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Abstract. Report generation models offer fine-grained textual interpre-
tations of medical images like chest X-rays, yet they often lack interactiv-
ity (i.e. the ability to steer the generation process through user queries)
and localized interpretability (i.e. visually grounding their predictions),
which we deem essential for future adoption in clinical practice. While
there have been efforts to tackle these issues, they are either limited in
their interactivity by not supporting textual queries or fail to also offer
localized interpretability. Therefore, we propose a novel multitask archi-
tecture and training paradigm integrating textual prompts and bounding
boxes for diverse aspects like anatomical regions and pathologies. We call
this approach the Chest X-Ray Explainer (ChEX). Evaluations across a
heterogeneous set of 9 chest X-ray tasks, including localized image in-
terpretation and report generation, showcase its competitiveness with
SOTA models while additional analysis demonstrates ChEX’s interac-
tive capabilities. Code: https://github.com/philip-mueller/chex.
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1 Introduction

The automatic interpretation of medical images, such as chest X-rays, holds
immense promise for enhancing healthcare. Report generation models enable
detailed textual interpretations beyond the capabilities of traditional image clas-
sification techniques alone. Despite significant progress in enhancing their accu-
racy [20], incorporating them in clinical practice remains a formidable challenge.
A primary concern stems from the lack of transparency and interpretability sur-
rounding the decision-making processes of these models, which poses obstacles
for medical professionals seeking to validate their predictions, thereby hindering
widespread adoption [11, 39]. Additionally, the non-interactive nature of most
current models introduces risks in cases of inaccurate predictions, while inter-
active involvement in the generation process, e.g . through user prompts, may
encourage the user to manually intervene in such cases.

Therefore, we advocate for two important aspects that can enhance the utility
of these models in clinical practice: (localized) interpretability and interactivity.
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Fig. 1: Overview of ChEX. Given a chest X-ray and a user query, either as a textual
prompt (e.g ., a pathology name, an anatomical region, or both) or as a bounding box,
the model predicts a textual description of the queried region or aspect. For textual user
prompts, it additionally predicts relevant bounding boxes. Thus, ChEX facilitates the
interactive interpretation of chest X-rays while providing (localized) interpretability.

One pioneering effort in this direction is the work of Tanida et al . [59]. By
incorporating bounding boxes of anatomical regions into the report generation
process, their model offers enhanced interpretability. Furthermore, it supports
bounding boxes as input queries, facilitating user interactivity. However, the
model exhibits two major limitations: it lacks support for textual user prompts
and focuses exclusively on anatomical regions during both training and inference.
This narrow focus can lead to suboptimal predictions for other aspects, such
as pathologies. In contrast, models like RaDialog [48], Med-PaLM M [61], and
OmniFM-DR [72] support interactivity through textual prompts but do not
provide bounding boxes for their textual answers or support them as queries.

In this work, we address these limitations by proposing a novel multitask
architecture and training paradigm. Our approach integrates textual prompts
and bounding boxes for various aspects, including anatomical regions, patholo-
gies, and report sentences. We call this approach the Chest X-Ray Explainer
(ChEX). As illustrated in Figure 1, ChEX can be queried using textual prompts
or user-defined bounding boxes and predicts individual descriptions for each
specified region or aspect. For textual queries, the predictions are supplemented
by bounding boxes to localize relevant regions for each answer. Therefore, ChEX
offers a unique combination of interactivity – reacting to user prompts – and in-
terpretability – visually grounding the answers – not provided by other report
generation models. Furthermore, it additionally supports localized tasks beyond
report generation (RG), including pathology (object) detection (OD), sentence
grounding (SG), region classification (RC), and region explanation (RE).

Our contributions are as follows:

– We propose ChEX, an interactive and interpretable model for predicting
visually grounded textual descriptions of chest X-rays based on user queries.

– We propose a multitask training paradigm, enabling ChEX to be jointly
trained with diverse types of supervision from different datasets.

– We evaluate ChEX across 9 diverse chest X-ray tasks, spanning localized
image interpretation and report generation functionalities. ChEX demon-
strates competitive performance with specialized and general state-of-the-



ChEX 3

art (SOTA) models despite being significantly smaller than some of these
models, which have up to 80 times the size of ChEX. Notably, none of the
baseline models is capable of performing all the tasks covered by ChEX.

