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We provide additional experimental analyses and details in the following order:

– Appendix A: Fine-tuning with the Kinetics-400 pretrained model
– Appendix B: More ablation study on VP
– Appendix C: Scalability with ViT-L/14
– Appendix D: Temporal subset analysis
– Appendix E: Impact of weight-space ensembling
– Appendix F: More visualizations of context tokens and attentions
– Appendix G: Datasets and implementation details

A Fine-tuning with the Kinetics-400 Pretrained Model

Table 11: Comparison with state-of-the-arts on few-shot action recogni-
tion using Kinetics-400 pretrained model. All the models are first pretrained on
Kinetics-400 and subsequently fine-tuned on each dataset.

HMDB-51 UCF-101 SSv2 All

Method K=2 K=4 K=8 K=16 K=2 K=4 K=8 K=16 K=2 K=4 K=8 K=16 Avg.

ActionCLIP [15] 54.3 56.2 59.3 66.1 76.7 80.4 87.6 91.8 4.8 6.9 9.1 12.3 50.5
A5 [6] 46.7 50.4 61.3 65.8 76.3 84.4 90.7 93.0 4.5 6.7 7.2 9.5 49.7
X-CLIP [11] 60.5 66.8 69.3 71.7 89.0 91.4 94.7 96.3 6.6 7.8 9.9 13.7 56.5
ViFi-CLIP [12] 63.0 65.1 69.6 72.0 91.0 93.7 95.0 96.4 6.7 7.9 10.2 13.5 57.0
TC-CLIP (Ours) 65.3 68.5 71.4 73.0 94.1 95.6 96.6 97.3 8.7 10.1 12.1 15.2 59.0

Table 12: Comparison with state-of-the-arts on base-to-novel generaliza-
tion using Kinetics-400 pretrained model. All the models are first pretrained on
Kinetics-400 and subsequently fine-tuned on each dataset.

HMDB-51 UCF-101 SSv2 All (Avg.)

Method Base Novel HM Base Novel HM Base Novel HM Base Novel HM

ActionCLIP [15] 69.0 57.2 62.6 85.6 75.3 80.1 8.1 8.7 8.4 54.2 47.1 50.4
A5 [6] 70.4 51.7 59.6 95.8 71.0 81.6 12.9 5.7 7.9 59.7 42.8 49.9
X-CLIP [11] 75.8 52.0 61.7 95.4 74.0 83.4 14.2 11.0 12.4 61.8 45.7 52.5
ViFi-CLIP [12] 77.1 54.9 64.1 95.9 74.1 83.6 15.8 11.5 13.3 62.9 46.8 53.7
TC-CLIP (Ours) 79.4 58.3 67.2 97.5 84.5 90.5 19.6 15.6 17.4 65.5 52.8 58.5

Tables 11 and 12 present the comparison results using the K-400 pretrained
model on the few-shot and base-to-novel settings. All the models are first pre-
trained on the Kinetics-400 dataset and subsequently fine-tuned on each dataset.
TC-CLIP demonstrates superior performance over all other methods by signif-
icant margins. Particularly in the base-to-novel setup, TC-CLIP outperforms
ViFi-CLIP [12] with notable gaps of 3.5%p, 6%p, and 4.8%p in the base, novel,
and harmonic mean (HM) on average, respectively.
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Table 13: Video-conditional Prompting (VP) ablation. We report K-shot train-
ing results where the top-1 accuracy in each dataset is averaged over K = 2, 4, 8, 16.
Default settings are marked in gray .

(a) Number of prompt vectors.

Case HMDB UCF SSv2 All

2 62.0 90.1 9.4 53.8
4 63.9 90.7 9.8 54.8
8 63.7 90.4 9.8 54.7

(b) Vision input token selection.

Case HMDB UCF SSv2 All

CLS tokens from all frames 63.3 90.3 9.8 54.4
GAP tokens from all frames 63.7 90.5 9.8 54.7
Context tokens 63.9 90.7 9.8 54.8

(c) Input layer selection.

