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Overview of the Appendix:

— More details on experiments using the CLIP pre-trained ViT-B/16 model are
provided in Appendix [A] including implementation details in Appendix [A7T]
investigations into prompt augmentation combinations in Appendix [A22]
analysis of different training prompt sources in Appendix [A-3] and detailed
experiment results for each dataset in Appendix [A-4]

— The processes of data synthesis with large models used in our approach
are outlined in Appendix [B} The image synthesis procedure for Im.Aug is
detailed in Appendix [B:I} and the approach for generating "LLM" prompts,
used in analyzing prompt sources, is described in Appendix

— In Appendix [C] we detail our repeated zero-shot experiments conducted
with the CLIP pre-trained ViT-L/14 (Appendix[C.I)) and ResNet50x16 (Ap-

pendix |C.2)) models.

— In section Appendix[D] we present discussions covering the underlying ratio-
nale for basing CLAP on the CLIP pre-trained models in Appendix[D.1] and
the impact of image augmentation and text augmentation in Appendix [D.2]

A More on Experiments with ViT-B/16

A.1 Implementation Details

In this section, we detail the implementation of our experiments utilizing the
CLIP pre-trained ViT-B/16 model:

Network. The network’s output dimension is aligned with the 512-dimensional
CLIP features, thereby obviating the need for input feature downsampling. The
latent dimensions are tailored to each dataset: 256 for PACS, 448 for OfficeHome,
and 512 for VLCS and DomainNet, to accommodate the variety of categories
and complexity of datasets. The weight parameter « is adjusted to 0.208 for
PACS, 0.056 for VLCS, 0.14 for OfficeHome, and 0.2 for DomainNet, while it is
consistently maintained at 1 throughout the training phase.
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Training CLAP. Training parameters are consistent across datasets, employing
the Adam optimizer with a learning rate of 0.0001, limiting training to 8,000
steps with checking the average loss every 480 steps, and instituting early stop-
ping after five checkpoints without a loss decrease of at least 0.01. Batch sizes
are adjusted to 8 for PACS and VLCS, 96 for OfficeHome, and 384 for Domain-
Net, with the temperature parameter 7 set at 0.5 for PACS and VLCS, and 0.3
for OfficeHome and DomainNet. The loss coefficient A is set to 1 for PACS and
VLCS, and 0.0001 for OfficeHome and DomainNet, due to the first two datasets
have less classes. Prompt augmentations, OSD-+OCD+SPQO, are applied across
datasets all with a 0.5 probability. For the PACS and VLCS datasets, Gaussian
noise with a zero mean and a standard deviation of 0.02 is randomly inserted
at the beginning, middle, or end of the augmented-view prompts to enrich the
training samples. In the linear probe evaluations for few-shot analysis, L2 nor-
malization and cross-entropy loss are utilized for training over 1,000 epochs with
a batch size of 32, incorporating early stopping with a patience threshold of 10
epochs and a loss decrease criterion of 0.001.

Training Im.Aug. We train a disentangled network using image augmentation,
applying the InfoNCE loss with a temperature parameter 7 set to 0.5. This
include image augmentation techniques, image cropping (scale € [0.64, 1.0]) and
color distortion (brightness = 0.5, hue = 0.3), each with a probability of 0.5.
Other training and inference configurations for Im.Aug are consistent with those
used for CLAP across all datasets.

A.2 Prompt Augmentation Combinations

In Tab. [I} we explore different combinations of our tailored prompt augmen-
tation techniques and EDA (Easy Data Augmentation) [42] techniques on the
VLCS dataset. Each combination demonstrates CLAP’s effectiveness in enhanc-
ing CLIP’s performance and reducing performance disparities. The combination
of OSD+OCS+SPO-+IGN achieves the highest average accuracy and the least
variance, outperforming the EDA techniques. Notably, even without incorporat-
ing random noise in the augmentations, CLAP significantly surpasses CLIP in
handling perturbations on prompts, as evidenced by the largely reduced A ycy.

A.3 Prompt Sources

In Tab. 2] we examine the effects of various training prompt formats, sourced
from different synthetic origins, on the VLCS dataset performance, utilizing

EDA techniques. The prompt formats are defined as follows: "Template"
refers to the template-based prompts fundamental to our primary approach;
"LLM" designates prompts created by ChatGPT-3.5 |3|, with the generation
process elaborated in Appendix [B.2} "Random" describes prompts formatted as
"a [random]| style of [class]," with "[random|" being replaced by terms from a
random word generator; and "Prm.Stl." indicates vectorized prompts generated
through PromptStyler [9)].
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Table 1: We evaluate prompt augmentation combinations on the VLCS dataset: OSD
(D), OCD (@), ITD (®), ASD (@), SPO (), and IGN (®)). ZS(Avg.) shows

average zero-shot accuracy acoss four distinct inference prompts. CLAP boosts CLIP’s
accuracy and reduces variances, with (D(2)(G)(®) as the optimal combination.

