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Overview of the Appendix:

– More details on experiments using the CLIP pre-trained ViT-B/16 model are
provided in Appendix A, including implementation details in Appendix A.1,
investigations into prompt augmentation combinations in Appendix A.2,
analysis of different training prompt sources in Appendix A.3, and detailed
experiment results for each dataset in Appendix A.4.

– The processes of data synthesis with large models used in our approach
are outlined in Appendix B: The image synthesis procedure for Im.Aug is
detailed in Appendix B.1, and the approach for generating "LLM" prompts,
used in analyzing prompt sources, is described in Appendix B.2.

– In Appendix C, we detail our repeated zero-shot experiments conducted
with the CLIP pre-trained ViT-L/14 (Appendix C.1) and ResNet50x16 (Ap-
pendix C.2) models.

– In section Appendix D, we present discussions covering the underlying ratio-
nale for basing CLAP on the CLIP pre-trained models in Appendix D.1, and
the impact of image augmentation and text augmentation in Appendix D.2.

A More on Experiments with ViT-B/16

A.1 Implementation Details

In this section, we detail the implementation of our experiments utilizing the
CLIP pre-trained ViT-B/16 model:

Network. The network’s output dimension is aligned with the 512-dimensional
CLIP features, thereby obviating the need for input feature downsampling. The
latent dimensions are tailored to each dataset: 256 for PACS, 448 for OfficeHome,
and 512 for VLCS and DomainNet, to accommodate the variety of categories
and complexity of datasets. The weight parameter α is adjusted to 0.208 for
PACS, 0.056 for VLCS, 0.14 for OfficeHome, and 0.2 for DomainNet, while it is
consistently maintained at 1 throughout the training phase.
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Training CLAP. Training parameters are consistent across datasets, employing
the Adam optimizer with a learning rate of 0.0001, limiting training to 8,000
steps with checking the average loss every 480 steps, and instituting early stop-
ping after five checkpoints without a loss decrease of at least 0.01. Batch sizes
are adjusted to 8 for PACS and VLCS, 96 for OfficeHome, and 384 for Domain-
Net, with the temperature parameter τ set at 0.5 for PACS and VLCS, and 0.3
for OfficeHome and DomainNet. The loss coefficient λ is set to 1 for PACS and
VLCS, and 0.0001 for OfficeHome and DomainNet, due to the first two datasets
have less classes. Prompt augmentations, OSD+OCD+SPO, are applied across
datasets all with a 0.5 probability. For the PACS and VLCS datasets, Gaussian
noise with a zero mean and a standard deviation of 0.02 is randomly inserted
at the beginning, middle, or end of the augmented-view prompts to enrich the
training samples. In the linear probe evaluations for few-shot analysis, L2 nor-
malization and cross-entropy loss are utilized for training over 1,000 epochs with
a batch size of 32, incorporating early stopping with a patience threshold of 10
epochs and a loss decrease criterion of 0.001.

Training Im.Aug. We train a disentangled network using image augmentation,
applying the InfoNCE loss with a temperature parameter τ set to 0.5. This
include image augmentation techniques, image cropping (scale ∈ [0.64, 1.0]) and
color distortion (brightness = 0.5, hue = 0.3), each with a probability of 0.5.
Other training and inference configurations for Im.Aug are consistent with those
used for CLAP across all datasets.

A.2 Prompt Augmentation Combinations

In Tab. 1, we explore different combinations of our tailored prompt augmen-
tation techniques and EDA (Easy Data Augmentation) [42] techniques on the
VLCS dataset. Each combination demonstrates CLAP’s effectiveness in enhanc-
ing CLIP’s performance and reducing performance disparities. The combination
of OSD+OCS+SPO+IGN achieves the highest average accuracy and the least
variance, outperforming the EDA techniques. Notably, even without incorporat-
ing random noise in the augmentations, CLAP significantly surpasses CLIP in
handling perturbations on prompts, as evidenced by the largely reduced ∆(NC).

A.3 Prompt Sources

In Tab. 2, we examine the effects of various training prompt formats, sourced
from different synthetic origins, on the VLCS dataset performance, utilizing

EDA techniques. The prompt formats are defined as follows: "Template"
refers to the template-based prompts fundamental to our primary approach;
"LLM" designates prompts created by ChatGPT-3.5 [3], with the generation
process elaborated in Appendix B.2; "Random" describes prompts formatted as
"a [random] style of [class]," with "[random]" being replaced by terms from a
random word generator; and "Prm.Stl." indicates vectorized prompts generated
through PromptStyler [9].
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Table 1: We evaluate prompt augmentation combinations on the VLCS dataset: OSD
( 1○), OCD ( 2○), ITD ( 3○), ASD ( 4○), SPO ( 5○), and IGN ( 6○). ZS(Avg.) shows
average zero-shot accuracy acoss four distinct inference prompts. CLAP boosts CLIP’s
accuracy and reduces variances, with 1○ 2○ 5○ 6○ as the optimal combination.