Ltext Lvision HMDB UCF SSv2 All

1 1 62.3 89.7 9.1 53.7
1 12 62.0 89.9 9.3 53.7
6 6 62.8 89.5 9.7 54.0
6 12 62.5 90.2 9.7 54.1
12 12 63.9 90.7 9.8 54.8

(d) Layer and prompt initialization.

Layer init. Prompt init. HMDB UCF SSv2 All

CLIP weight “a photo of a” 63.9 90.7 9.8 54.8
Random init. “a photo of a” 63.5 90.5 9.9 54.6
CLIP weight Random init. 62.5 90.2 9.5 54.1

Table 14: Computational cost–performance trade-off of VP design. In the case
of vision-text late-fusion design, class name embeddings are pre-computed. Models are
evaluated on the zero-shot setting without the weight ensemble. Costs are measured
using a single A6000 GPU.

K-600 GFLOPs Latency (s)
Case Top-1 Vision Text Cross-modal Training Inference

Vision-text late-fusion 70.9 301 2.96 0.06 0.54 (1.00×) 0.042 (1.00×)
Video-conditional Prompting (VP) 72.7 (+1.8) 301 2.96 0.06 0.58 (1.07×) 0.045 (1.07×)

B More Ablation Study on VP

Table 13 examines the design choice of VP in TC-CLIP on the few-shot setting.
Number of prompt vectors. Increasing the number of prompt vectors does
not necessarily improve performance. 4 prompt vectors are employed by default.
Vision token selection. Using context tokens in VP yields better results than
employing [CLS] tokens or global average pooled (GAP) tokens from all frames.
This demonstrates that proper contextualization of vision features is essential
to transfer the video information to the text side.
Input layer selection. We vary the layer indices of the text and vision in-
puts {Ltext, Lvision} in the VP module fθVP(p

Ltext−1, sLvision
proj ). We observe that

conditional prompting at the early stage (Ltext = 1) does not generalize well,
regardless of the vision layer index. The early-stage prompting design is hard
to generalize in a full fine-tuning scenario, possibly because CLIP was initially
trained in a vision-text late-alignment fashion. Consequently, we choose the late-
stage prompting by adopting the last layers for both modalities.
Layer and prompt initialization. We initialize the VP module’s weight using
the weight from the last layer of the CLIP text encoder because random initial-
ization often results in unstable training results in the few-shot scenario. Simi-



TC-CLIP 3

Table 15: Comparison with state-of-the-arts on zero-shot action recognition
using ViT-L/14. All the models are trained on Kinetics-400 and directly evaluated
on other datasets. † denotes that the results are reproduced with our implementation.
The best results are in bold-faced numbers, and the second-best ones are underlined.

Method WE HMDB-51 UCF-101 K600 (Top-1) K600 (Top-5) All (Top-1)

ViFi-CLIP [12]† 55.6 ± 0.5 86.1 ± 0.8 77.8 ± 0.9 95.6 ± 0.2 73.2
TC-CLIP (Ours) 56.1 ± 0.3 86.9 ± 0.9 80.1 ± 0.7 96.5 ± 0.1 74.4

ViFi-CLIP [12]† ✓ 55.8 ± 0.7 88.1 ± 1.3 81.1 ± 0.7 96.7 ± 0.1 75.0
Open-VCLIP [17] ✓ 59.0 ± 0.6 87.6 ± 1.2 81.1 ± 0.8 96.3 ± 0.3 75.9
TC-CLIP (Ours) ✓ 57.1 ± 0.7 88.9 ± 0.9 83.1 ± 0.7 97.3 ± 0.1 76.4

Table 16: Temporal subset analysis using the temporal subset [13] on Kinetics-400
and SSv2. Gains over ViFi-CLIP are indicated in green.

