
CLAP: Isolating Content from Style through
Contrastive Learning with Augmented Prompts

Yichao Cai , Yuhang Liu , Zhen Zhang , and Javen Qinfeng Shi

Australian Institute for Machine Learning, University of Adelaide, SA 5000, Australia
{yichao.cai,yuhang.liu01,zhen.zhang02,javen.shi}@adelaide.edu.au

Abstract. Contrastive vision-language models, such as CLIP, have gar-
nered considerable attention for various dowmsteam tasks, mainly due
to the remarkable ability of the learned features for generalization. How-
ever, the features they learned often blend content and style information,
which somewhat limits their generalization capabilities under distribu-
tion shifts. To address this limitation, we adopt a causal generative per-
spective for multimodal data and propose contrastive learning with data
augmentation to disentangle content features from the original represen-
tations. To achieve this, we begin with exploring image augmentation
techniques and develop a method to seamlessly integrate them into pre-
trained CLIP-like models to extract pure content features. Taking a step
further, recognizing the inherent semantic richness and logical structure
of text data, we explore the use of text augmentation to isolate latent
content from style features. This enables CLIP-like model’s encoders to
concentrate on latent content information, refining the learned repre-
sentations by pre-trained CLIP-like models. Our extensive experiments
across diverse datasets demonstrate significant improvements in zero-
shot and few-shot classification tasks, alongside enhanced robustness to
various perturbations. These results underscore the effectiveness of our
proposed methods in refining vision-language representations and ad-
vancing the state-of-the-art in multimodal learning. 1
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1 Introduction

Vision-language models, exemplified by CLIP [36], have garnered substantial at-
tention due to their exceptional generalization capabilities, achieved through the
learned features, obtained by utilizing a cross-modal contrastive loss [20,25,36].
However, despite being pre-trained on extensive datasets, CLIP-like models fall
short in disentangling latent content information and latent style information.
Consequently, they are not immune to spurious correlations, i.e., style-related in-
formation is erroneously utilized to predict task-related labels. These limitations
become evident in the presence of distribution shifts or adversarial attacks where
spurious correlations often change across different environments. For examples,
1 Our code is available at https://github.com/YichaoCai1/CLAP.
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Fig. 1: Causal generative models of vision-language data. Image and text data are
generated through distinct underlying deterministic processes, gx for images and gt

for texts, derived from a unified latent space with latent content variables c and latent
style variables s. Latent content c exclusively determines the sample label y. (a) Soft
interventions on latent style variables s result in s̃, subsequently generating augmented
images x̃. (b) Due to the same latent space, soft interventions on latent style variables s
can also result in s̃, producing augmented text t̃. (c) A qualitative comparison of image
features for zero-shot classification using "a photo of a [class]" prompts, visualized
using class activation map (CAM) [32], demonstrates that while image augmentation
can enhance CLIP features, the features obtained through text augmentation methods
predominantly focus on the content.

(1) a notable dependence on specific input text prompts has been reported for
zero-shot capabilities [21, 47, 48]; (2) performance decline in few-shot scenarios
has been observed in few-shot learning scenarios [13, 36]; and (3) susceptibility
to adversarial attacks has been explored [33,43,45].

Taking a causal perspective, this work begin with a simple yet effective
method, image augmentation, to disentangle content and style information within
the learned representations of CLIP-like models. This approach is inspired by
recent advancements in theoretical development in causal representation learn-
ing [41], which demonstrate that augmented image can be interpreted as a result
of soft interventions on latent style variables, as depicted in Fig. 1a. Such aug-
mentation results in a natural data pair where content information remains un-
changed while style information changes. Consequently, using contrastive learn-
ing, it becomes feasible to isolate the invariant content information from the vari-
ant style information. Motivated by this theoretical advancement, we propose
a practical method to incorporate image augmentation into CLIP-like models
to extract content information from the original learned features. Specifically,
a disentangled network is designed to fine-tune the pre-trained CLIP model by
using a contrastive loss with image augmentation.