CLIP Avg. top-1 acc. (%) of different augmentations

(base) ., DO OB DG VOB BDG DO
@00 @0 00 @ © ©

ZS(Avg.) (1) 77.3 81.6 820 80.1 820 79.6 821 82.6
R (]) 61 19 12 25 09 32 1.6 0.8

5 (1) 2.8 09 0.6 1.2 04 1.5 07 04
Anwey (1) 81 23 17 3.0 1.8 3.4 2.0 1.6

Metrics

Table 2: We employ EDA augmentation to train CLAP with diverse prompt sources
on the VLCS dataset. Each prompt source contributes to improvements in CLIP’s zero-
shot performance, with "Random" and "Template" prompts, in their simpler forms,
yielding better outcomes.

CLIP Avg. top-1 acc. (%) of different sources
(base) LLM Random Prm.Stl. Template
ZS(Avg) (1) 77.3 782  81.6  81.2 81.6

Metrics

R (1) 6.1 32 0.7 2.7 1.9
5 (1) 28 15 0.3 1.2 0.9
Anwey () 81 33 2.3 3.0 2.3

Our experimental results indicate that CLAP, when trained across these var-
ied prompt formats, enhances the performance of CLIP. Notably, despite the
complex generation mechanisms of "LLM" and "Prm.StL." prompts, the sim-
pler, random-styled and template-based prompts demonstrate superior efficacy.
However, it is important to highlight that the improvements attributed to these
diverse prompt formats, trained with EDA, do not surpass the best performance
of the prompt augmentations tailored for template-based prompts.

A.4 Detailed Results on ViT-B/16

Details on Zero-Shot Evaluations We present the domain-level zero-shot
performance with various prompts across each dataset in Tab. [3] CLAP con-
sistently enhances CLIP’s zero-shot performance across these different prompts.
Given that CLAP exclusively utilizes text data for training, it does not com-
promise CLIP’s inherent ability to generalize across domains, which is acquired
from its extensive training dataset. Rather, by achieving a more effective disen-
tanglement of content, it unequivocally enhances CLIP’s zero-shot performance
across all dataset domains.
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Table 3: Domain-level zero-shot results of the ViT-B/16 model on the test datasets.

Domain-level avg. top-1 acc. (%) of zero-shot performance usig ViT-B/16 (1)

Dataset Domains

ZS(C) ZS(CP) ZS(PC) ZS(NC)
CLIP Im.Aug CLAP|CLIP Im.Aug CLAP|CLIP Im.Aug CLAP|CLIP Im.Aug CLAP

A. 1964 969 975|934 97.0 97.6 |974 976 97.6 |87.8 935 97.1

PACS C. 989 99.0 989 99.0 99.2 99.0 |99.1 99.0 989 |954 976 98.8

P. 1999 999 999 (993 99.6 999 999 999 999 [93.1 99.0 99.9

S. | 87.7 90.1 925 |89.2 89.6 925|831 894 923 |87.1 89.3 93.1

C. [99.7 99.8 999999 999 999 (999 999 999 |87.0 96.0 99.9

VLCS L. |61.8 66.2 67.769.9 704 704 |70.2 70.2 70.7|55.9 59.9 65.9

S. |70.1 748 78.0 733 76.0 772|736 764 769 614 66.2 753

V. |739 771 849 |84.8 854 86.0 |8.1 856 86.2 |689 703 829

A. |85 79.0 818|801 760 81.6|832 787 832|730 692 73.6

OfficeHome C. |64.6 59.6 66.4 |63.7 589 654|681 619 69.0|57.0 52.0 604
P. 8.3 836 875 (866 834 872|891 86.6 89.7|77.2 723 789

R. | 83.0 859 885 |87.6 84.8 87.7|89.8 872 90.0|79.0 76.5 8l.1

C. |71.0 643 719|705 621 720|713 634 728 |63.2 539 64.6

I. |486 405 50.6 [47.7 40.7 49.5 |478 40.0 50.5 [429 350 45.1

DomainNet P. 166.6 59.1 67.766.0 59.0 67.3]66.5 59.8 684 |57.2 504 59.4
Q. | 149 124 152 [ 13.3 11.5 13.8 | 14.1 11.8 14.3 | 12.0 9.2 13.1

R. | 826 766 83.1 822 758 822|834 782 837|752 679 756

S. |63.1 56.1 637|622 550 631|634 564 644 |55.7 475 576

Details on Few-Shot Evaluations We display the quantitative results of
few-shot performance in Tab.[dl CLAP consistently enhances the few-shot capa-
bilities, showcasing improvements across test datasets at a closer domain level.