– We conduct a thorough analysis of ChEX’s interactive capabilities, demon-
strating its proficiency in responding to specific user prompts.

2 Related Work

Medical Image-Text Models One prevalent category of medical image-text
models adopts a CLIP-style [49] framework, leveraging contrastive image-text
learning [3,18,30,41,55,60,62,67,80]. While most works focus on global image-
text alignment, only some works consider more localized elements such as indi-
vidual sentences or image patches [3, 18,30,41,55,62].

Report generation has recently received significant attention [13,17,20,22,28,
40, 46, 48, 58, 59, 61, 63, 66, 72]. Some of these approaches target specific aspects
such as pathologies [17, 22, 58], anatomical regions [13, 59], or both [28]. How-
ever, support for interactive user queries remains rare among report generation
models, with only the model RGRG [59] enabling queries via bounding boxes
and a few others [48,61,72] supporting textual queries, albeit without the ability
to jointly predict bounding boxes and textual descriptions. Notably, the model
OmniFM-DR [72] supports the prediction of bounding boxes for textual prompts
but without describing the content therein.

The ability of responding to textual prompts characterizes visual question
answering (VQA) models, with some multitask models [26,61,72,73] supporting
zero-shot medical VQA, while others require fine-tuning [10,16,32,57,79]. How-
ever, unlike ChEX, these models lack localization capabilities for their responses.
Moreover, it is important to note that while these methods rely on question-
answer pairs for training, ChEX indirectly acquires its interactive capabilities
through multitask training. Although localization tasks have been integrated
into multitask training for natural images [64, 74, 78], such approaches remain
scarce in the medical domain, with OmniFM-DR [72] being a notable exception.

Prompt-based Localization DETR [4] pioneered the use of token vectors
for object detection, sparking a series of subsequent models following this ap-
proach [33,38,77,83,84]. However, these models typically employ tokens that are
not input-dependent, often relying on learned or position-based tokens [33,38,77].
Visual grounding models [6, 7, 9, 29] predict bounding boxes for given textual
phrases, relating them to image regions, and have been applied in medical imag-
ing [5, 21]. GLIP [27, 78] unifies object detection and visual grounding using
textual prompts, with applications emerging in the medical domain [15, 71].
Open-vocabulary object detection extends object detection models to unseen
classes using textual prompts [14, 34, 37, 53, 70, 75, 76, 81, 82]. Similarly, prompt-
based segmentation techniques have been explored [25] with applications in the
medical domain [19,36].
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Fig. 2: Architecture of ChEX. The DETR-style prompt detector predicts bounding
boxes and features for ROIs based on prompt tokens (textual prompts encoded by the
prompt encoder) and patch features (from the image encoder). The sentence generator
is then used to predict textual descriptions for each ROI independently.

3 ChEX: A Localized and Interactive Chest X-ray
Description Model

Our model ChEX supports a wide range of tasks, spanning from localization
to text generation, while considering different aspects like anatomical regions
and pathologies. To facilitate efficient training and zero-shot inference across all
tasks, ChEX employs a simple yet versatile architecture, outlined in Figure 2.
First, an image encoder is used to extract patch tokens of the given chest X-
ray, while each textual prompt is encoded using the prompt encoder, a frozen
text encoder. Next, the prompt detector, a DETR [4]-style object detector, lo-
calizes the prompts within the image, predicting a set of bounding boxes for each
prompt along with a single Region-of-interest (ROI) token vector per prompt.
Finally, the sentence generator is conditioned on each ROI token indepen-
dently as well as on all patches to predict a concise description of each ROI.
Further details are given in the following Secs. 3.1 to 3.3. For reproducibility, we
provide comprehensive implementation details in the supp. material.

3.1 Model Architecture

Image and Prompt Encoder We use CLIP [49] with ViT-B/32 [8] and the
default text encoder, both pre-trained [60] on chest X-ray/report pairs from
MIMIC-CXR [23]. Instead of using the CLS token, we use all patch tokens from
the ViT and project them individually into the shared image-text space using
the pre-trained projector from CLIP. Given Q textual prompts, each of them is
embedded independently using the prompt encoder, i.e. the text encoder from
CLIP, and projected to the shared image-text space. During training, we freeze
the complete prompt encoder and the image encoder up to the 8th encoder layer.

