec. 3.3.

3.1 General Formulation of SHMP

The core problem of SHMP is to model the distribution p(Y |X). It is non-
trivial to directly parameterize this distribution with a neural network. To this
end, existing methods usually introduce a latent variable z, assuming that the
underlying future motion distribution can be derived from the latent distribu-
tion p(z). The distribution p(Y |X) can thus be re-parameterized as p(Y |X) =∫
p(Y |X, z)p(z)dz, where p(z) is usually assumed to be a Gaussian distribu-

tion and p(Y |X, z) is implemented as a generator. The formulation of the above
process can be summarized as follows:

z ∼ p(z), (1)

Ŷ = Gϕ(X, z), (2)

The incorporation of the latent variable z streamlines the motion prediction
learning process. While generative models theoretically have the potential to in-
corporate a diverse range of motion modes for z to learn, there is no guarantee
of accurately capturing all modes, as mode collapse is a frequently observed phe-
nomenon. We posit that the Gaussian prior constraint on the latent distribution
is insufficiently robust for acquiring meaningful hypothesis motion representa-
tions for prediction tasks. This limitation may lead models [10, 50, 58, 60] to
encounter difficulties in accurately capturing future motion patterns, and unre-
alistic predicted motions can often be observed in their approaches.

3.2 Semantic Latent Space Modeling

Semantic Latent Directions. To address above issues, instead of constraining
the latent motion space with a Gaussian distribution, we build a semantic latent
space with a set of semantic latent directions. Formally, denote D = [d1, ..., dM ] ∈
RM×C as the M latent directions which spans the latent motion space. We
assume that the underlying latent factor of future motion Y can be represented
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Fig. 2: Overview of the framework: The past human motion is transformed to the
frequency domain via DCT [35, 36]. The encoding feature of the past motion, along
with the motion query, are merged and mapped into a series of latent coefficients
w = [w1, ..., wM ] through the Query to Latent Projection (QLP) module. Semantic
codes are derived by integrating the semantic latent directions with the forecasted
coefficients. Subsequently, the features of the past human motion and semantic codes
are combined to predict future motion.

as a linear combination of these directions. Denote the coefficients of the latent
directions as w = [w1, ..., wM ], we then formulate the process as follow:

z =

M∑
m=1

wm · dm, (3)

Ŷ = Gϕ(X, z), (4)

In implementation, we set latent directions D as learnable parameters and we
predict {wm}Mm=1 from the past motion. To promote learning meaningful seman-
tics for the latent directions, we further constrain {dm}Mm=1 to be orthogonal to
each other, achieved by conducting SVD decomposition on the matrix D.

Intuitively, these latent directions operate similarly to semantic prototypes,
where a human motion extracted from the dataset can be mapped onto these
prototypes. For example, the motion "sit" could be depicted as a blend of the
motions "stand" and "squat," as depicted in the upper segment of Fig. 5. While
mastering a Gaussian latent distribution to capture a spectrum of motion modes
is challenging due to the common occurrence of model collapse, acquiring knowl-
edge of the semantic latent directions and their corresponding coefficients proves
to be significantly more manageable. This is attributed to two main factors.
Firstly, we discretize the latent motion space into finite prototypes, mitigating
abnormal predictions during training, as all forecasts must align with these proto-
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Fig. 3: Illustration of different methods on promoting diverse motion sampling. (a)
STARS [50] directly combined the motion queries with past motions. (b) We project
the motion queries into latent coefficients of the semantic latent directions, ensuring
accuracy during the diverse sampling.

types. Secondly, by enforcing the orthogonality of the semantic latent directions,
the learning complexity is further diminished.

In addition to enhancing the accurate modeling of the latent motion space,
our method excels in enabling controllable human motion prediction through ef-
fortless adjustment of the coefficients linked to the latent directions. This stands
in contrast to the challenges faced by traditional Gaussian-based latent spaces
in achieving such control.