Details on Adversarial Evaluations In Tab. 5} we detail our adversarial
performance evaluations for PACS, VLCS, OfficeHome, and DomainNet, respec-
tively. CLAP enhances both zero-shot and one-shot performance across all do-
mains of the tested datasets. While Im.Aug boosts one-shot robustness against
adversarial tasks, its impact on zero-shot adversarial robustness is inconsistent.

Details on Ablative Analysis In Tab. [f] we provide detailed results from
our analysis on zero-shot performance using various combinations of prompt
augmentations. Additionally, in Tab. [7] we present the outcomes of our ablative
studies focusing on the hyperparameters 7, latent dimension, and «, respectively,
each evaluated domain-wise. The results indicate that CLAP is effective across
a wide range of hyperparameters.

B Data Synthesis

B.1 Synthetic Image Generation

We employ the stable diffusion [39] v2.1 model for generating synthetic images
used in our comparing experiments, specifically utilizing the Stable Diffusion
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Table 4: Domain-level few-shot results of the ViT-B/16 model using the test datasets.

Domain-level avg. top-1 acc. (%) of few-shot performance of ViT-B/16 (1)

1-shot 4-shot 8-shot,
CLIP Im.Aug CLAP|CLIP Im.Aug CLAP|CLIP Im.Aug CLAP

Dataset Domains 16-shot 39-shot

CLIP Im.Aug CLAP|CLIP Im.Aug CLAP

A |79.5 841 945 (924 964 972|951 97.2 984 [97.9 981 984 |98.8 99.1 989

PACS C. [86.7 96.1 983|968 986 99.2 |98.8 989 99.3 995 99.2 99.5|99.6 99.6 99.6
P. 1974 99.8 99.9 |99.6 99.8 999 [99.9 999 999 [99.8 99.9 99.9 [99.9 99.9 99.9

S. |75.1 80.0 87.3 |91.1 923 925 923 923 929 | 924 926 93.1 |93.9 942 94.1

C. 1992 99.7 99.8 199.9 998 99.9 |99.8 99.7 99.9 | 99.7 99.9 99.9 | 99.9 100.0 99.9

VLCS L. |41.3 41.3 41.1 |56.7 57.0 59.8 |46.2 36.8 483 |59.4 604 626 |604 60.7 619
S. |45.3 46.1 50.8 |[61.9 63.7 69.0 |674 67.7 713|759 768 809 |77.4 786 81.0

V. |50.9 534 59.0 | 645 66.7 761|754 741 787 |72.6 739 777|857 86.1 879

A. |426 451 439 |76.8 776 777 |84.8 86.0 855 |91.8 921 921 |974 975 975
OfficeHome C. [40.1 450 438|699 702 70.5|758 759 76.6|81.6 81.6 81.6|89.0 89.0 892
P. 1702 733 734 |89.7 903 902|938 937 939 957 957 958 |97.7 97.6 97.6

R. [584 593 59.4 |81.7 831 829 |89.7 895 899 929 927 932 |95.8 958 958

C. |421 436 43.8 |66.8 675 67.8 |742 743 746|785 786 78.8 |828 828 827

I |19.5 208 21.0 385 39.3 39.7|46.7 47.0 473 |53.2 532 53.6 |60.0 59.9 60.1

DomainNet P. 1321 335 342 |60.5 60.9 615|680 680 687|725 726 730 |76.7 76.6 768
Q. [15.2 153 153 |30.0 29.6 299 |37.1 364 36.8 |43.8 434 435 |494 491 49.0

R. [50.8 52.1 527 |76.7 77.0 77.6 |81.7 819 822 |84.0 839 843|859 859 86.0

S. 331 339 348 |56.2 56.6 572|629 629 63.7|67.8 67.7 681|725 723 726

arealistic painting of ~ an impressionistic  a realistic photograph  a realistic sketch of a n impressionistic
a large blue aircraft mosaic art of a small of a large black car large black mug painting of a normal
carrier black backpack sized green train

Fig. 1: Examples of synthetic images created with SDv2.1 and associated prompts.

v2-1 Model Card available on Hugging Faceﬂ For each class across the four
datasets, we produce 480 images using our synthetic template prompts as input
for the stable diffusion model. All generated images are of 512 x 512 resolution.
Examples of these synthetic images alongside their corresponding text prompts
are displayed in Fig.