Prompt Detector Using the Q prompt tokens from the output of the prompt
encoder and the patch tokens from the image encoder, the prompt detector
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independently localizes each prompt by predicting M = 3 bounding boxes per
prompt, following the DETR [4] decoder with 6 layers. To support multiple boxes
per prompt, we adopt [75] and additively combine each prompt token with M
learned tokens, leading to a total of Q×M decoder query tokens. After decoding,
we apply an MLP-based box predictor on each token feature to predict individual
bounding boxes and box scores. We then use the bounding box parameters as a
regional bias and compute box features by applying Gaussian ROI pooling [43] on
the patch tokens. Additionally, we introduce a random skip connection to provide
a direct path from the decoder layers. Finally, we compute the Q ROI tokens
by aggregating the M box features per prompt using a weighted average based
on box scores. When using bounding box queries instead of textual prompts,
ROI features are directly computed with Gaussian ROI pooling on patch tokens
using the given bounding box parameters and bypassing all decoder layers.

Sentence Generator For sentence generation, we use the GPT2-medium [50]
model pre-trained on PubMed abstracts and condition it on each ROI token
independently using P-tuning v2 [35] with MLP projection and without freezing
parameters. To incorporate additional global context, we apply a post decoder
comprising three transformer decoder layers, with the ROI tokens as queries and
the patches as keys and values before feeding the features into the GPT2 model.

3.2 Multitask Training

We train ChEX in a multitask setting, where each sample provides one or more
types of targets, including bounding boxes for pathologies or anatomical struc-
tures, pathology classification labels (per sample or per region), and report sen-
tences (per sample or per region). To enable training with such a wide range of
targets, we use three types of prompt tokens:

1. Pathology tokens: We define textual prompts for each pathology class
(e.g ., “pleural effusion”) and encode them using the prompt encoder.

2. Anatomy tokens: We define textual prompts for each anatomical region
(e.g ., “right lung”) and encode them using the prompt encoder.

3. Sentence tokens: We encode each individual sentence of the radiology
report provided with the current sample.

For each sample, we only use the token types for which there are targets available.
Using the encoded prompt tokens, the prompt detector predicts bounding boxes
and ROI tokens for each of them, before the sentence generator (conditioned on
the ROI tokens) predicts the target sentences.

ChEX does not only support textual queries, i.e. prompts, but also bounding
box queries. Therefore, in some (randomly selected) batches, we train ChEX with
query bounding boxes instead of prompt tokens. In such cases, we compute the
ROI tokens based on the target bounding boxes directly using Gaussian ROI
pooling, skipping the textual tokens and box prediction process.
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Loss Functions We use the following loss functions to train our model:
1. Bounding boxes: We use a modified DETR loss [4], applying Hungarian

matching independently per pathology or anatomy token until all predicted
boxes are matched. We retain the L1 and gIoU losses, but omit the cross-
entropy loss. Box scores are instead trained only for pathologies, using the
focal loss [31] with positive targets for boxes matched in the first iteration.

2. Pathology class labels: We use an InfoNCE contrastive loss [47], pairing
ROI tokens with textual pathology prompts according to the class labels. For
example, if the pathology pleural effusion is present in the image (pathology
token) or region (anatomy token), we build a positive pair with the prompt
“pleural effusion”, while negative pairs use the prompt “no pleural effusion”
and prompts of non-present pathologies (e.g ., “pneumothorax”, . . . ).

3. Report sentences: We apply autoregressive language modeling to predict
region sentences (anatomy token) or to reconstruct the sentence (sentence
token). For sentence tokens, we additionally use contrastive learning between
ROI tokens and their corresponding textual sentence features. We also apply
the CLIP loss [49] on average-pooled image patch and sentence features.

3.3 Zero-shot Inference

During inference, textual prompts like predefined pathology names, sentences, or
user queries are encoded, and the prompt detector predicts bounding boxes and
ROI tokens. These tokens are used by the sentence generator to predict descrip-
tions of the detected regions. If regions require classification, such as for object
detection or region classification, ROI tokens are classified based on cosine simi-
larity with encoded prompts. When bounding boxes are given as queries, they’re
used for Gaussian ROI pooling, omitting other parts of the prompt detector and
encoder if no textual prompts are provided. For full report generation, we use
pre-defined sets of textual prompts and concatenate the predicted descriptions.