Despite the advancements made in disentangling content and style infor-
mation from the original features learned by CLIP-like models through image
augmentation, we recognize an inherent limitation: it is generally challenging to
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design adequate image augmentations to ensure all style factors change in an
image. Theoretically, disentangling content and style information necessitates
changes in all style factors [41]. However, inducing sufficient changes in latent
style through image augmentation poses challenges due to the high dimension-
ality and complexity of style information in image data. Achieving significant
style variation via artificially designed image augmentation techniques, such as
transforming a photograph of a dog into a sketch while preserving content but
dramatically altering style, is notably difficult.

Taking a further step, rather than relying on image augmentation, we ex-
plore the use of text augmentation to disentangle latent content and style fac-
tors. This shift is motivated by two key observations: 1) Vision and language
data share the same latent space. Therefore, text augmentation can also be uti-
lized to induce changes in latent style factors instead of image augmentation. 2)
Text data inherently possesses high semanticity and logical structure, making
it more amenable to property-wise manipulation compared to image data. Con-
sequently, implementing sufficient style changes through text augmentation is
more feasible than image augmentation, contributing to isolating content from
style information, see Fig. 1c for visual comparison. For instance, transforming
text from "a photo of a dog" to "a sketch of a dog" is straightforward in the
language modality, whereas achieving a similar transformation in image data
is challenging. Inspired by these observations, we posit that introducing style
variations through text augmentation, as illustrated Fig. 1b, provides a more
effective approach for learning vision-language content features than relying on
image augmentation.

In summary, our contributions include: (1) Aimed at disentangling latent
content and style factors to refine vision-language features of pre-trained CLIP-
like models, we propose constrastive learning with data augmentation to fine
tune the original features of pre-trained CLIP-like models from a causal per-
spective. (2) We present a novel method customized for pre-trained CLIP-like
models. This method leverages a disentangled network, which is trained using
contrastive learning with image augmentation, to extract latent content features
from the learned features provided by image encoder of CLIP-like models. (3)
We propose Contrastive Learning with Augmented Prompts (CLAP), to extract
latent content features from representations of CLIP-like models. It begins by
training a disentangled network using the pre-trained text encoder of CLIP-like
models and text augmentation. Subsequently, the trained disentangled network
is transferred to the image encoder of CLIP-like models. (4) Experiments con-
ducted on a large real dataset demonstrate the effectiveness of the proposed
image augmentation and text augmentation in terms of zero-shot and few-shot
performance, as well as robustness against perturbations.

2 Related Work

Contrastive Vision-Language Models Using a cross-modal contrastive loss,
CLIP [36] revolutionarily introduced a scalable contrastive vision-language model
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by leveraging a large corpus of internet-sourced image-text pairs, demonstrat-
ing unprecedented zero-shot learning capabilities and exceptional generalization
ability across datasets and supporting numerous downstream tasks [38]. ALIGN
[20] expanded the scale of contrastive vision-language modeling, training on up
to one billion image-text pairs while integrating the vision transformer’s self-
attention mechanism [11], which further enhanced performance. Despite their
successes, CLIP-like models exhibit sensitivity to input text prompts [21, 48],
leading to variable performance across different prompts. Efforts to mitigate
this prompt sensitivity through prompt learning and engineering [9,14,21,47,48]
focus on customizing prompts for specific tasks but do not fundamentally en-
hance CLIP’s representations. Furthermore, CLIP-like models are vulnerable to
adversarial attacks [4, 12], with current strategies [33, 45] involving adversarial-
natural image pairs to improve resilience. Our work diverges from task-specific
approaches by aiming to enhance CLIP’s representations from a disentanglement
perspective, addressing the aforementioned issues inherent in CLIP-like models.