B.2 LLM Prompts Generation

We utilize ChatGPT-3.5 to create the LLM prompts employed in our com-
parative analysis of different prompt sources. Fig. [2 illustrates the process of
prompting ChatGPT-3.5 to generate text prompts for specific class names. For
each class, we produce 120 samples, and below are a few examples from the

generated prompts:

— Bird:

! nttps://huggingface.co/stabilityai/stable-diffusion-2-1
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Table 5: Domain-level results under adversarial attacks of ViT-B/16 on the datasets.

Domain-level avg. top-1 acc. (%) under adversarial attackings using ViT-B/16 (1)
Dataset Domains FGSM | PGD-20 | CW-20

1-shot
CLIP Im.Aug CLAP

78-C 1-shot 78-C 1-shot ZS-
CLIP Im.Aug CLAP|CLIP Im.Aug CLAP|CLIP Im.Aug CLAP|CLIP Im.Aug CLAP|CLIP Im.Aug CLAP

A 763 793 793|612 780 873 | 1.7 2.2 1.8 |16.0 42.1 63.1 | 1.5 2.0 2.3 0.5 11 1.7

PACS C. |949 950 940 [66.5 842 951|333 377 356 333 572 86.1 |288 340 332|119 236 318

P. |91.6 903 91.7 |674 80.8 921 |57 70 6.7 |27.1 550 69.8 | 47 49 58 | 0.7 27 4.1

S. |845 875 898 |71.6 746 838 |758 784 792|630 66.3 74.6 |745 768 779|627 654 703

C. | 553 538 555|258 288 253 |44 5.1 47 120 52 25 |29 31 3.5 | 0.7 1.2 1.0

VLCS L. |494 455 50.6 [27.0 326 304 |15.2 14.9 16.0 | 6.4 8.9 8.0 | 124 112 13.0 | 6.1 8.3 7.7

S. |61.7 581 625 |48.0 469 516 |132 139 14086 107 10.0 | 92 88 102 | 83 7.9 8.4

V. |653 632 656 |365 40.1 410 |75 7.9 79 | 53 94 89 | 52 48 56 |29 28 2.9

A. |55.3 538 55.5 |25.8 288 253 | 44 5.1 4.7 | 2.0 5.2 2.5 2.9 3.1 3.5 0.7 1.2 1.0

OfficeHome C. |494 455 506 |27.0 326 304 152 149 160 |64 89 8.0 |124 112 130 | 6.1 8.3 77

P. |61.7 581 62.5 |48.0 469 51.6 |13.2 139 14.0 | 8.6 10.7 10.0 | 9.2 8.8 10.2 | 8.3 7.9 8.4

R. | 653 632 65.6 |365 40.1 410 | 7.5 7.9 79 | 53 94 89 | 52 48 56 | 29 28 2.9

C. |57.8 509 588|333 343 350|216 187 228 |184 196 200|158 125 166 | 7.0 7.5 7.8

I |358 280 370|122 13.3 13.2 | 6.1 3.7 6.7 | 4.6 5.3 5.1 3.3 1.9 3.7 | 0.9 0.9 0.9

. P. 439 390 443|184 206 203 | 3.1 2.8 33 |86 104 99 | 1.8 1.3 19 |03 03 0.3
DomainNet . p N . .

Q. [129 103 13.2 | 109 108 11.1 | 8.4 6.8 8.6 54 5.4 5.6 7.1 5.4 7.4 4.9 4.8 5.1

R. |62.1 559 624 |345 359 365 | 7.1 6.5 75 |17.6 197 196 | 45 3.4 4.7 | 1.2 1.4 14

S. |49.1 433 49.7 |25.7 26.0 275 |17.8 155 18.6 | 13.6 144 151 |13.4 10.2 13.9 | 5.0 5.2 5.6

e A pair of vibrant macaws converse in a lush, tropical rainforest, depicted
in a lively, exotic wildlife painting.

e A solitary eagle watches over a vast, rugged canyon at sunrise, portrayed
in a majestic, wilderness landscape photograph.

— Dog:

o A sleek Whippet races in a competitive dog track, illustrated in a fast-
paced, dynamic sports style.

e A sturdy and reliable English Bulldog watching over a small shop, its
solid presence reassuring to the owner.

— Car:

e A quirky art car parades through the streets in a colorful festival, cap-
tured in a fun, expressive style illustration.

e A high-tech, autonomous car maneuvers through a smart city environ-
ment, portrayed in a futuristic, sci-fi digital art piece.

— Chair:

e A folding chair at an outdoor wedding, elegantly decorated and part of
a beautiful ceremony.

e A high-end executive chair in a law firm, projecting authority and pro-
fessionalism.