Metrics CLIP
(base)

Avg. top-1 acc. (%) of different augmentations

EDA
1○ 2○ 3○ 1○ 2○ 3○ 1○ 2○ 3○ 1○ 2○ 3○ 3○ 4○ 5○ 1○ 2○ 5○
4○ 5○ 6○ 4○ 5○ 4○ 6○ 4○ 6○ 6○

ZS(Avg.) (↑) 77.3 81.6 82.0 80.1 82.0 79.6 82.1 82.6

R (↓) 6.1 1.9 1.2 2.5 0.9 3.2 1.6 0.8
δ (↓) 2.8 0.9 0.6 1.2 0.4 1.5 0.7 0.4

∆(NC) (↓) 8.1 2.3 1.7 3.0 1.8 3.4 2.0 1.6

Table 2: We employ EDA augmentation to train CLAP with diverse prompt sources
on the VLCS dataset. Each prompt source contributes to improvements in CLIP’s zero-
shot performance, with "Random" and "Template" prompts, in their simpler forms,
yielding better outcomes.

Metrics CLIP
(base)

Avg. top-1 acc. (%) of different sources

LLM Random Prm.Stl. Template

ZS(Avg.) (↑) 77.3 78.2 81.6 81.2 81.6

R (↓) 6.1 3.2 0.7 2.7 1.9
δ (↓) 2.8 1.5 0.3 1.2 0.9

∆(NC) (↓) 8.1 3.3 2.3 3.0 2.3

Our experimental results indicate that CLAP, when trained across these var-
ied prompt formats, enhances the performance of CLIP. Notably, despite the
complex generation mechanisms of "LLM" and "Prm.Stl." prompts, the sim-
pler, random-styled and template-based prompts demonstrate superior efficacy.
However, it is important to highlight that the improvements attributed to these
diverse prompt formats, trained with EDA, do not surpass the best performance
of the prompt augmentations tailored for template-based prompts.

A.4 Detailed Results on ViT-B/16

Details on Zero-Shot Evaluations We present the domain-level zero-shot
performance with various prompts across each dataset in Tab. 3. CLAP con-
sistently enhances CLIP’s zero-shot performance across these different prompts.
Given that CLAP exclusively utilizes text data for training, it does not com-
promise CLIP’s inherent ability to generalize across domains, which is acquired
from its extensive training dataset. Rather, by achieving a more effective disen-
tanglement of content, it unequivocally enhances CLIP’s zero-shot performance
across all dataset domains.
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Table 3: Domain-level zero-shot results of the ViT-B/16 model on the test datasets.

Dataset Domains
Domain-level avg. top-1 acc. (%) of zero-shot performance usig ViT-B/16 (↑)

ZS(C) ZS(CP) ZS(PC) ZS(NC)
CLIP Im.Aug CLAP CLIP Im.Aug CLAP CLIP Im.Aug CLAP CLIP Im.Aug CLAP

PACS

A. 96.4 96.9 97.5 93.4 97.0 97.6 97.4 97.6 97.6 87.8 93.5 97.1
C. 98.9 99.0 98.9 99.0 99.2 99.0 99.1 99.0 98.9 95.4 97.6 98.8
P. 99.9 99.9 99.9 99.3 99.6 99.9 99.9 99.9 99.9 93.1 99.0 99.9
S. 87.7 90.1 92.5 89.2 89.6 92.5 88.1 89.4 92.3 87.1 89.3 93.1

VLCS

C. 99.7 99.8 99.9 99.9 99.9 99.9 99.9 99.9 99.9 87.0 96.0 99.9
L. 61.8 66.2 67.7 69.9 70.4 70.4 70.2 70.2 70.7 55.9 59.9 65.9
S. 70.1 74.8 78.0 73.3 76.0 77.2 73.6 76.4 76.9 61.4 66.2 75.3
V. 73.9 77.1 84.9 84.8 85.4 86.0 86.1 85.6 86.2 68.9 70.3 82.9

OfficeHome

A. 80.5 79.0 81.8 80.1 76.0 81.6 83.2 78.7 83.2 73.0 69.2 73.6
C. 64.6 59.6 66.4 63.7 58.9 65.4 68.1 61.9 69.0 57.0 52.0 60.4
P. 86.3 83.6 87.5 86.6 83.4 87.2 89.1 86.6 89.7 77.2 72.3 78.9
R. 88.0 85.9 88.5 87.6 84.8 87.7 89.8 87.2 90.0 79.0 76.5 81.1

DomainNet

C. 71.0 64.3 71.9 70.5 62.1 72.0 71.3 63.4 72.8 63.2 53.9 64.6
I. 48.6 40.5 50.6 47.7 40.7 49.5 47.8 40.0 50.5 42.9 35.0 45.1
P. 66.6 59.1 67.7 66.0 59.0 67.3 66.5 59.8 68.4 57.2 50.4 59.4
Q. 14.9 12.4 15.2 13.3 11.5 13.8 14.1 11.8 14.3 12.0 9.2 13.1
R. 82.6 76.6 83.1 82.2 75.8 82.2 83.4 78.2 83.7 75.2 67.9 75.6
S. 63.1 56.1 63.7 62.2 55.0 63.1 63.4 56.4 64.4 55.7 47.5 57.6

Details on Few-Shot Evaluations We display the quantitative results of
few-shot performance in Tab. 4. CLAP consistently enhances the few-shot capa-
bilities, showcasing improvements across test datasets at a closer domain level.