Diverse Motion Queries. In order to encourage the generation of diverse
motion predictions, current approaches [10,50,58] either incorporate sub-modules
to map the latent variable z to multiple sub-distributions z1, ..., zK , or directly
incorporate K trainable parameters to capture diverse motion modes. However,
we contend that if the latent motion space is not appropriately constrained and
learned, the subsequent diverse sampling strategies will lack significance. While
these strategies may produce diverse motion samples, a considerable portion of
them is likely to be unrealistic and inaccurate.

Fortunately, leveraging the modeling of our semantic latent space allows us
to effortlessly achieve diverse predictions while maintaining accuracy. We thus
introduce a set of adaptable motion queries attached to the semantic latent di-
rections. Instead of directly concatenating motion queries with past motion em-
beddings like [50], we project these motion queries into the SLD space to derive
varied coefficients for prediction. This projection into the SLD space ensures the
precise prediction of each query. We depicted the various diverse sampling strate-
gies in Fig. 3. Specifically, we denote the motion query set as Q = [q1, ..., qK ],
and the diverse motion prediction process can be formulated as follows:

wk
m = Projection(X, qk), (5)

zk =

M∑
m=1

wk
m · dm, (6)

Ŷk = Gϕ(X, zk), k = 1, ...,K (7)
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The motion queries are randomly initialized and can be autonomously learned
during training. We have observed that these motion queries can exhibit dis-
tinct motion patterns, as depicted in Fig. 6. We will delve deeper into these
observations in the later experimental sections.

Overall Framework. We implemented our Semantic Latent Directions (SLD)
within a straightforward encoder-decoder framework. The entire architecture is
depicted in Fig. 2. Specifically, past motion features are extracted through an
encoder. To map motion queries to the coefficients of the semantic latent space,
we introduce the query to latent projection network QLP. The predicted seman-
tic code is then combined with past motion features and fed into the decoder to
generate the future pose sequence. Despite the simplicity of the framework, our
SLD acts as a robust information bottleneck, allowing for a meaningful represen-
tation of the latent motion space and consequently enabling accurate, diverse,
and controllable predictions.

Notably, we follow previous work [8, 35, 50] in applying DCT/IDCT trans-
form [35,36] to pre-process and post-process the past motion and predicted mo-
tion. To be specific, an input-agnostic projection matrix F ∈ R(Tp+Tf )×(Tp+Tf )

is pre-computed. We project the past motion to the frequency domain with the
first N -rows of F : Xf = F [: N, :]X, while back projecting the predicted fre-
quency domain motion Ŷf to the time domain with the first N -columns of F−1:
Ŷ = F−1[:, : N ]Ŷf . Note that X is padded to the length Tp + Tf via repeating
the last frame.

3.3 Training and Inference

Training. Following existing approaches [35, 50] and for the sake of simplicity,
we train the whole framework with three types of loss functions.

– Reconstruction loss Lr between the GT future motion and the best pre-
diction among the K generated future motions, ensuring that the SLD can
capture the accurate underlying future motion.

– Diversity-promoting loss Ld computes pairwise distances between K gener-
ated future motions. This loss function encourages SLD to be complete to
cover a wide range of motion modes and simultaneously to learn different
patterns for the motion queries.

– Motion constraint loss Lc further constrains the predicted motion to be as
reasonable as possible.

The overall objective function L can be summarized as follows:

L = λrLr + λdLd + λcLc, (8)

where λr, λd and the λc are the weight of loss terms, we provide more details in
the supplementary material. Note that we train the whole network end to end
in one stage, the SLD is automatically learned together with the encoder and
decoder.
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Inference. During the inference stage, we input a past motion and produce
K basic motion predictions with latent coefficients {wk

m}k=1,...,K
m=1,...,M . To achieve

controllable motion prediction, we edit the value of basic coefficients via simple
adding value operations.