Person:

e An energetic coach motivates a team on a sports field, illustrated in an
inspiring, leadership-focused painting.

e A graceful figure skater glides across an ice rink, captured in a delicate,
winter-themed pastel drawing.
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Table 6: Zero-Shot Performance on VLCS Dataset Across Varied Augmentation Com-
binations and Prompt Sources: (I) Random Object Size Deletion, (2) Random Object
Color Deletion, (3) Random Image Type Deletion, (3 Random Art Style Deletion, (5)
Random Swapping Order, (6) Addition of Gaussian Noise.

Avg. top-1 acc. (%) (1) of different augmentations and prompts on VLCS

Method Domains CLIP D@ DG ORG OO 3DG DOG EDA
(base) DO® @® @® @ ® @ |LLM Rand. Prsi. Temp.

C. 99.7  99.9 99.8 99.9 99.8 99.9 99.9 | 979 99.7 99.9 99.9
78(C) L. 61.8  66.6 62.3 67.0 62.2 66.2 67.7 | 66.2 69.0 67.3 66.5
S. 70.1 781 75.5 78.0 74.3 78.5 780 | 73.2 769 735 76.9
V. 73.9 828 80.6 83.2 79.3 82.7 84.9 | 726 81.8 81.8 81.9
C. 99.9  99.9 99.9 99.9 99.9 99.9 99.9 | 99.8 99.9 99.9 999
7S(CP) L. 69.9  69.3 67.9 69.6 68.4 70.0 704 | 69.3 704 71.2 69.7
S. 73.3 T7.6 76.4 76.7 75.9 78.8 772 | 76.2 752 751 78.0
V. 84.8 85.3 84.0 85.3 84.2 85.1 86.0 | 77.0 84.2 86.0 84.6
C. 99.9  99.9 99.9 99.9 99.9 99.9 99.9 | 999 999 99.9 99.9
7S(PC) L. 70.2  70.0 68.0 70.1 68.5 70.0 70.7 | 67.5 70.6 71.8 70.0
S. 73.6  76.6 75.6 76.0 74.8 77.8 76.9 | 76.9 751 749 782
V. 86.1  85.7 84.7 85.7 84.5 85.5 86.2 | 782 84.6 86.8 84.8
C. 87.0 99.8 99.6 99.8 99.4 99.7 99.9 | 95.3 98.6 99.6 99.8
7ZS(NC) L. 55.9  65.2 61.3 65.6 60.5 65.4 65.9 | 63.0 66.7 64.0 64.7
S. 61.4 75.6 70.3 75.2 68.3 74.9 753 | 68.9 733 69.8 73.0
V. 68.9 80.1 75.2 80.4 73.8 79.4 829 | 69.3 79.6 772 78.6

C Experiments on Other CLIP Model Scales

C.1 Experiments on ViT-L/14

We refined the output dimension to align with the input dimension of 768. The
chosen latent dimensions were 448 and 640 for PACS and VLCS, respectively,
and 768 for both OfficeHome and DomainNet. The inference weighting o was
set to 0.1 for PACS, 0.03 for VLCS, 0.14 for OfficeHome, and 0.2 for Domain-
Net. All other training configurations remained consistent with the ViT-B/16
experiments across each dataset. The training configuration for Im.Aug was set
the same as CLAP for each dataset, with the inference weighting « being 0.1 for
PACS and 0.03 for the other three datasets.

Table [8] showcases the zero-shot results for the ViT-L/14 model using four
distinct prompts, following the protocol established for the ViT-B/16 experi-
ments. These results demonstrate that CLAP is more efficient than Im.Aug in
enhancing zero-shot performance. Moreover, Tab. [J] illustrates that CLAP sig-
nificantly reduces variations in zero-shot performance across different prompts,
thereby confirming CLAP’s performance improvements over CLIP across a range
of model sizes. Detailed domain-level results are presented in Tab. [I0] offering
an in-depth analysis.

C.2 Experiments on ResNet50x16

To validate our approach on different model structures, we repeated zero-shot
experiments on the ResNet50x16 model pre-trained with CLIP. Since the output
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Table 7: Ablative study of hyperparameters on VLCS dataset using ViT-B/16 model.

| Avg. top-1 acc. (%) (1) using ViT-B/16 on VLCS dataset

Value 7S (C) 7S (CP) 78 (PC)
parameters C. L. S. V. C. L. S. V. C. L. S. V.