Details on Adversarial Evaluations In Tab. 5, we detail our adversarial
performance evaluations for PACS, VLCS, OfficeHome, and DomainNet, respec-
tively. CLAP enhances both zero-shot and one-shot performance across all do-
mains of the tested datasets. While Im.Aug boosts one-shot robustness against
adversarial tasks, its impact on zero-shot adversarial robustness is inconsistent.

Details on Ablative Analysis In Tab. 6, we provide detailed results from
our analysis on zero-shot performance using various combinations of prompt
augmentations. Additionally, in Tab. 7, we present the outcomes of our ablative
studies focusing on the hyperparameters τ , latent dimension, and α, respectively,
each evaluated domain-wise. The results indicate that CLAP is effective across
a wide range of hyperparameters.

B Data Synthesis

B.1 Synthetic Image Generation

We employ the stable diffusion [39] v2.1 model for generating synthetic images
used in our comparing experiments, specifically utilizing the Stable Diffusion
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Table 4: Domain-level few-shot results of the ViT-B/16 model using the test datasets.

Dataset Domains
Domain-level avg. top-1 acc. (%) of few-shot performance of ViT-B/16 (↑)

1-shot 4-shot 8-shot 16-shot 32-shot
CLIP Im.Aug CLAP CLIP Im.Aug CLAP CLIP Im.Aug CLAP CLIP Im.Aug CLAP CLIP Im.Aug CLAP

PACS

A. 79.5 84.1 94.5 92.4 96.4 97.2 95.1 97.2 98.4 97.9 98.1 98.4 98.8 99.1 98.9
C. 86.7 96.1 98.3 96.8 98.6 99.2 98.8 98.9 99.3 99.5 99.2 99.5 99.6 99.6 99.6
P. 97.4 99.8 99.9 99.6 99.8 99.9 99.9 99.9 99.9 99.8 99.9 99.9 99.9 99.9 99.9
S. 75.1 80.0 87.3 91.1 92.3 92.5 92.3 92.3 92.9 92.4 92.6 93.1 93.9 94.2 94.1

VLCS

C. 99.2 99.7 99.8 99.9 99.8 99.9 99.8 99.7 99.9 99.7 99.9 99.9 99.9 100.0 99.9
L. 41.3 41.3 41.1 56.7 57.0 59.8 46.2 36.8 48.3 59.4 60.4 62.6 60.4 60.7 61.9
S. 45.3 46.1 50.8 61.9 63.7 69.0 67.4 67.7 71.3 75.9 76.8 80.9 77.4 78.6 81.0
V. 50.9 53.4 59.0 64.5 66.7 76.1 75.4 74.1 78.7 72.6 73.9 77.7 85.7 86.1 87.9

OfficeHome

A. 42.6 45.1 43.9 76.8 77.6 77.7 84.8 86.0 85.5 91.8 92.1 92.1 97.4 97.5 97.5
C. 40.1 45.0 43.8 69.9 70.2 70.5 75.8 75.9 76.6 81.6 81.6 81.6 89.0 89.0 89.2
P. 70.2 73.3 73.4 89.7 90.3 90.2 93.8 93.7 93.9 95.7 95.7 95.8 97.7 97.6 97.6
R. 58.4 59.3 59.4 81.7 83.1 82.9 89.7 89.5 89.9 92.9 92.7 93.2 95.8 95.8 95.8

DomainNet

C. 42.1 43.6 43.8 66.8 67.5 67.8 74.2 74.3 74.6 78.5 78.6 78.8 82.8 82.8 82.7
I. 19.5 20.8 21.0 38.5 39.3 39.7 46.7 47.0 47.3 53.2 53.2 53.6 60.0 59.9 60.1
P. 32.1 33.5 34.2 60.5 60.9 61.5 68.0 68.0 68.7 72.5 72.6 73.0 76.7 76.6 76.8
Q. 15.2 15.3 15.3 30.0 29.6 29.9 37.1 36.4 36.8 43.8 43.4 43.5 49.4 49.1 49.0
R. 50.8 52.1 52.7 76.7 77.0 77.6 81.7 81.9 82.2 84.0 83.9 84.3 85.9 85.9 86.0
S. 33.1 33.9 34.8 56.2 56.6 57.2 62.9 62.9 63.7 67.8 67.7 68.1 72.5 72.3 72.6

a realistic painting of
a large blue aircraft

carrier

an impressionistic
mosaic art of a small

black backpack

a realistic photograph
of a large black car

a realistic sketch of a
large black mug

an impressionistic
painting of a normal

sized green train

Fig. 1: Examples of synthetic images created with SDv2.1 and associated prompts.

v2-1 Model Card available on Hugging Face1. For each class across the four
datasets, we produce 480 images using our synthetic template prompts as input
for the stable diffusion model. All generated images are of 512× 512 resolution.
Examples of these synthetic images alongside their corresponding text prompts
are displayed in Fig. 1.