4 Experiments

4.1 Experimental Setup for Stochastic HMP

Datasets. We evaluate the proposed SLD on two widely used motion capture
datasets, Human3.6M [21] and HumanEva-I [42]. The Human3.6M consists of
3.6 million frames recorded at 50 Hz, featuring 11 subjects performing 15 actions.
Following previous works [8,35,50,58], the Human3.6M is split into the training
set with subjects S1, S5, S6, S7, S8 and the testing set with subjects S9 and S11.
We use 25 frames as the past motion to predict 100 future frames. The human
motion of this dataset is represented as a sequence of 17-joint 3D poses similar
to [35,50,58]. The human motion of the HumanEva-I is represented as a sequence
of 15-joint 3D poses [35, 50, 58]. We adopt the official train/test split [42] and
predict 60 future frames based on 15 past frames.

Metrics. Following previous works [8, 10, 58], we employ the following five
metrics to evaluate the diversity (APD [2]) and accuracy (ADE, FDE [15, 30],
MMADE and MMFDE) qualities of predicted motions.

– Average Pairwise Distance (APD) measures the diversity within samples by
calculating the average L2 distance between all pairs of motion samples,
which is computed as 1

K(K−1)

∑K
i=1

∑K
j ̸=i

∥∥∥ Ŷi − Ŷj

∥∥∥ .
– Average Displacement Error (ADE) computes the average L2 distance be-

tween the GT future human motion Y and the closest sample Ŷi over all
time steps, which is computed as 1

Tf
minŶi∈Ŷ

∥∥∥ Y − Ŷi

∥∥∥ .
– Final Displacement Error (FDE) calculates the L2 distance between the

final GT pose and the closest sample’s final pose, which is computed as
minŶi∈Ŷ

∥∥∥ Y Tf − Ŷi

Tf
∥∥∥ .

– Multi-Modal ADE (MMADE) and Multi-Modal FDE (MMFDE) are multi-
modal versions of ADE and FDE, respectively, considering multi-modal GT
[57] future motions, which are computed as 1

MTf

∑M
m=1 minŶi∈Ŷ ∥Ŷi − Ym∥

and 1
M

∑N
m=1 minŶi∈Ŷ

∥∥∥ Y
Tf
m − Ŷi

Tf
∥∥∥ .

Implementation Details. The encoder and decoder consist of two STGCN
layers [43,52,56] and two pruned STGCN layers [50]. The latent projection net-
work QLP is implemented as three STGCN layers and three MLP layers. In
each layer of GCN, we adopt batch normalization [20] and inject residual con-
nections. We set K = 50 following existing works [50,58]. The model was trained
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Table 1: Quantitative comparison between our approach and state-of-the-art methods
on the HumanEva-I and Human3.6M datasets, our method consistently demonstrates
superior accuracy while maintaining commendable diversity metrics.

Method HumanEva-I Human3.6M

APD↑ ADE↓ FDE↓ MMADE↓ MMFDE↓ APD↑ ADE↓ FDE↓ MMADE↓ MMFDE↓

ERD [11] 0 0.382 0.461 0.521 0.595 0 0.722 0.969 0.776 0.995
acLSTM [31] 0 0.429 0.541 0.530 0.608 0 0.789 1.126 0.849 1.139
DeLiGAN [16] 2.177 0.306 0.322 0.385 0.371 6.509 0.483 0.534 0.520 0.545
BoM [4] 2.846 0.271 0.279 0.373 0.351 6.265 0.448 0.533 0.514 0.544
DLow [58] 4.855 0.251 0.268 0.362 0.339 11.741 0.425 0.518 0.495 0.531
GSPS [35] 5.825 0.233 0.244 0.343 0.331 14.757 0.389 0.496 0.476 0.525
MOJO [60] 4.181 0.234 0.244 0.369 0.347 12.579 0.412 0.514 0.497 0.538
DivSamp [10] 6.109 0.220 0.234 0.342 0.316 15.310 0.370 0.485 0.475 0.516
STARS [50] 6.031 0.217 0.241 0.328 0.321 15.884 0.358 0.445 0.442 0.471
MotionDiff [47] 5.931 0.232 0.236 0.352 0.320 15.353 0.411 0.509 0.508 0.536
Belfusion [3] - - - - - 7.602 0.372 0.474 0.473 0.507
HumanMAC [8] 6.554 0.209 0.223 0.342 0.320 6.301 0.369 0.480 0.509 0.545