0.1 99.9 676 775 842 | 999 709 749 859 | 999 712 746 86.3
0.3 99.9 663 772 824 | 999 699 767 852 | 999 699 764 85.4
T 0.5 99.9 677 780 849|999 704 772 86.0| 999 70.7 76.9 86.2
0.7 99.9 659 777 831|999 689 779 849|999 696 77.7 85.0
0.9 99.9 66.0 776 833|999 69.0 779 85.0 | 999 69.7 77.5 85.0

128.0 | 99.9 66.0 77.6 826 | 999 70.0 774 854 999 701 771 857

192.0 | 99.9 649 779 830 999 689 780 856 | 999 69.0 77.8 86.0

256.0 | 999 638 776 827 999 676 787 848 | 99.9 678 786 852

Lantent 320.0 | 99.9 66.0 77.8 829 | 999 69.2 781 853 | 999 69.7 77.7 855
dim. 384.0 | 999 658 769 828 999 694 775 853 | 999 69.6 77.0 855
448.0 | 99.9 658 774 821 ] 99.9 69.7 776 849 | 99.9 699 771 856

512.0 | 99.9 67.7 780 849 999 704 772 86.0| 99.9 70.7 76.9 86.2

107%] 99.9 66.5 77.9 83.1] 999 704 771 860 999 703 76.6 86.1
107" | 999 695 775 85.7 ] 999 704 771 862|999 709 765 86.1
107%° 99.9 70.6 752 855 | 99.9 70.7 757 859 999 710 751 857
a 10° 99.8 715 735 835 | 999 717 744 858 | 998 723 735 855
10°° | 99.8 720 73.1 855 | 998 722 73.7 857 | 998 725 729 856
10! 99.8 721 728 854 | 998 723 734 857|998 725 729 855
10'° | 99.8 721 728 854 | 998 722 733 85.7| 998 726 72.7 855

Hyper-

dimension of CLIP is the same as ViT-B/16, we used the same training configu-
ration as ViT-B/16 for training Im.Aug and CLAP. For inference, we refined the
weighting coefficient « to 0.1, 1, 0.03, and 0.1 for Im.Aug, and 0.03, 0.2, 0.06,
and 0.1 for CLAP, for PACS, VLCS, OfficeHome, and DomainNet respectively.

Table [Tl showcases the zero-shot results for ResNet50x16 model across differ-
ent prompts, substantiating that CLAP is more effective than Im.Aug in refining
CLIP features. Moreover, Tab. [[2]illustrates that both Im.Aug and CLAP reduce
variations in zero-shot performance across different prompts, with the improve-
ment of CLAP being more significant. The results validate our approach across
different model scales, including both ViT-based and CNN-based structures.
Domain-level results are detailed in Tab.

D Discussion

D.1 Rationale behind CLAP’s Foundation on CLIP

The primary challenge in cross-modal transferability lies in the significant do-
main gap between text and image data, which typically hinders the direct appli-
cation of models trained in one modality to another. For a causal explaination,
despite the consistency of the content variable that dictates the object label
across modalities, the generative processes from latent variables to observations
inherent to each modality differ markedly. The CLIP model, trained on a compre-
hensive dataset of image-text pairs with a symmetric InfoNCE loss, significantly
ameliorates this issue. By aligning the features of text and images into similar
patterns, it facilitates leveraging a network trained atop the CLIP encoder of



APPENDIX 27

You

| have some class names, such as "dog", "car", "person", "chair". | want you to generate various
style of these objects in different art-style pictures. Providing me with a list of different sentences
that decribe a scene contaning the object, with different object attributes (such as object size,
condition or age(if applicable), colors), different backgrounds the object may apear in; different
image types (such as photo, painting, etc).

ChatGPT
Absolutely, I'll provide you with a list of descriptive sentences for each of the class names "dog",

"car", "person", "chair," incorporating various object attributes, backgrounds, and image types.

Each sentence will describe a unique scene:

Fig. 2: The prompting method we use for generating text prompts with ChatGPT-3.5.

Table 8: Zero-shot performance across four prompts ("C", "PC", "CP") and 1 noised
prompts ("NC") with CLIP pre-trained ViT-L/14 model. CLAP demonstrates consis-
tent gains in zero-shot performance across all datasets, validating its effectiveness.

Zero-shot performance, avg. top-1 acc. (%) (1)

PACS VLCS OfficecHome DomainNet Overall

Prompt Method

CLIP 97.6 77.1 85.9 63.2 80.9
ZS(C) Im.Aug 98.3 78.5 86.0 63.4 81.6
CLAP 98.5 80.7 87.5 64.2 82.7
CLIP 97.3 80.6 86.0 62.0 81.5
ZS(CP) Im.Aug  98.3 81.1 86.1 62.4 82.0
CLAP 98.5 81.4 87.9 63.7 82.9
CLIP 98.4 81.7 86.5 63.5 82.5
7ZS(PC) Im.Aug 98.6 81.9 86.6 63.7 82.7
CLAP 98.6 82.2 88.0 64.5 83.3
CLIP 91.0 65.5 77.1 55.4 72.3
ZS(NC) Im.Aug  95.6 69.3 77.1 55.7 74.4
CLAP 98.5 73.1 81.3 58.3 77.8

one modality as a viable proxy for the other. Consequently, this allows for the
direct application of the disentangled network trained in the text modality atop
CLIP’s image encoder to refine representations.