4 Experimental Setup and Evaluation

4.1 Training Dataset and Pre-processing

We train on the frontal chest X-rays from MIMIC-CXR [12, 23, 24] and VinDr-
CXR [12,44,45]. MIMIC-CXR comes paired with radiology reports, of which we
use the findings and impression sections and split them into individual sentences.
We use additional supervision for the MIMIC-CXR images provided by the Chest
ImaGenome (CIG) [12,68,69] dataset. It includes bounding boxes for 29 unique
anatomical regions and additionally assigns report sentences as well as 53 unique
findings and pathology labels to each of these regions. VinDr-CXR includes
bounding boxes for 22 unique findings and pathologies. Overall, we train on
227,382 images from MIMIC-CXR and 15,000 images from VinDr-CXR, from
their official train splits, but oversample VinDr-CXR samples to simulate equal
size of both datasets. We randomly crop and resize all images to a resolution of
224×224 and then apply random horizontal flips, random affine transformations,
contrast/brightness jittering, and random Gaussian blurring.
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Table 1: Benchmark tasks with their datasets and evaluation metrics

Task Dataset #Samples #Classes Evaluation Metrics

Sentence Grounding (SG): Predicting bounding boxes for given sentences
MS-CXR [3] 169 none mIoU, mAP
Pathology Detection (OD): Object detection of pathologies
VinDrCXR [45] 1,500 top 15 mAP
NIH ChestXray (NIH8) [65] 448 8 mAP
MS-CXR [3] 169 8 mAP
Region Classification (RC): Classifying regions defined by given bounding boxes
MS-CXR [3] 169 8 AUROC
Chest ImaGenome (CIG) [68] 3,402 53 weighted AUROC (wAUROC)
Region Explanation (RE): Predicting descriptions for regions defined by bounding boxes

MS-CXR [3] 169 none
METEOR [1]
Mic-F1-14†, Mac-F1-14†

Chest ImaGenome (CIG) [68] 3,402 none
METEOR [1]
Mic-F1-14†, Mac-F1-14†

Full Report Generation (RG): Predicting full reports from chest X-rays

MIMIC-CXR [23] 3,082 none
METEOR [1]
Mic-F1-14†, Mac-F1-14†, Ex-F1-14†

Mic-F1-5+†, Mac-F1-5+†

† Clinical efficacy (CE) metrics based on the CheXbert [56] classifier, micro-, macro-, and
example-level-averaged over all 14 classes following Nicolson et al. [46] (Mic-F1-14, Mac-F1-14,
Ex-F1-14), and averaged over 5 classes following Miura et al. [40] (Mic-F1-5+, Mac-F1-5+).

4.2 Benchmark Tasks

We evaluate the zero-shot performance of our model ChEX across the 9 chest X-
ray tasks shown in Tab. 1. For details on the evaluation and dataset preparation,
we refer to the supp. material. While no task-specific fine-tuning is applied, post-
processing (e.g . box suppression and scaling of boxes) for ChEX and all baselines
is adjusted to consider differences in annotation practices of datasets.

4.3 Benchmark Baselines

We consider a wide variety of specialist and generalist baselines in our bench-
mark. For SG, we consider the standard supervised visual grounding (SupVG)
model TransVG [7] and the generative multitask model OmniFM-DR [72]. For
OD and RC tasks, we compare against standard supervised object detection (Su-
pOD) models including Faster R-CNN [54] and DETR-style models [4,38,83,84],
and weakly-supervised object detection (WSupOD) including ADPD [42] and
CheXNet [51], each of them with different (pre-trained) backbones. Addition-
ally, we study the zero-shot capabilities of standard CLIP-style models for chest
X-rays (BioVIL [3] and CheXzero [60]) on all SG, OD, and RC tasks. To the best
of our knowledge, there is only one model supporting the RE tasks out-of-the-
box, namely RGRG [59]. We also use the two CLIP-style baselines as image-text
retrieval models and evaluate their performance on these tasks. For RG, we
compare against several report generation models, including recent models like
MAIRA-1 [20], Med-PaLM M [61], Prompt-MRG [22], and RaDialog [48].
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5 Results