B.2 LLM Prompts Generation

We utilize ChatGPT-3.5 [3] to create the LLM prompts employed in our com-
parative analysis of different prompt sources. Fig. 2 illustrates the process of
prompting ChatGPT-3.5 to generate text prompts for specific class names. For
each class, we produce 120 samples, and below are a few examples from the
generated prompts:

– Bird:
1 https://huggingface.co/stabilityai/stable-diffusion-2-1

https://huggingface.co/stabilityai/stable-diffusion-2-1
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Table 5: Domain-level results under adversarial attacks of ViT-B/16 on the datasets.

Dataset Domains

Domain-level avg. top-1 acc. (%) under adversarial attackings using ViT-B/16 (↑)

FGSM PGD-20 CW-20

ZS-C 1-shot ZS-C 1-shot ZS-C 1-shot
CLIP Im.Aug CLAP CLIP Im.Aug CLAP CLIP Im.Aug CLAP CLIP Im.Aug CLAP CLIP Im.Aug CLAP CLIP Im.Aug CLAP

PACS

A. 76.3 79.3 79.3 61.2 78.0 87.3 1.7 2.2 1.8 16.0 42.1 63.1 1.5 2.0 2.3 0.5 1.1 1.7
C. 94.9 95.0 94.0 66.5 84.2 95.1 33.3 37.7 35.6 33.3 57.2 86.1 28.8 34.0 33.2 11.9 23.6 31.8
P. 91.6 90.3 91.7 67.4 80.8 92.1 5.7 7.0 6.7 27.1 55.0 69.8 4.7 4.9 5.8 0.7 2.7 4.1
S. 84.5 87.5 89.8 71.6 74.6 83.8 75.8 78.4 79.2 63.0 66.3 74.6 74.5 76.8 77.9 62.7 65.4 70.3

VLCS

C. 55.3 53.8 55.5 25.8 28.8 25.3 4.4 5.1 4.7 2.0 5.2 2.5 2.9 3.1 3.5 0.7 1.2 1.0
L. 49.4 45.5 50.6 27.0 32.6 30.4 15.2 14.9 16.0 6.4 8.9 8.0 12.4 11.2 13.0 6.1 8.3 7.7
S. 61.7 58.1 62.5 48.0 46.9 51.6 13.2 13.9 14.0 8.6 10.7 10.0 9.2 8.8 10.2 8.3 7.9 8.4
V. 65.3 63.2 65.6 36.5 40.1 41.0 7.5 7.9 7.9 5.3 9.4 8.9 5.2 4.8 5.6 2.9 2.8 2.9

OfficeHome

A. 55.3 53.8 55.5 25.8 28.8 25.3 4.4 5.1 4.7 2.0 5.2 2.5 2.9 3.1 3.5 0.7 1.2 1.0
C. 49.4 45.5 50.6 27.0 32.6 30.4 15.2 14.9 16.0 6.4 8.9 8.0 12.4 11.2 13.0 6.1 8.3 7.7
P. 61.7 58.1 62.5 48.0 46.9 51.6 13.2 13.9 14.0 8.6 10.7 10.0 9.2 8.8 10.2 8.3 7.9 8.4
R. 65.3 63.2 65.6 36.5 40.1 41.0 7.5 7.9 7.9 5.3 9.4 8.9 5.2 4.8 5.6 2.9 2.8 2.9

DomainNet

C. 57.8 50.9 58.8 33.3 34.3 35.0 21.6 18.7 22.8 18.4 19.6 20.0 15.8 12.5 16.6 7.0 7.5 7.8
I. 35.8 28.0 37.0 12.2 13.3 13.2 6.1 3.7 6.7 4.6 5.3 5.1 3.3 1.9 3.7 0.9 0.9 0.9
P. 43.9 39.0 44.3 18.4 20.6 20.3 3.1 2.8 3.3 8.6 10.4 9.9 1.8 1.3 1.9 0.3 0.3 0.3
Q. 12.9 10.3 13.2 10.9 10.8 11.1 8.4 6.8 8.6 5.4 5.4 5.6 7.1 5.4 7.4 4.9 4.8 5.1
R. 62.1 55.9 62.4 34.5 35.9 36.5 7.1 6.5 7.5 17.6 19.7 19.6 4.5 3.4 4.7 1.2 1.4 1.4
S. 49.1 43.3 49.7 25.7 26.0 27.5 17.8 15.5 18.6 13.6 14.4 15.1 13.4 10.2 13.9 5.0 5.2 5.6

• A pair of vibrant macaws converse in a lush, tropical rainforest, depicted
in a lively, exotic wildlife painting.

• A solitary eagle watches over a vast, rugged canyon at sunrise, portrayed
in a majestic, wilderness landscape photograph.