D.2 Impact of Image and Text Augmentations

Identifying pure content factors poses a significant challenge. This difficulty pri-
marily arises from the need for finding effective augmentations of observational
data to alter style factors significantly while preserving content integrity.
Through the cross-modal alignment provided by CLIP, we discovered that
disentangling in one modality can seamlessly improve representations in both
modalities. The impact of image augmentations has been well-explored and found
effective at preserving content, but traditional methods do not impose sufficient
changes to remove all style information. Our exploration of text augmentations
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Table 9: CLAP reduces the variance in zero-shot performance across different prompts
with CLIP pre-trained ViT-L/14 model.

Zero-shot variance, avg. top-1 acc. (%) (1)

PACS VLCS OfficeHome DomainNet Overall

Metric Method

CLIP 1.0 4.6 0.6 1.5 1.9

R Im.Aug 0.3 3.4 0.6 1.3 14
CLAP 0.1 1.5 0.4 0.7 0.7

CLIP 0.4 2.0 0.3 0.6 0.8

6 ImAug 0.1 1.5 0.3 0.5 0.6
CLAP 0.0 0.6 0.2 0.3 0.3

CLIP 6.6 11.5 8.8 7.8 8.7

Awwey ImAug 2.7 9.2 8.9 7.7 7.1
CLAP 0.1 7.7 6.3 5.9 5.0

Table 10: Domain-level zero-shot results of the ViT-L/14 model on the test datasets.

Domain-level avg. top-1 acc. (%) of zero-shot performance using ViT-L/14 (1)

Datasets Domains 7S(C) 7S(CP) 7ZS(PC) ZS(NC)
CLIP Im.Aug CLAP|CLIP Im.Aug CLAP|CLIP Im.Aug CLAP|CLIP Im.Aug CLAP

972 98.0 98.8 |96.8 98.0 98.5 [98.7 988 989 |85.6 91.6 98.6
PACS 99.5 99.6 99.8 1 98.3 99.6 99.7 199.5 99.6 99.7 |95.9 98.1 99.6
99.9 100.0 100.099.4 99.5 100.0|99.9 100.0 99.9 |91.1 975 99.9
93.8 95.7 955|948 96.0 95.7 |954 959 958 [91.5 952 95.8
99.9 999 999 1999 99.9 999 [99.9 999 999 |87.5 87.9 944
VLCS 57.4  60.1 64.3 | 71.3 T71.6 726 | 71.7 72.0 726 [53.8 59.7 60.7
71.0 724 744 1662 674 66.8 699 704 699 |559 60.5 62.9
80.0 81.6 84.3 |85.2 85.7 86.2 |85.1 853 864 |650 69.3 743
86.2 86.3 87.7 | 85.7 86.2 88.1 | 87.0 87.0 87.8 781 77.1 80.7
733 734 757|738 734 76.0 |73.1 73.5 76.0 659 66.3 70.6
OfficeHome

92.0 91.8 93.6 [92.3 924 943 |929 928 941 |80.7 81.0 86.8
92.2 92,7  93.0 [92.2 924 934 |93.1 933 939 |838 840 86.9

784 785 79.1 |775 777 788|794 794 797 |70.0 70.4 728
529 53.0 54.6 |50.4 50.7 53.6 |51.7 520 539 |45.3 452 488
70.4 708 724 |68.9 699 721|699 70.6 727 |59.9 60.3 64.8
21.5 21.6 225|206 209 21.7 |226 228 229 179 184 20.2
858 859 859 [8.3 8.5 857 8.3 864 86.2 |77.5 T7.5 787
70.2 704 707 |69.4 698 706 |71.0 713 715 |62.0 622 64.6

DomainNet

NEOT-QIPTAF | SO nTa>

reveals that the logical structure of text and the relative ease of implement-
ing style changes can have a significant impact on achieving disentanglement.
However, more efficient methods are worthy of exploration.