SLD (Ours) 4.066 0.193 0.209 0.305 0.293 8.741 0.348 0.436 0.435 0.463

for 500 epochs with a batch size of 16 on a single NVIDIA 3090 card with Py-
torch [41]. We adopt the Adam [26] optimizer with the learning rate 0.001, which
decayed according to training epochs as lr = 0.001× (1.0− max(0,epoch−100)

400 ). It
takes 25 hours for the training on the Human3.6M and 7 hours for that on the
HumanEva-I.

Baselines. To comprehensively evaluate our approach, we compare our method
with a bunch of state-of-the-art baselines. Including ERD [11], acLSTM [31],
DeLiGAN [16], MT-CVAE [51], BoM [4], DivSamp [10], DLow [58], MOJO [60],
STARS [50], Belfusion [3], MotionDiff [47] and HumanMac [8]. Among them,
ERD and acLSTM deterministic motion prediction methods, while the rest are
stochastic motion prediction methods. In particular, approaches such as DLOW,
HumanMAC, MotionDiff, and DivSamp have concentrated on constructing gen-
erative models directly within the human motion space to capture the underlying
latent distribution. While Belfusion separates behavior from the latent motion
representation.

We contend that without proper guidance on this latent distribution, deriv-
ing meaningful motion representations for subsequent predictive tasks becomes
challenging, which may result in limited accuracy. The too-strict behavior rep-
resentation (involving the concatenation of future frames with the last 3 frames
of past motion) may still not offer a robust solution for prediction tasks. In con-
trast, our methodology defines a series of latent directions and empowers the
model to organically imbue them with diverse semantics during training.

4.2 Quantitative Results

We conducted a comparative analysis of our method against baseline approaches
on the Human3.6M and HumanEva-I datasets, with the results outlined in
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Table 2: Ablation study on key components of our approach. MQ denotes utilizing
diverse motion queries only without SLD. MQ+SLD represents utilizing both SLD and
diverse motion queries but without the query to SLD projection. MQ-P+SLD denotes
our full model.

HumanEva-I Human3.6M

APD↑ ADE↓ FDE↓ MMADE↓ MMFDE↓ APD↑ ADE↓ FDE↓ MMADE↓ MMFDE↓

MQ 1.562 0.219 0.248 0.339 0.339 7.286 0.361 0.449 0.443 0.475
MQ+SLD 3.365 0.202 0.218 0.306 0.294 7.936 0.352 0.442 0.437 0.468
MQ-P+SLD 4.066 0.193 0.209 0.305 0.293 8.741 0.348 0.436 0.435 0.463

Tab. 1. Across all accuracy-based metrics, our approach significantly outper-
forms the previous state-of-the-art methods on both datasets. Additionally, we
have achieved competitive performance in terms of diversity metrics. Notably,
while methods like STARS [50] may exhibit higher diversity metrics such as APD,
they often generate unrealistic motions, as illustrated in Fig. 4. In contrast, our
method strikes a favorable balance between accurate and diverse predictions.

Approaches that primarily focus on the generative modeling, such as Di-
vSamp [10], HumanMAC [8], and MotionDiff [47], exhibit notably lower accuracy
levels (ADE, FDE, MMADE, and MMFDE), suggesting a lack of appropriate
guidance in shaping the latent motion representation. Furthermore, despite Bel-
fusion [3] introducing a disentangled behavior representation, it still falls short
of our method in terms of both accuracy and diversity. This reinforces the no-
tion that our Semantic Latent Directions (SLD) serve as a more robust motion
information bottleneck for human motion prediction.