– Dog:

• A sleek Whippet races in a competitive dog track, illustrated in a fast-
paced, dynamic sports style.

• A sturdy and reliable English Bulldog watching over a small shop, its
solid presence reassuring to the owner.

– Car:

• A quirky art car parades through the streets in a colorful festival, cap-
tured in a fun, expressive style illustration.

• A high-tech, autonomous car maneuvers through a smart city environ-
ment, portrayed in a futuristic, sci-fi digital art piece.

– Chair:

• A folding chair at an outdoor wedding, elegantly decorated and part of
a beautiful ceremony.

• A high-end executive chair in a law firm, projecting authority and pro-
fessionalism.

– Person:

• An energetic coach motivates a team on a sports field, illustrated in an
inspiring, leadership-focused painting.

• A graceful figure skater glides across an ice rink, captured in a delicate,
winter-themed pastel drawing.
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Table 6: Zero-Shot Performance on VLCS Dataset Across Varied Augmentation Com-
binations and Prompt Sources: 1○ Random Object Size Deletion, 2○ Random Object
Color Deletion, 3○ Random Image Type Deletion, 4○ Random Art Style Deletion, 5○
Random Swapping Order, 6○ Addition of Gaussian Noise.

Method Domains
Avg. top-1 acc. (%) (↑) of different augmentations and prompts on VLCS

CLIP
(base)

1○ 2○ 3○ 1○ 2○ 3○ 1○ 2○ 3○ 1○ 2○ 3○ 3○ 4○ 5○ 1○ 2○ 5○ EDA
4○ 5○ 6○ 4○ 5○ 4○ 6○ 4○ 6○ 6○ LLM Rand. Pr.St. Temp.

ZS(C)

C. 99.7 99.9 99.8 99.9 99.8 99.9 99.9 97.9 99.7 99.9 99.9
L. 61.8 66.6 62.3 67.0 62.2 66.2 67.7 66.2 69.0 67.3 66.5
S. 70.1 78.1 75.5 78.0 74.3 78.5 78.0 73.2 76.9 73.5 76.9
V. 73.9 82.8 80.6 83.2 79.3 82.7 84.9 72.6 81.8 81.8 81.9

ZS(CP)

C. 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.8 99.9 99.9 99.9
L. 69.9 69.3 67.9 69.6 68.4 70.0 70.4 69.3 70.4 71.2 69.7
S. 73.3 77.6 76.4 76.7 75.9 78.8 77.2 76.2 75.2 75.1 78.0
V. 84.8 85.3 84.0 85.3 84.2 85.1 86.0 77.0 84.2 86.0 84.6

ZS(PC)

C. 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9
L. 70.2 70.0 68.0 70.1 68.5 70.0 70.7 67.5 70.6 71.8 70.0
S. 73.6 76.6 75.6 76.0 74.8 77.8 76.9 76.9 75.1 74.9 78.2
V. 86.1 85.7 84.7 85.7 84.5 85.5 86.2 78.2 84.6 86.8 84.8

ZS(NC)

C. 87.0 99.8 99.6 99.8 99.4 99.7 99.9 95.3 98.6 99.6 99.8
L. 55.9 65.2 61.3 65.6 60.5 65.4 65.9 63.0 66.7 64.0 64.7
S. 61.4 75.6 70.3 75.2 68.3 74.9 75.3 68.9 73.3 69.8 73.0
V. 68.9 80.1 75.2 80.4 73.8 79.4 82.9 69.3 79.6 77.2 78.6

C Experiments on Other CLIP Model Scales

C.1 Experiments on ViT-L/14

We refined the output dimension to align with the input dimension of 768. The
chosen latent dimensions were 448 and 640 for PACS and VLCS, respectively,
and 768 for both OfficeHome and DomainNet. The inference weighting α was
set to 0.1 for PACS, 0.03 for VLCS, 0.14 for OfficeHome, and 0.2 for Domain-
Net. All other training configurations remained consistent with the ViT-B/16
experiments across each dataset. The training configuration for Im.Aug was set
the same as CLAP for each dataset, with the inference weighting α being 0.1 for
PACS and 0.03 for the other three datasets.

Table 8 showcases the zero-shot results for the ViT-L/14 model using four
distinct prompts, following the protocol established for the ViT-B/16 experi-
ments. These results demonstrate that CLAP is more efficient than Im.Aug in
enhancing zero-shot performance. Moreover, Tab. 9 illustrates that CLAP sig-
nificantly reduces variations in zero-shot performance across different prompts,
thereby confirming CLAP’s performance improvements over CLIP across a range
of model sizes. Detailed domain-level results are presented in Tab. 10, offering
an in-depth analysis.

C.2 Experiments on ResNet50x16

To validate our approach on different model structures, we repeated zero-shot
experiments on the ResNet50x16 model pre-trained with CLIP. Since the output
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Table 7: Ablative study of hyperparameters on VLCS dataset using ViT-B/16 model.