Disentangled Representation Learning Aimed at segregating intrinsic la-
tent factors in data into distinct, controllable representations, disentangled rep-
resentation learning benefits various applications [24,40,44]. Specifically, in clas-
sification tasks, it’s shown that enhancing the model’s performance and robust-
ness against data distribution perturbations can be achieved by more effectively
disentangling invariant content variables, without needing to identify all intrin-
sic latent variables completely [22,26–28]. Within single modalities, studies such
as [49] have illustrated that contrastive learning [7,16,18] can potentially reverse
the data generative process, aiding in the separation of representations. Further-
more, [41] suggest that image augmentation can help isolate content variables
from the latent space through significant stylistic changes. [19] employs mixture
techniques for data augmentation, enabling more abundant cross-modal matches.
Diverging from these methods, our approach focuses on employing text augmen-
tation to disentangle latent content variables, introducing a unique approach to
learn refined vision-language representations.

3 A Causal Generative Model for Multi-Modal Data

To understand pretrained CLIP-like models, we investigate the underlying causal
generative process for vision-language data. We consider the following causal gen-
erative model as depicted in Fig. 1. In the proposed model, the shared latent
space ruling vision and language data is divided into two distinct sub-spaces: one
corresponding to the latent content variables c and the other to the latent style
variables s. The latent content variables are posited to determine the object label
y, a relationship corroborated by prior studies [22, 29, 31]. Furthermore, to elu-
cidate the correlation between the latent style variable s and the object variable
y, our model incorporates the premise that the latent content variable c causally
influences the latent style variable s, in concordance with the principles of causal
representation learning highlighted in recent literature [10, 29, 41]. Additionally,
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considering the diversity between image data and text data, where information
in image data is typically much more details while information in text data tends
to be more logically structured nature, we posit distinct causal mechanisms for
the generation processes. Our causal generative model is formulated as following
structural causal models [2]:

s := gs(c), x := gx(c, s), t := gt(c, s), y := gy(c). (1)

In Eq. (1), the style variable s is causally influenced by the content via gs; x
and t denote visual and textual data, respectively. Both visual and textual data
are causally produced by the shared latent variables c and s through distinct,
reversible generative processes: gx for images and gt for text data, respectively.
The label y of a sample is exclusively determined by the content variable c via
gy.For simplicity, exogenous noises are implicitly assumed but not explicitly rep-
resented in the causal generative model’s formulation, aligning with the common
understanding that each latent variable is influenced by exogenous noise.

Recent seminal work in [41] has demonstrated that the latent content vari-
able c can be identified up to block identifiability (i.e., c can be isolated from
style variable s), by requiring all latent style variables to change (e.g., soft in-
terventions on all latent style variables). This change can be achieved through
image augmentation, i.e., the augmented image x̃ can be interpreted as a gener-
ative result of s̃, which is produced through soft interventions on original latent
style variables s. Despite such theoretical advancement, the practical implemen-
tation of this theoretical result within CLIP-like models remains unclear. In this
study, we propose a practical method to disentangle content and style infor-
mation within CLIP-like models by employing image augmentation, as detailed
in Sec. 4.1. Moreover, we recognize that implementing sufficient changes on all
latent style variables s through text augmentation is more feasible than image
augmentation, due to high semanticity and logical structure in text data, we
delve into the use of text augmentation to separate content information from
style information, as discussed in Sec. 4.2.

4 Isolating Content from Style with Data Augmentation

In this section, we propose the employment of data augmentation to extract
content information from the learned features in pre-trained CLIP-like models.
Essentially, data augmentation facilitates the alteration of style factors while
preserving content factors. Consequently, leveraging contrastive learning enables
the segregation of content information from style information. We delve into two
distinct forms of data augmentation, namely image augmentation (Sec. 4.1) and
text augmentation (Sec. 4.2).