4.3 Component Ablations

We here meticulously assess the impact of the fundamental components of our
model, specifically focusing on the proposed Semantic Latent Directions (SLD)
and the diverse motion queries associated with them. The results are summarized
in Tab. 2. Initially, by utilizing motion queries in isolation without the SLD, a
notable decrease in performance is observed compared to our full model. Upon
integrating the SLD, a considerable enhancement is observed. Furthermore, pro-
jecting the motion queries into the SLD space leads to even greater performance
improvements, ultimately yielding the best results. These outcomes underscore
the efficacy of our SLD framework and emphasize how the SLD, in conjunction
with diverse motion queries, can significantly elevate the overall performance.

4.4 Qualitative Results

Qualitative Comparison. We further showcase qualitative comparisons in
Fig. 4. The visualization includes the initial poses of past human motions, the GT
end poses, and the predicted end poses generated by various methods across 10
samples. Despite our meticulous selection of optimal outcomes from the baseline
methods, they still exhibit subpar accuracy, with fewer predicted poses aligning



12 Xu et al.

Fig. 4: Qualitative comparison on Human3.6M and HumanEva-I datasets. We empha-
size the accurate prediction with solid boxes while inaccurate and abnormal predictions
are highlighted with dashed boxes and arrows. Our approach consistently demonstrates
accurate, coherent, and diverse predictions.

closely with the GT and occasional abnormal poses, particularly noticeable in
the results from STARS.

In contrast, our approach consistently demonstrates the ability to accurately
capture end poses while preserving a decent level of diversity. Additionally, our
projected motions exhibit a greater degree of naturalness and coherence with
past human movements, showcasing minimal deviation from historical motion
patterns. These findings validate the efficacy of our SLD in effectively capturing
future motions while upholding diversity in predictions.

Controllable Motion Prediction. We can effortlessly facilitate controllable
motion prediction by manipulating the coefficients associated with the SLD. In
this context, we showcase the outcomes of editing two specific directions in Fig. 5.
Notably, these results illustrate how adjusting the coefficients enables the control
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Fig. 5: Visualization of controllable motion prediction on the Human3.6M. Semantic
control can be achieved by adjusting the coefficients in specific directions. Different
degrees of semantic alterations can be attained by varying the magnitude of the coef-
ficient change.

of transitions from standing to sitting and squatting, as well as the modulation
of arm swing amplitudes and directions.

These observations confirm that our SLD framework enables a novel form
of semantic controllable motion prediction, offering a versatile and intuitive ap-
proach to directing predicted motions.
Diverse Motion Sampling. The motion queries linked with our semantic la-
tent directions have been adeptly trained to encapsulate diverse motion pat-
terns. The versatility is evident in Fig. 6, where distinct motion queries exhibit
a propensity for capturing various motion patterns such as turning left and right,
sitting, squatting, and more. This capability underscores the adaptability of our
SLD associated with motion queries in encompassing human movements with
high precision and fidelity.

5 Conclusion

In this paper, we introduce a novel method called Semantic Latent Directions
(SLD) for stochastic human motion prediction. SLD defines a series of orthog-
onal latent directions, excelling in capturing meaningful motion semantics and
enhancing the accuracy of motion predictions. Additionally, SLD offers control-
lable prediction capabilities by manipulating its coefficients during the inference
phase. Expanding on SLD, we further introduce a spectrum of diverse motion
queries. By aligning these motion queries with the SLD space, our approach is
enriched, resulting in coherent and diverse motion sampling outcomes. Extensive
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Fig. 6: Visualization of motion patterns captured by motion queries on the Human3.6M
dataset, showcases the ability of different motion queries to accurately capture a diverse
range of motion patterns.

experiments on widely used benchmarks validate the superiority of our method
in accurately predicting motions while maintaining decent realism and diversity.
We believe that our approach has great potential in learning disentangled motion
representations.

6 Limitation and future work.

In this paper, we focus on constraining the latent motion space using latent
semantic directions within a controlled setting for stochastic human motion pre-
diction. However, exploring scenarios where humans interact with their environ-
ments to determine their movements presents an intriguing avenue for future
research. Investigating semantic motion representation in such dynamic and in-
teractive contexts could offer valuable insights and pose an interesting problem
worth studying.
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