Hyper- Value
Avg. top-1 acc. (%) (↑) using ViT-B/16 on VLCS dataset

ZS (C) ZS (CP) ZS (PC)
parameters C. L. S. V. C. L. S. V. C. L. S. V.

τ

0.1 99.9 67.6 77.5 84.2 99.9 70.9 74.9 85.9 99.9 71.2 74.6 86.3
0.3 99.9 66.3 77.2 82.4 99.9 69.9 76.7 85.2 99.9 69.9 76.4 85.4
0.5 99.9 67.7 78.0 84.9 99.9 70.4 77.2 86.0 99.9 70.7 76.9 86.2
0.7 99.9 65.9 77.7 83.1 99.9 68.9 77.9 84.9 99.9 69.6 77.7 85.0
0.9 99.9 66.0 77.6 83.3 99.9 69.0 77.9 85.0 99.9 69.7 77.5 85.0

128.0 99.9 66.0 77.6 82.6 99.9 70.0 77.4 85.4 99.9 70.1 77.1 85.7
192.0 99.9 64.9 77.9 83.0 99.9 68.9 78.0 85.6 99.9 69.0 77.8 86.0
256.0 99.9 63.8 77.6 82.7 99.9 67.6 78.7 84.8 99.9 67.8 78.6 85.2

Lantent 320.0 99.9 66.0 77.8 82.9 99.9 69.2 78.1 85.3 99.9 69.7 77.7 85.5
dim. 384.0 99.9 65.8 76.9 82.8 99.9 69.4 77.5 85.3 99.9 69.6 77.0 85.5

448.0 99.9 65.8 77.4 82.1 99.9 69.7 77.6 84.9 99.9 69.9 77.1 85.6
512.0 99.9 67.7 78.0 84.9 99.9 70.4 77.2 86.0 99.9 70.7 76.9 86.2

α

10−1.5 99.9 66.5 77.9 83.1 99.9 70.4 77.1 86.0 99.9 70.3 76.6 86.1
10−1 99.9 69.5 77.5 85.7 99.9 70.4 77.1 86.2 99.9 70.9 76.5 86.1
10−0.5 99.9 70.6 75.2 85.5 99.9 70.7 75.7 85.9 99.9 71.0 75.1 85.7
100 99.8 71.5 73.5 83.5 99.9 71.7 74.4 85.8 99.8 72.3 73.5 85.5
100.5 99.8 72.0 73.1 85.5 99.8 72.2 73.7 85.7 99.8 72.5 72.9 85.6
101 99.8 72.1 72.8 85.4 99.8 72.3 73.4 85.7 99.8 72.5 72.9 85.5
101.5 99.8 72.1 72.8 85.4 99.8 72.2 73.3 85.7 99.8 72.6 72.7 85.5

dimension of CLIP is the same as ViT-B/16, we used the same training configu-
ration as ViT-B/16 for training Im.Aug and CLAP. For inference, we refined the
weighting coefficient α to 0.1, 1, 0.03, and 0.1 for Im.Aug, and 0.03, 0.2, 0.06,
and 0.1 for CLAP, for PACS, VLCS, OfficeHome, and DomainNet respectively.

Table 11 showcases the zero-shot results for ResNet50x16 model across differ-
ent prompts, substantiating that CLAP is more effective than Im.Aug in refining
CLIP features. Moreover, Tab. 12 illustrates that both Im.Aug and CLAP reduce
variations in zero-shot performance across different prompts, with the improve-
ment of CLAP being more significant. The results validate our approach across
different model scales, including both ViT-based and CNN-based structures.
Domain-level results are detailed in Tab. 13.

D Discussion

D.1 Rationale behind CLAP’s Foundation on CLIP

The primary challenge in cross-modal transferability lies in the significant do-
main gap between text and image data, which typically hinders the direct appli-
cation of models trained in one modality to another. For a causal explaination,
despite the consistency of the content variable that dictates the object label
across modalities, the generative processes from latent variables to observations
inherent to each modality differ markedly. The CLIP model, trained on a compre-
hensive dataset of image-text pairs with a symmetric InfoNCE loss, significantly
ameliorates this issue. By aligning the features of text and images into similar
patterns, it facilitates leveraging a network trained atop the CLIP encoder of
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Fig. 2: The prompting method we use for generating text prompts with ChatGPT-3.5.

Table 8: Zero-shot performance across four prompts ("C", "PC", "CP") and 1 noised
prompts ("NC") with CLIP pre-trained ViT-L/14 model. CLAP demonstrates consis-
tent gains in zero-shot performance across all datasets, validating its effectiveness.