4.1 Isolating Content from Style with Augmented Images

While recent studies (von et al., 2021) have offered assurance regarding the dis-
entanglement of content and style through contrastive learning with data aug-
mentation, it remains unclear how these theoretical findings can be applied to
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Fig. 2: Refining CLIP through data augmentation. (a) Training involves a disentangled
network fc, utilizing contrastive loss on original and augmented image pairs x and x̃,
with CLIP’s image encoder f∗x holding frozen gradients. (b) More efficient content
feature learning is achieved through contrastive learning with augmented text prompts
t and t̃, using the fixed text encoder f∗t of CLIP. (c) Inference stage: The trained
disentangled network f∗c integrates with CLIP’s text and image encoders, f∗t and f∗x , to
enable zero-shot inference for an input image x and class names t1 to tn.

the realm of vision-language models. We convert the theoretical findings into
CLIP-like models in the following. The theoretical findings suggest using In-
foNCE loss [34] to extract content information, as outlined below:

L(f ; {xi, x̃i}bi=1, τ) = −1

b

∑b

i=1
log

exp [⟨f(xi), f(x̃i)⟩/τ ]∑b
j=1 exp [⟨f(xi), f(x̃j)⟩/τ ]

, (2)

where {xi}bi=1 represents a batch of b samples from the training dataset, f(xi)
denotes sample xi’s features through model f , x̃i is the augmented counterpart
of xi, and ⟨z1, z2⟩ represents the cosine similarity between two feature vectors,
z1 and z2, and τ represents the temperature parameter influencing the loss.

We extend it to refine pre-trained vision-language models, utilizing con-
trastive learning with augmented images (hereinafter referred to as "Im.Aug").
As illustrated in Fig. 2a, we train a disentangled network on top of CLIP’s pre-
trained image encoder. To enhance training efficiency and the usability of the
proposed method, we freeze the pre-trained image encoder. Based on an InfoNCE
loss, the learning objective of Im.Aug is formulated as follows:

f∗c = argmin
fc

E
{xi}b

i=1∈Dx

L(fc ◦ f∗x ; {xi, x̃i}bi=1, τ), (3)

where Dx denotes the training image dataset and b represents the batch size, fc
is the disentangled network undergoing training. The pre-trained CLIP image
encoder is represented by f∗x , with the asterisk "*" signifying that the model
weights remain fixed. The variable xi refers to an image sampled from Dx, and
x̃i is its augmented view.

The composition of the training dataset Dx, the image augmentation tech-
niques used, the structure of the disentangled network fc, and the utilization of
f∗c post-training are detailed in the following subsections.

Data Synthesis and Image Augmentation To generate training image data,
we combine class names with various image and object attributes to create text
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Table 1: Template-based prompts. Attributes used to generate text prompts follow
the structured format "a [art style] [image type] of a [object size] [object color] [class]",
where "[class]" represents the class names.

Object Color Object Size Image Type Art Style

yellow, green, black, large, painting, cartoon, infograph, realistic,
blue, multicolored, orange, small, sketch, photograph, clipart, impressionistic
red, white, brown, purple normal sized mosaic art, sculpture

prompts for each class. Using a stable diffusion model [39], we produce synthetic
images that comprise our training dataset Dx. The creation of template prompts
for stable diffusion is based on attributes such as object size, color, image type,
and art style. As detailed in Tab. 1, the attributes include 10 colors and 3
sizes for objects, and 8 types and 2 art styles for images. By assembling these
attributes into prompts like "a [art style] [image type] of a [object size] [object
color] [class]", we generate 480 unique texts for each class, from which one image
per prompt is synthesized. Further details on image synthesis and examples are
available in Appendix B.1. For the image augmentation procedures, we adopt
techniques commonly used in contrastive learning practice [7, 8, 41], specifically
random cropping and color distortion.

Disentangled Network Structure Since the training process is based on
CLIP’s pre-trained lower-dimensional features, our disentangled network adopts
a multi-layer perceptron (MLP) architecture. To fully benefit from the pre-
trained CLIP text encoder, we construct a residual MLP featuring a zero-
initialized projection, acting as the disentangled network, as depicted in Fig. 3.
This design enables learning directly from the pre-trained representation space,
avoiding a random starting point, inspired by ControlNet’s zero-conv opera-
tion [46], which we adapt to a zero-linear operation within our residual MLP.