We compare ChEX with SOTA models (Sec. 5.1). Additionally, we study how
ChEX reacts to (interactive) user queries (Secs. 5.2 and 5.3), show its inter-
pretable and customizable report generation capabilities (Sec. 5.4), and study
technical design choices (Sec. 5.5). ChEX is competitive with SOTA models while
providing a high degree of interpretability and interactivity, therefore offering a
promising path towards clinical application.

5.1 Comparison with SOTA
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Fig. 3: Comparison of ChEX with special-
ized SOTA and common multitask mod-
els on 9 chest X-ray tasks, including sen-
tence grounding (SG), pathology detection
(OD), region classification (RC), region ex-
planation (RE), and full report generation
(RG). ChEX shows excellent performance
on this wide range of tasks while none of
the baselines is capable of even performing
all of them. To improve readability, values
are scaled relative to the results of ChEX.

Fig. 3 and Tab. 2 provide an overview
of the performance of our model
ChEX compared to the best baselines,
including specialized SOTA and com-
mon multitask models. On 8 of the
9 tasks, ChEX is competitive (within
1-std) or better than the best base-
line on at least one metric. Only on
pathology detection (OD) on VinDR-
CXR is it outperformed by a spe-
cialized supervised object detection
model. Note that none of the base-
lines is capable of performing all the
tasks, as most of them are either fo-
cused solely on localization or genera-
tive tasks, but not both. Only the con-
trastive image-text (i.e. CLIP-style)
models can perform a wide range of
tasks but rely on retrieval for the gen-
erative tasks, thus showing poor per-
formance on these tasks. Overall, our
model ChEX shows excellent perfor-
mance on a wide range of tasks, cov-
ering both localization as well as text
generation, and is capable of replac-
ing specialized models without major
performance drops on most tasks.

Localization and Region Classification In sentence grounding (SG), ChEX
performs similarly to the generative model OmniFM-DR and the SupVG model
TransVG (with TransVG showing an advantage in mIoU), despite TransVG
being trained explicitly on this task. In pathology detection (OD), ChEX is com-
petitive on 2 out of 3 tasks. On VinDr-CXR, the SupOD model Faster R-CNN
performs best, while on NIH8, ChEX almost doubles the performance of the
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Table 2: Comparison of ChEX with the best-performing baselines for different types
of models. On 8 of the 9 tasks, ChEX is competitive (within 1-std) or better than the
best baseline on at least one metric, highlighting that ChEX is capable of replacing
specialized models without major performance drops on most tasks. We indicate vari-
ability by std computed using bootstrapping and mark the best results as well as those
within 1-std in bold. For detailed results, we refer to the supp. material.

Task Metric ChEX SupOD WSupOD SupVG Contrastive Generative

Sentence Grounding (SG)
MS-CXR [mIoU] 47.52±1.45 – – 53.51±1.53 28.57±1.31 46.2

[mAP] 44.47±2.21 – – 44.05±2.63 18.62±1.37 –

Pathology Detection (OD)
VinDrCXR [mAP] 14.12±0.95 18.21±1.20 7.44±0.88 – 2.82±0.25 –
NIH8 [mAP] 11.14±1.05 6.69±0.82 11.89±0.88 – 2.63±0.26 –
MS-CXR [mAP] 16.60±1.38 15.83±1.42 16.56±1.06 – 7.15±0.52 –

Region Classification (RC)
MS-CXR [AUROC] 82.33±2.80 76.13±2.55 61.46±3.41 – 67.41±2.80 –
CIG [wAUROC] 70.46±0.36 58.28±0.22 60.02±0.21 – 66.96±0.32 –

Region Explanation (RE)
MS-CXR [Mic-F1-14] 49.97±2.24 – – – 5.86±1.41 48.97±2.50

[Mac-F1-14] 20.50±1.54 – – – 3.69±0.67 16.37±2.00
[METEOR] 8.79±0.54 – – – 4.26±0.36 8.15±0.78