Prompt Method Zero-shot performance, avg. top-1 acc. (%) (↑)

PACS VLCS OfficeHome DomainNet Overall

ZS(C)
CLIP 97.6 77.1 85.9 63.2 80.9

Im.Aug 98.3 78.5 86.0 63.4 81.6
CLAP 98.5 80.7 87.5 64.2 82.7

ZS(CP)
CLIP 97.3 80.6 86.0 62.0 81.5

Im.Aug 98.3 81.1 86.1 62.4 82.0
CLAP 98.5 81.4 87.9 63.7 82.9

ZS(PC)
CLIP 98.4 81.7 86.5 63.5 82.5

Im.Aug 98.6 81.9 86.6 63.7 82.7
CLAP 98.6 82.2 88.0 64.5 83.3

ZS(NC)
CLIP 91.0 65.5 77.1 55.4 72.3

Im.Aug 95.6 69.3 77.1 55.7 74.4
CLAP 98.5 73.1 81.3 58.3 77.8

one modality as a viable proxy for the other. Consequently, this allows for the
direct application of the disentangled network trained in the text modality atop
CLIP’s image encoder to refine representations.

D.2 Impact of Image and Text Augmentations

Identifying pure content factors poses a significant challenge. This difficulty pri-
marily arises from the need for finding effective augmentations of observational
data to alter style factors significantly while preserving content integrity.

Through the cross-modal alignment provided by CLIP, we discovered that
disentangling in one modality can seamlessly improve representations in both
modalities. The impact of image augmentations has been well-explored and found
effective at preserving content, but traditional methods do not impose sufficient
changes to remove all style information. Our exploration of text augmentations
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Table 9: CLAP reduces the variance in zero-shot performance across different prompts
with CLIP pre-trained ViT-L/14 model.

Metric Method Zero-shot variance, avg. top-1 acc. (%) (↓)

PACS VLCS OfficeHome DomainNet Overall

R
CLIP 1.0 4.6 0.6 1.5 1.9

Im.Aug 0.3 3.4 0.6 1.3 1.4
CLAP 0.1 1.5 0.4 0.7 0.7

δ
CLIP 0.4 2.0 0.3 0.6 0.8

Im.Aug 0.1 1.5 0.3 0.5 0.6
CLAP 0.0 0.6 0.2 0.3 0.3

∆(NC)

CLIP 6.6 11.5 8.8 7.8 8.7
Im.Aug 2.7 9.2 8.9 7.7 7.1
CLAP 0.1 7.7 6.3 5.9 5.0

Table 10: Domain-level zero-shot results of the ViT-L/14 model on the test datasets.

Datasets Domains
Domain-level avg. top-1 acc. (%) of zero-shot performance using ViT-L/14 (↑)

ZS(C) ZS(CP) ZS(PC) ZS(NC)
CLIP Im.Aug CLAP CLIP Im.Aug CLAP CLIP Im.Aug CLAP CLIP Im.Aug CLAP

PACS

A. 97.2 98.0 98.8 96.8 98.0 98.5 98.7 98.8 98.9 85.6 91.6 98.6
C. 99.5 99.6 99.8 98.3 99.6 99.7 99.5 99.6 99.7 95.9 98.1 99.6
P. 99.9 100.0 100.0 99.4 99.5 100.0 99.9 100.0 99.9 91.1 97.5 99.9
S. 93.8 95.7 95.5 94.8 96.0 95.7 95.4 95.9 95.8 91.5 95.2 95.8

VLCS

C. 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 87.5 87.9 94.4
L. 57.4 60.1 64.3 71.3 71.6 72.6 71.7 72.0 72.6 53.8 59.7 60.7
S. 71.0 72.4 74.4 66.2 67.4 66.8 69.9 70.4 69.9 55.9 60.5 62.9
V. 80.0 81.6 84.3 85.2 85.7 86.2 85.1 85.3 86.4 65.0 69.3 74.3

OfficeHome

A. 86.2 86.3 87.7 85.7 86.2 88.1 87.0 87.0 87.8 78.1 77.1 80.7
C. 73.3 73.4 75.7 73.8 73.4 76.0 73.1 73.5 76.0 65.9 66.3 70.6
P. 92.0 91.8 93.6 92.3 92.4 94.3 92.9 92.8 94.1 80.7 81.0 86.8
R. 92.2 92.7 93.0 92.2 92.4 93.4 93.1 93.3 93.9 83.8 84.0 86.9

DomainNet

C. 78.4 78.5 79.1 77.5 77.7 78.8 79.4 79.4 79.7 70.0 70.4 72.8
I. 52.9 53.0 54.6 50.4 50.7 53.6 51.7 52.0 53.9 45.3 45.2 48.8
P. 70.4 70.8 72.4 68.9 69.9 72.1 69.9 70.6 72.7 59.9 60.3 64.8
Q. 21.5 21.6 22.5 20.6 20.9 21.7 22.6 22.8 22.9 17.9 18.4 20.2
R. 85.8 85.9 85.9 85.3 85.5 85.7 86.3 86.4 86.2 77.5 77.5 78.7
S. 70.2 70.4 70.7 69.4 69.8 70.6 71.0 71.3 71.5 62.0 62.2 64.6

reveals that the logical structure of text and the relative ease of implement-
ing style changes can have a significant impact on achieving disentanglement.
However, more efficient methods are worthy of exploration.