Within this architecture, the main branch includes a zero-initialized, bias-
free linear layer positioned subsequent to the combination of a SiLU activation
and a normally initialized linear layer. Conventionally, the dimensions of fea-
tures before the initial linear layer, situated between the first and second linear
layers, and following the second linear layer, are named as the input din, latent
dmid, and output dout dimensions, respectively. To rectify any mismatches be-
tween the input and output dimensions, the network employs nearest-neighbor
downsampling within the shortcut path, thereby ensuring both alignment and
the preservation of sharpness for the input features. During the inference stage,
a weighting parameter α > 0 is introduced to modulate the portion of features
emanating from the main branch before their integration with the input features,
whereas this parameter remains constant at 1 throughout the training phase.

Inference After training, the disentangled network f∗c is utilized following
CLIP’s image encoder to extract visual content features. Moreover, given that
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Fig. 3: Structure of the disentangled network. The architecture encompass a residual
block featuring a zero-initialized, bias-free linear layer to commence optimization from
the input feature space. When the input and output dimension differ, a downsampling
operation is utilized to achieve alignment. During inference, a scalar parameter α bal-
ance the main branch and input features before combination.

vision-language data generation is rooted in a unified latent space, as depicted
in Sec. 3, f∗c can be seamlessly integrated with CLIP’s image and text encoders
to enhance zero-shot capabilities. As shown in Fig. 2c, for an image x, the opera-
tion is formulated as the composition function f∗c ◦ f∗x(x), and similarly, for a text
t, as f∗c ◦ f∗t (t). This integration preserves CLIP’s zero-shot functionality while
achieving refined features through the improved disentanglement of content.

4.2 Isolating Content from Style with Augmented Prompts

Despite progress in disentangling content and style via image augmentation, ad-
equately altering all style factors in an image remains challenging due to the
high dimensionality and complexity of style information in images. Achieving
substantial style changes through augmentation, essential for complete disentan-
glement [41], is difficult with existing image augmentation techniques. On the
contrary, text data inherently possesses high semanticity and logical structure,
making it more amenable to property-wise manipulation compared to image
data. To further exploring the disentanglement of content, we propose Con-
trastive Learning with Augmented Prompts (CLAP).

As depicted in Fig. 2b, CLAP employs an InfoNCE loss to train a disen-
tangled network atop CLIP’s pre-trained text encoder, keeping the encoder’s
gradients fixed, similar to Im.Aug. Leveraging the simpler structure of text, the
template-based prompts previously utilized for synthesizing images now serve
as the training text dataset, denoted by Dt. Utilizing the same disentangled
network as in Im.Aug, the learning objective of CLAP is outlined as follows:

f∗c = argmin
fc

E
{ti}b

i=1∈Dt

L(fc ◦ f∗t ; {ti, t̃i}bi=1, τ) + λL(fc ◦ f∗t ; {tci , t̃i}bi=1, 1), (4)

where f∗t denotes the pre-trained CLIP text encoder. The term ti references
a text prompt from Dt, and t̃i represents its augmented view, produced via
prompt augmentation techniques. On the equation’s right side, tci specifies the
class name associated with the text prompt ti. This strategy aims to enhance
variations between prompt pairs, especially in cases where the text dataset Dt
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Table 2: Prompt augmentation techniques. Various augmented views are generated
from an original text prompt using specific augmentation techniques: OSD (Object
Size Deletion), OCD (Object Color Deletion), ITD (Image Type Deletion), ASD (Art
Style Deletion), and SPO (Swapping Prompt Order).

Original OSD OCD ITD ASD SPO

a realistic a realistic a realistic a realistic a painting a large red
painting of a painting of a painting of a of a of a car in a
large red car red car large car large red car large red car realistic painting

has a very limited number of samples. Here, λ serves for adjusting the second
term’s importance in the total loss function. All other symbols in Eq. (4) main-
tain their definitions as described earlier.

After training, the learned disentangled network is seamlessly integrated with
both of CLIP’s encoders to extract content representations, as depicted in Fig. 2c.