CIG [Mic-F1-14] 53.34±0.43 – – – 24.40±0.38 45.26±0.44
[Mac-F1-14] 29.13±0.35 – – – 8.93±0.15 20.88±0.19
[METEOR] 10.18±0.13 – – – 3.82±0.03 7.88±0.10

Full Report Generation (RG)
MIMIC-CXR† [Mic-F1-14] 52.32±0.51 – – – – 55.7

[Mac-F1-14] 32.56±0.51 – – – – 39.83
[Ex-F1-14] 58.76±0.42 – – – – 47.6
[Mic-F1-5+] 61.03±0.56 – – – – 58.8
[Mac-F1-5+] 55.85±0.57 – – – – 51.7
[METEOR] 13.26±0.10 – – – – 33.3

† Test splits and pre-processing can differ between models, leading to limitations in the exact
comparison of results, as also acknowledged by [20,59].

best SupOD model. On MS-CXR, ChEX is within 1-std of the best SupOD
and WSupOD models. Zero-shot contrastive models perform poorly, relying on
thresholding of noisy similarity maps. On region classification (RC) tasks, ChEX
outperforms all baselines, with improvements of 8% on MS-CXR and 5% on CIG.

Text Generation On Region explanation (RE) tasks, ChEX performs similar
or better than RGRG. On MS-CXR, ChEX improves by 25% on Mac-F1-14. On
CIG, ChEX improves by 18% on Mic-F1-14, 40% on Mac-F1-14, and 29% on
METEOR, although RGRG was explicitly trained on this task. Other report gen-
eration models cannot provide region-level descriptions while sentence-retrieval
with contrastive baselines performs poorly on these tasks. For full report gener-
ation (RG) on MIMIC-CXR, ChEX sets a new state-of-the-art on the metrics
Ex-F1-14 (+23%), Mic-F1-5+ (+4%), and Mac-F1-5+ (+8%). On the commonly
used Mic-F1-14 metric, ChEX outperforms the 10 times larger model Med-PaLM
M 12B and is only slightly outperformed by the 7 times larger SOTA model
MAIRA-1. While ChEX shows limitations on Mac-F1-14, it still outperforms
RGRG. However, ChEX performs relatively low on language-based metrics like
METEOR due to its query-based report generation approach. Overall, ChEX
demonstrates strong report generation performance, achieving results that are
close or even better than SOTA models of up to 80 times the size of ChEX.
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Fig. 4: Effect of interactive prompting for multiregion disambiguation. In samples with
the presence of the same pathology (e.g ., pleural effusion) in both lungs, using no
regional hints in the textual query (“pleural effusion”) detects both pathology instances
equally well while adding a course regional hint (“pleural effusion in the right lung”) or
a fine regional hint (“pleural effusion in the right lower lung”) steers the models towards
selecting the queried pathology instance.

5.2 Interactive Prompting

ChEX aims to enable the interactive diagnosis of chest X-rays, going beyond
the benchmarked tasks in Sec. 5.1. However, ChEX was trained only on simple
prompts (e.g ., the name of a pathology). We thus validate that ChEX generalizes
to more complex prompts by investigating the predicted bounding boxes in two
scenarios: (i) multi-region disambiguation via regional hints and (ii) regional
hints for negative regions. For scenario (i), shown in Fig. 4, we consider cases
where a specific pathology is present in both lungs, i.e. where there are two
boxes for the same pathology. We can observe that when using no regional hints
in the textual query (“pleural effusion”), ChEX detects both pathology instances
equally well while adding a course regional hint (“pleural effusion in the right
lung”) or a fine regional hint (“pleural effusion in the right lower lung”), steers
the models towards selecting the queried pathology instance. For scenario (ii),
shown in Fig. 5, we consider samples where the queried pathology is only present
once (i.e. in one of the lungs). We again study the effect of using regional hints,
either the correct hint (“lung opacity in the right lung”, assuming there is a lung
opacity only in the right lung) or the hint to the opposite lung (“lung opacity in
the left lung”). We found that using no regional hint (“lung opacity”) detects the
pathology mostly correctly, while adding the correct regional hint improves the
localization. If, on the other hand, we provide the regional hint for the opposite
lung, the model is steered towards checking the queried anatomical region and
thus away from the pathology. Overall, ChEX considers the user’s intents of
textual prompts very well and thus enables interactive usage patterns.
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Fig. 5: Effect of interactive prompting with regional hints to negative regions. In sam-
ples with a pathology in only one of the lungs (e.g ., lung opacity in the right lung),
using no regional hint (“lung opacity”) detects the pathology mostly correctly. Adding
the correct regional hint (“lung opacity in the right lung”) improves the localization
while the regional hint for the opposite lung (“lung opacity in the left lung”) steers the
model towards the queried anatomical region (away from the pathology), as expected.