K-400 fully-supervised SSv2 16-shot

Method All Temporal All Temporal

ViFi-CLIP [12] 83.9 87.8 12.4 25.9
TC-CLIP (Ours) 85.2 (+1.3) 89.2 (+1.4) 14.0 (+1.6) 29.9 (+4.0)

larly, it is beneficial to initialize the learnable prompt vectors using the prompt
template “a photo of a” following several prompt tuning methods [9, 18].
Computational cost analysis. Although VP requires the instance-conditional
computation of text embeddings, the added cost is minor. As in Table 14, for
a pair of video and text inputs, the GFLOPs required by the text encoder cost
only about 1% of those needed by the vision encoder. Given these minimal
text-related costs, VP adds only an extra 0.07× in latency compared to the
vision-text late-fusion design using pre-computed text embeddings. Considering
the observed performance gain, this is an acceptable trade-off.

C Scalability with ViT-L/14

Table 15 shows the zero-shot performance comparison using CLIP ViT-L/14 as
a backbone. In the case of using WE, our model outperforms ViFi-CLIP [12]
and Open-VCLIP [17] by 1.4%p and 0.5%p on average, respectively.

D Temporal Subset Analysis

We adopt the temporal subset analysis suggested in [13] to further analyze the
temporal modeling ability of trained models. The temporal subset consists of
several action classes that require more temporal information to recognize them,
i.e., the classes of videos that cannot be recognized by human annotators after
randomly shuffling the frames. As shown in Table 16, TC-CLIP’s gains over
ViFi-CLIP [12] on the temporal subsets are more substantial than the gains
when evaluated on the full validation splits, demonstrating the superiority in
handling temporal information.
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E Impact of Weight-space Ensembling

55 60 65 70 75 80
56

58

60

62

64

66

68

70

72

TC-CLIP (Ours)

Baseline

CLIP

Fine-tuned Model

Final Pick

Top-1 Accuracy (K400)

A
v
g
. 
A

c
c
u
r
a
c
y
 (

H
M

D
B

, 
U

C
F
, 
K

6
0

0
)

Fig. 8: Weight averaging ablation.

In Fig. 8, we evaluate the effective-
ness of weight ensembling by vary-
ing the ensemble ratio w from 0 to 1
with a step size of 0.1. Specifically, the
backbone weights of both vision and
text encoders are linearly interpolated
between CLIP and fine-tuned model,
i.e., θw = (1−w)·θCLIP+w·θfine-tuned.
The y-axis shows the average accu-
racy on the zero-shot video datasets,
and the x-axis means the accuracy
on the fine-tuning dataset K-400. Our

model achieves a better trade-off than the baseline as our curve is always on top
of the baseline’s curve. This demonstrates that our model takes more advantages
from weight ensembling. We choose w = 0.7 as our final ensemble ratio.

F More Visualizations of Context Tokens and Attentions

Context token visualization. Fig. 9 visualizes the seed tokens and context
tokens from the last layer of the vision encoder in TC-CLIP. The seed tokens
mainly consist of patch tokens from the most informative regions in each frame,
often corresponding to the foreground, such as a person, animals, hands, and
objects. To visualize each context token, we colorize its corresponding source
token positions using the average color of the input image patches of that region.
It is noteworthy that a single context token (highlighted in red) successfully
tracks and summarizes a specific object or part throughout the entire video.

Class token attention visualization. Fig. 10 visualizes the attention maps
of TC-CLIP compared to ViFi-CLIP [12] using [CLS] token as a query in each
frame. As shown in Fig. 10(a)–(b), during the action of throwing or shooting
objects, TC-CLIP tends to focus more on dynamically moving parts such as
hands and arms. Furthermore, as in Fig. 10(c)–(d), TC-CLIP highlights multiple
objects simultaneously based on inter-object relationships. During actions like
“swinging baseball bat,” TC-CLIP focuses on both the bat and the baseball being
struck, whereas ViFi-CLIP only highlights salient areas in individual frames.
Fig. 10(e)–(f) also shows TC-CLIP’s consistent attention towards objects with
deformations across frames, which is more striking than ViFi-CLIP’s.