A promising direction for future research is to explore efficient combinations
of both modalities to enhance disentangled semantics. As each modality has
its unique advantages—Text data recapitulates properties well since it is pre-
processed by human intelligence, while image data is more precise in depicting
the exact same objects or events due to its more detailed nature—the impact of
combining augmentations of both modalities could be substantial.
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Table 11: Zero-shot performance with CLIP pre-trained ResNet50x16 model. CLAP
demonstrates consistent enhancement across all datasets, validating its effectiveness.

Zero-shot performance, avg. top-1 acc. (%) (1)
PACS  VLCS OfficeHome DomainNet Overall

Prompt Method

CLIP 96.1 70.4 80.4 57.1 76.0
7ZS(C) Im.Aug 96.4 4.7 80.4 57.1 77.2
CLAP 97.0 79.9 81.6 58.0 79.1
CLIP 95.0 73.5 79.0 56.1 75.9
7ZS(CP) Im.Aug  95.7 75.8 79.3 56.5 76.8
CLAP  96.7 80.3 79.9 57.4 78.6
CLIP 96.5 78.4 81.7 57.1 78.4
ZS(PC) Im.Aug  97.0 79.8 81.8 57.4 79.0
CLAP 96.8 80.1 82.5 58.2 79.4
CLIP 86.4 61.2 69.3 48.2 66.3
ZS(NC) Im.Aug  88.3 71.3 69.5 48.7 69.4
CLAP 94.9 80.1 71.9 50.6 74.4

Table 12: CLAP consistently reduces variances in zero-shot performance across dif-
ferent prompts with CLIP pre-trained ResNet50x16 model, validating its effectiveness.

Zero-shot variance, avg. top-1 acc. (%) (1)
PACS  VLCS OfficcHome DomainNet Overall

Metric Method

CLIP 1.5 8.0 2.7 1.1 3.3

R Im.Aug 1.3 5.1 2.5 0.9 2.4
CLAP 0.3 0.4 2.6 0.8 1.0

CLIP 0.6 3.3 1.1 0.5 1.4

6 ImAug 05 2.2 1.0 0.4 1.0
CLAP 0.1 0.2 1.1 0.3 0.4

CLIP 9.7 9.3 11.1 8.9 9.7

Avey Im.Aug 8.1 3.5 10.9 8.5 7.7
CLAP 2.1 -0.1 9.7 7.5 4.8

Table 13: Domain-level zero-shot results using RestNet50x16 on the test datasets.

Domain-level avg. top-1 acc. (%) of zero-shot performance using RN50x16 (T)

ZS(C) ZS(CP) ZS(PC) ZS(NC)
CLIP Im.Aug CLAP|CLIP Im.Aug CLAP|CLIP Im.Aug CLAP|CLIP Im.Aug CLAP

Datasets Domains

A. 95.7 958 97.2 | 93.7 955 96.5 |95.7 96.7 96.8 |81.2 84.0 945

PACS C. 98.3 982 99.0 [98.1 98.8 99.0 |98.6 98.7 989 1923 932 98.0

P. 98.9 98.6 99.9 [98.4 97.8 99.8 [99.8 99.9 99.9 |85.3 873 952

S. 91.5 93.1 919 |89.7 90.8 91.5 |91.8 929 916 |86.9 88.6 92.1

C. 96.8  97.1  99.3 [99.7 994  99.3 | 99.7 99.6 994 |75.6 89.3 994

VLCS L. 53.4 608 659 |51.6 589 673 |59.5 681 66.8 541 60.6 67.0

S. 63.2 709 69.5 680 729 695|729 737 69.0 520 66.7 69.5

V. 684 70.1 8.2 |745 721 853|817 780 852|631 685 845

A. 822 825 835 |79.7 799 80.6 820 824 834|677 689 721

OfficeHome C. 63.0 629 64.7 |61.7 622 628 |65.4 653 66.1 |54.6 55.0 56.8
P. 88.2 879 89.0 |87.4 87.5 885|900 899 90.6 |754 753 782

R. 88.1 88.2 89.1 |87.3 87.5 87.6 892 895 89.7 795 789 80.3

C. 69.0 68.9 69.6 |68.6 686 694 699 700 704 |59.5 60.1 614

I 51.0 51.1  52.7 | 482 49.0 50.6 |48.2 489 50.7 |41.2 416 443

DomainNet P. 65.2 65.6 66.5 |63.7 644 65.6 | 654 659 67.0 535 543 56.8
Q. 11.8 119 127 |123 126 13.1 |11.8 122 12.7 | 9.3 9.7 11.0

R. 82.1 822 831 |8l6 81.8 826 833 834 838|729 730 747

S. 63.2 63.1 63.6 |62.0 624 634|639 638 64.6 531 534 553




	 CLAP: Isolating Content from Style through Contrastive Learning with Augmented Prompts APPENDIX