5.3 Improvement through Precise Interactive Prompting

ChEX facilitates the interactive involvement of medical expert users. In Fig. 6,
we investigate the impact of providing preciser prompts on the model’s localiza-
tion quality, its ability to accurately describe the queried pathology in the pre-
dicted sentence (prediction accuracy), and the inclusion of non-queried patholo-
gies (query specificity). Providing coarse regional hints (e.g ., “pneumonia in the
left lung”) enhances localization and prediction accuracy compared to only pro-
viding the pathology name (“pneumonia”). Further refinement of regional hints
(e.g ., “[...] in the left upper lung”) offers minimal additional benefit on localiza-
tion. In addition to textual prompts, the model can be queried using bounding
boxes of relevant regions. Utilizing the bounding box of a pathology (instead
of a textual prompt) improves the prediction accuracy but also includes addi-
tional aspects, rendering the prediction less query-specific. Combining textual
and bounding box queries yields the best prediction accuracy, enhancing query
specificity compared to using only bounding boxes. When employing a textual
query of the associated anatomical region (e.g ., “left lung”), the present pathol-
ogy is described adequately, but – as expected – descriptions are not specific to
a single pathology. Using a more precise prompt (e.g ., “pneumonia in the left
lung”) enhances prediction accuracy and query specificity while relying solely on
the pathology prompt increases query specificity further but marginally degrades
the prediction accuracy. Despite ChEX demonstrating competitive performance
even with simple prompts (Sec. 5.1), its responsiveness to more specific prompts
enables even greater prediction accuracy when used interactively.



12 P. Müller et al.

no hint coarse hint fine hint

0.75

0.50

0.25

0.00

0.25

0.50

0.75

Ov
er

la
p 

wi
th

 p
at

ho
lo

gy
 b

bo
x

[g
Io

U]

(a) Effect of prompting strategies on pathol-
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course hint (“pneumonia in the left lung”) or a
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Fig. 6: Effect of precise prompting on localization (a) and sentence prediction (b).
Preciser prompts improve localization and the description of queried pathologies, while
more specific prompts reduce the description of additional, non-queried pathologies.

5.4 Interpretable and Customizable Report Generation

ChEX supports automatic full report generation using a pre-defined set of tex-
tual prompts based on which the model localizes and describes relevant regions.
Unlike typical report generation models, the reliance on prompt sets for report
generation offers high flexibility as the prompt sets can be customized without
the need for re-training. We study (cf. supp. material) the effect of using only
pathologies, anatomical regions, or both as prompt sets. The choice of the prompt
set enables balancing precision and recall of the model. While all studied prompt
sets lead to results competitive with the baselines, with Mic-F1-14 ranging from
50.08 to 52.37, using both prompt sets leads to optimal performance.

In Fig. 7, we show an example of a generated report. The prediction of
bounding boxes for predicted sentences enables a high degree of transparency
and interpretability – not provided by most report generation models – thus
simplifying correctness checking and enabling an optimal clinical workflow.

5.5 Technical Insights

We additionally conducted ablation studies on several technical design decisions
of our model and training paradigm. We summarize the key findings in the
following. For detailed results we refer to the supp. material.
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Generated:
The heart is mildly enlarged.
There is moderate interstitial pulmonary edema.
No larger pleural effusion is seen.

Reference:
There is borderline cardiomegaly.
There is no pneumothorax or focal consolidation.
No larger pleural effusion is seen. 
Indistinct pulmonary vasculature is consistent with
interstitial pulmonary edema.