Patch token attention visualization. Fig. 11 shows the attention maps of
TC-CLIP compared to other temporal modeling approaches [11,16,17] by using
a patch token as a query. To visualize the attention map from TC, we assign
attention values of context tokens to their corresponding source patch token
positions. In both examples, the token interactions of cross-frame attention [11,
16] and temporal window expansion [17] cannot reach the frames far from the
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(b) “Riding mule” (K-400)

(c) “Jumping jacks” (K-600) (d) “Sipping cup” (K-600)

(e) “Twisting something” (SSv2) (f) “Moving something and something closer to 
each other” (SSv2)
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Fig. 9: Context token visualization of TC-CLIP on Kinetics-400, Kinetics-600, and
SSv2 datasets. We visualize selected seed tokens and the resulting context tokens in
the last layer of the vision encoder. Patch tokens with the same inner and border color
are summarized into one context token. Regions highlighted in red represent a specific
object or part grouped into a single context token throughout the video.
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(d) “Using a sledge hammer” (K-600)

(e) “Twisting something” (SSv2)
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(f) “Squeezing something” (SSv2)

Fig. 10: Attention visualization of TC-CLIP in comparison with ViFi-CLIP [12]
on Kinetics-400, Kinetics-600, and SSv2 datasets using [CLS] token as a query in each
frame. (a)–(b): TC-CLIP tends to focus more on fast-moving parts such as hands
and arms. (c)–(d): While ViFi-CLIP dominantly attends to the most salient regions,
TC-CLIP attends to multiple objects based on inter-object relationships relevant to
the occurring actions. (e)–(f): TC-CLIP consistently attends to the main object with
deformations throughout the video.
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Query 
Token

Input Video: “Moving something closer to something”

Cross-Frame Attention : “Moving something away from something”

Temporal Window Expansion: “Moving something closer to something”

Temporal Contextualization (Ours): “Moving something closer to something”

Joint Space-Time Attention: “Pulling something from behind of something

Query 
Token

Input Video: “Pulling two ends of something so that it separates into two pieces”

Cross-Frame Attention: “Pretending or trying and failing to twist something”

Temporal Window Expansion: “Pretending or trying and failing to twist something”

Temporal Contextualization (Ours): “Pulling two ends of something so that it separates into two pieces”

Joint Space-Time Attention: “Bending something so that it deforms”

Fig. 11: Attention visualization of TC-CLIP in comparison with various temporal
information learning approaches on SSv2 dataset. We visualize the attention map in
the last vision encoder layer using a ball (top) and a hand (bottom) as a query (denoted
with red boxes). To visualize the attention map from TC, we assign attention values
of context tokens to their corresponding source patch token positions. Unlike other
approaches, our method successfully highlights informative regions globally over frames.
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query position, although the main action actually happens in the latter part of
videos. The joint space-time attention model, on the other hand, is capable of
global modeling but fails to focus on informative regions. In contrast, TC-CLIP
consistently highlights the regions relevant to the query positions (e.g ., hands
and grabbed objects) throughout the video, leading to more accurate predictions.

G Experimental Setup Details

G.1 Dataset Details

We conduct experiments over 5 action recognition benchmarks: Kinetics-400 [8]
& 600 [2], HMDB-51 [10], UCF-101 [14], and Something-Something v2 (SSv2) [4].
Kinetics-400 [8] is a large-scale action recognition dataset with a total of 400
action classes, where its video clips are collected from YouTube and last for
about 10 seconds. It contains around 240k training videos and 20k validation
videos.
Kinetics-600 [2] is an extension of Kinetics-400 with approximately 480k video
clips covering 600 action categories. The videos are divided into 390k for training,
30k for validation, and 60k for testing. We mainly adopt the validation split for
zero-shot evaluation.
HMDB-51 [10] dataset includes 6,869 clips divided into 51 action categories.
There are three individual splits for training and validation.
UCF-101 [14] is an action recognition dataset collected from YouTube, includ-
ing 13,320 video clips with 101 action categories. Similar to HMDB-51, the train-
ing and test videos have three splits.
SSv2 [4] is a challenging dataset with 174 fine-grained action classes, which are
more temporally biased than the other datasets. The standard split consists of
168,913 training videos and 24,777 validation videos.