A promising direction for future research is to explore efficient combinations
of both modalities to enhance disentangled semantics. As each modality has
its unique advantages—Text data recapitulates properties well since it is pre-
processed by human intelligence, while image data is more precise in depicting
the exact same objects or events due to its more detailed nature—the impact of
combining augmentations of both modalities could be substantial.
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Table 11: Zero-shot performance with CLIP pre-trained ResNet50x16 model. CLAP
demonstrates consistent enhancement across all datasets, validating its effectiveness.

Prompt Method Zero-shot performance, avg. top-1 acc. (%) (↑)

PACS VLCS OfficeHome DomainNet Overall

ZS(C)
CLIP 96.1 70.4 80.4 57.1 76.0

Im.Aug 96.4 74.7 80.4 57.1 77.2
CLAP 97.0 79.9 81.6 58.0 79.1

ZS(CP)
CLIP 95.0 73.5 79.0 56.1 75.9

Im.Aug 95.7 75.8 79.3 56.5 76.8
CLAP 96.7 80.3 79.9 57.4 78.6

ZS(PC)
CLIP 96.5 78.4 81.7 57.1 78.4

Im.Aug 97.0 79.8 81.8 57.4 79.0
CLAP 96.8 80.1 82.5 58.2 79.4

ZS(NC)
CLIP 86.4 61.2 69.3 48.2 66.3

Im.Aug 88.3 71.3 69.5 48.7 69.4
CLAP 94.9 80.1 71.9 50.6 74.4

Table 12: CLAP consistently reduces variances in zero-shot performance across dif-
ferent prompts with CLIP pre-trained ResNet50x16 model, validating its effectiveness.

Metric Method Zero-shot variance, avg. top-1 acc. (%) (↓)

PACS VLCS OfficeHome DomainNet Overall

R
CLIP 1.5 8.0 2.7 1.1 3.3

Im.Aug 1.3 5.1 2.5 0.9 2.4
CLAP 0.3 0.4 2.6 0.8 1.0

δ
CLIP 0.6 3.3 1.1 0.5 1.4

Im.Aug 0.5 2.2 1.0 0.4 1.0
CLAP 0.1 0.2 1.1 0.3 0.4

∆(NC)

CLIP 9.7 9.3 11.1 8.9 9.7
Im.Aug 8.1 3.5 10.9 8.5 7.7
CLAP 2.1 -0.1 9.7 7.5 4.8

Table 13: Domain-level zero-shot results using RestNet50x16 on the test datasets.

Datasets Domains
Domain-level avg. top-1 acc. (%) of zero-shot performance using RN50x16 (↑)

ZS(C) ZS(CP) ZS(PC) ZS(NC)
CLIP Im.Aug CLAP CLIP Im.Aug CLAP CLIP Im.Aug CLAP CLIP Im.Aug CLAP

PACS

A. 95.7 95.8 97.2 93.7 95.5 96.5 95.7 96.7 96.8 81.2 84.0 94.5
C. 98.3 98.2 99.0 98.1 98.8 99.0 98.6 98.7 98.9 92.3 93.2 98.0
P. 98.9 98.6 99.9 98.4 97.8 99.8 99.8 99.9 99.9 85.3 87.3 95.2
S. 91.5 93.1 91.9 89.7 90.8 91.5 91.8 92.9 91.6 86.9 88.6 92.1

VLCS

C. 96.8 97.1 99.3 99.7 99.4 99.3 99.7 99.6 99.4 75.6 89.3 99.4
L. 53.4 60.8 65.9 51.6 58.9 67.3 59.5 68.1 66.8 54.1 60.6 67.0
S. 63.2 70.9 69.5 68.0 72.9 69.5 72.9 73.7 69.0 52.0 66.7 69.5
V. 68.4 70.1 85.2 74.5 72.1 85.3 81.7 78.0 85.2 63.1 68.5 84.5

OfficeHome

A. 82.2 82.5 83.5 79.7 79.9 80.6 82.0 82.4 83.4 67.7 68.9 72.1
C. 63.0 62.9 64.7 61.7 62.2 62.8 65.4 65.3 66.1 54.6 55.0 56.8
P. 88.2 87.9 89.0 87.4 87.5 88.5 90.0 89.9 90.6 75.4 75.3 78.2
R. 88.1 88.2 89.1 87.3 87.5 87.6 89.2 89.5 89.7 79.5 78.9 80.3

DomainNet

C. 69.0 68.9 69.6 68.6 68.6 69.4 69.9 70.0 70.4 59.5 60.1 61.4
I. 51.0 51.1 52.7 48.2 49.0 50.6 48.2 48.9 50.7 41.2 41.6 44.3
P. 65.2 65.6 66.5 63.7 64.4 65.6 65.4 65.9 67.0 53.5 54.3 56.8
Q. 11.8 11.9 12.7 12.3 12.6 13.1 11.8 12.2 12.7 9.3 9.7 11.0
R. 82.1 82.2 83.1 81.6 81.8 82.6 83.3 83.4 83.8 72.9 73.0 74.7
S. 63.2 63.1 63.6 62.0 62.4 63.4 63.9 63.8 64.6 53.1 53.4 55.3
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