Fig. 7: Example of a generated report with predicted bounding boxes. Our model gen-
erates a concise and accurate report. By predicting bounding boxes for descriptions,
ChEX provides a high level of interpretability and promotes easy checking of the gen-
erated report through radiologists, enabling an optimal workflow for clinical practice.
For further qualitative examples, we refer to the supp. material.

The mixture of tokens for pathologies, anatomy, and report sentences
enables multitask capabilities. We found that using all these three token
types during training achieves the best multitask performance. Having both
pathology and anatomy tokens is especially relevant for accurate localization (SG
and OD tasks). Anatomy tokens are especially relevant for RC and RE tasks,
likely due to the availability of pathology labels and sentences associated with
bounding boxes. While sentence tokens can slightly harm localization quality,
they are relevant to achieve the best possible text generation performance.

Localization targets are highly beneficial for all tasks, even for full
report generation. We identified the importance of bounding box targets for
all tasks. Pathology class labels are relevant mainly for OD tasks. Contrastive
sentence supervision improves some OD tasks as well as MS-CXR-based RC
and RE tasks, i.e. it helps with the understanding of pathology regions, while
generative text supervision is not significantly beneficial for non-generative tasks.

Technical differences to baselines A key distinction between ChEX and
most generative baselines lies in its aspect-level generation approach, where sen-
tences are generated individually for specific findings and regions of the image.
In contrast, models like MAIRA-1 [20], Med-PaLM M [61], or OmniFM-DR [72]
generate the full report in a single shot. This approach is critical to ChEX’s
strong performance, as demonstrated by the good results of RGRG [59], which
employs a similar region-level strategy. Compared to RGRG, ChEX introduces
two key innovations: (i) pathology and sentence tokens, which extend RGRG’s
solely anatomy-based approach; and (ii) contrastive alignment of region features
with their sentences and pathology prompts. Our ablation studies confirm that
these differences are essential to ChEX’s superior performance over RGRG.
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6 Discussion

Importance of Semantically Meaningful Visual Features Many recent
works on radiology report generation heavily focus on the utilization of large
language models (LLMs) [20, 48, 61, 72]. We demonstrate that even smaller lan-
guage models can achieve competitive performance when prioritizing improve-
ments in image understanding aspects. Specifically, our approach places emphasis
on semantic regions, leveraging bounding box supervision to enhance prediction
quality. We argue that a synergistic combination of optimal image encoding with
regional focus along with the deductive powers and knowledge of LLMs presents
a promising path for improving report generation. Furthermore, our proposed
training strategy enables the integration of multiple tasks and datasets, offering
a viable approach to realizing this path.

Interpretability and Interactivity for Clinical Practice While the perfor-
mance of report generation models is improving, even occasional inaccuracies in
their predictions can limit their clinical applicability. We argue that a high de-
gree of interpretability and the integration of medical experts in the generation
process, i.e. interactivity, offers a more promising path to clinical application
than solely improving prediction quality. Our model ChEX showcases a unique
combination of interpretability and interactivity – not provided by other models
– by providing bounding boxes for generated descriptions while enabling user
guidance through textual prompts and bounding box queries.

Limitations Our training approach effectively utilizes the available datasets
and eliminates the need for intricate data engineering. However, this comes at the
cost of a more complex training process. Furthermore, the used datasets do not
provide question-answer pairs, so textual queries are either based on pre-defined
prompts or report sentences, and answers are always based on report sentences.
This limits the types of supported textual queries, mainly regional or pathology
hints, or both. At the same time, answers are plain descriptions of the queried
regions or pathologies, while specific answers to more complicated questions (e.g .
comparing regions) are not supported. Also, using report sentences as answers
can lead to the hallucination of comparisons with previous images, although
only a single image is used, a phenomenon common to report generation models
[2, 20,52]. Future work may use instruction tuning to tackle these issues.

Additionally, as we move towards clinical application, further evaluation from
a radiologist’s perspective is essential, and future work should include systematic
studies on user experience to ensure seamless integration into clinical workflows.

Conclusion We proposed ChEX, a model for predicting visually grounded tex-
tual descriptions of chest X-rays based on user queries. Our analysis underscores
ChEX’s competitive performance against SOTA models across 9 tasks, and its
responsiveness to user prompts, therefore laying a foundation for future advance-
ments in interactive and localized text generation models.
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