G.2 Implementation Details

During the bipartite soft matching [1,7], we start with the seed tokens arranged
based on the [CLS] token attention values in each frame. These tokens are then
divided into two sets by alternating positions. Subsequently, r pairs of tokens
with the highest cosine similarity are merged by averaging their features, and
the remaining two sets are then concatenated back together. We set r to 100 in
practice. This process is repeated iteratively, employing a constant r scheduling
for every iteration with an exception in the final iteration to ensure that the
number of final context tokens becomes k.

During the training, we sample 16 frames to form a video clip. During the
evaluation, two temporal clips with one spatial crop (2 × 1 view) per video are
sampled to produce a prediction unless otherwise stated. The learnable prompts
are initialized with the prompt “a photo of a” following [9,18], and the weight
of the VP module is initialized with the weight from the last layer of the CLIP
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text encoder. For training recipes, we follow [12] for zero-shot, few-shot, and fully-
supervised settings and follow [5] for base-to-novel generalization. By default,
we use the AdamW optimizer with momentum betas of (0.9, 0.98) and a weight
decay of 0.001. The VP module’s initial learning rate is 10× larger than the base
learning rate in each setting. Training configurations and evaluation metrics in
each protocol are specified below.
Zero-shot action recognition. The models are trained on Kinetics-400 and
evaluated on HMDB-51, UCF-101, and Kinetics-600 datasets. For HMDB-51
and UCF-101, we report the average and standard deviation of top-1 accuracy
across three official validation splits. In the case of Kinetics-600, we apply the
zero-shot evaluation protocol from [3], which exploits 220 categories of Kinetics-
600 that do not appear in Kinetics-400. We use the three splits provided by [3],
each containing 160 categories. The results include the average top-1 and top-5
accuracy and their respective standard deviations. During the training, the base
learning rate is set to 8 × 10−6 and is decayed to 8 × 10−8 following the cosine
decay scheduler. The batch size is 256, and the total number of epochs is 10,
including 5 linear warmup epochs.
Few-shot action recognition. We adopt the K-shot training splits from [12]
that randomly sampled K = 2, 4, 8, 16 videos from each class on HMDB-51,
UCF-101, and SSv2. The models are evaluated using the first validation split of
HMDB-51 and UCF-101 and the full validation split of SSv2. The base learning
rate is set to 2× 10−6 and is decayed to 2× 10−8. The batch size is 64, and the
total number of epochs is set to 50, starting with 5 linear warmup epochs.
Base-to-novel generalization. We adopt the base and novel splits from [12].
The models are trained on a set of base (seen) classes in a few-shot manner
and subsequently evaluated on a set of novel (unseen) classes for four datasets:
Kinetics-400, HMDB-51, UCF-101, and SSv2. Each dataset comprises three
training splits containing randomly sampled 16 shots of base action categories.
We report the average accuracy over three splits. For HMDB-51 and UCF-101,
the training and validation consider only their first split, whereas, for Kinetics
and SSv2, the models are evaluated on their full validation split. The base learn-
ing rate is set to 3.33× 10−6 and is decayed to 3.33× 10−8. The batch size is 64.
The number of epochs is 12, including 2 warmup epochs.
Fully-supervised action recognition. The models are trained on Kinetics-
400 and evaluated on its complete validation split. The base learning rate is set to
2.2×10−5 and is decayed to 2.2×10−7 following the cosine decay scheduler. The
batch size is 512, and the total epochs is 30 epochs, including 5 linear warmup
epochs.
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