Prompt Augmentation To ensure text prompts undergo stylistic changes
without compromising their content, we have developed specific augmentation
techniques for synthetic text prompts. Drawing inspiration from Easy Data Aug-
mentation (EDA) techniques [42], we adapted the Random Deletion (RD) and
Random Swap (RS) techniques from EDA, customizing them to suit our prompt
structure. To avoid inadvertently altering the content by introducing new object
names or changing the core idea of a text prompt, our augmentation methods
do not include random word insertions or replacements. Our primary augmenta-
tion techniques are Object Size Deletion (OSD), Object Color Deletion (OCD),
Image Type Deletion (ITD), Art Style Deletion (ASD), and Swapping Prompt
Order (SPO), each applied with a certain probability, as detailed in Tab. 2. Ad-
ditionally, for down-stream datasets with few categories, to rich the population
of training samples, we use an additional augmentation, named IGN (Inserting
Gaussian Noise). Following the initializing protocol of prompt learning meth-
ods [47, 48], we insert a zero-mean Gaussian noise with 0.02 standard deviation
with a noise length equals to 4, to the tokenized prompts.

Intuitively, these prompt augmentation methods parallel random masking
techniques used in image augmentation [6,17]. However, prompt augmentations
are more effective and precise than their image counterparts. This effectiveness
arises because prompt augmentations can specifically target and eliminate a
particular style element without impacting the content, whereas image mask-
ing, operating at the pixel or patch level, might inadvertently damage content
information or lead to insufficient style changes.

5 Experiments

We conduct three primary experiments to assess our method: (1) zero-shot eval-
uation with diverse prompts to gauge zero-shot performance and its robustness
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to prompt perturbations; (2) linear probe tests on few-shot samples to evaluate
the efficacy of the learned representations in few-shot settings; and (3) adver-
sarial attack assessments on zero-shot and one-shot classifiers to determine their
resistance to adversarial threats. We further conduct an ablative study on hyper-
parameters, explore the impact of different prompt augmentation combinations
and various sources of training prompts on CLAP’s performance, and replicate
experiments across different CLIP model sizes.

5.1 Experimental Setup

Implementation. Im.Aug and CLAP are implemented using the ViT-B/16 CLIP
model and executed on an NVIDIA RTX 3090 GPU. To ensure reproducibility,
the random seed for all stochastic processes is fixed at 2024. More information
on implementation details is provided in Appendix A.1.

Datasets. CLAP is assessed across four multi-domain datasets to examine its
performance in varied environments: PACS [23] (4 domains, 7 categories), VLCS
[1] (4 domains, 5 categories), OfficeHome [37] (4 domains, 65 categories), and
DomainNet [35] (6 domains, 345 categories). For conciseness, we present average
results across the domains for each dataset. Detailed experimental outcomes for
each domain within these datasets are provided in Appendix A.4.

Compute efficiency. CLAP demonstrates faster convergence and shorter train-
ing times compared to Im.Aug. For CLAP, training on the PACS and VLCS
datasets is completed in roughly 11 minutes, OfficeHome in approximately 14
minutes, and DomainNet in about 47 minutes. In contrast, Im.Aug requires
around 16 minutes for PACS and VLCS, 50 minutes for OfficeHome, and 3.3
hours for DomainNet. Both Im.Aug and CLAP maintain CLIP’s inference effi-
ciency due to the disentangled network’s efficient two-layer MLP structure.

5.2 Main Results

Zero-Shot Performance To assess zero-shot capabilities, CLAP undergoes
evaluation using three specific fixed prompts: ZS(C), utilizing only the class name
within "[class]"; ZS(PC), with the format "a photo of a [class]"; and ZS(CP),
structured as "a [class] in a photo". To thoroughly examine zero-shot proficiency,
a dynamic prompt, ZS(NC), formatted as "[noise][class]", is also used, where
"[noise]" signifies the introduction of Gaussian noise characterized by a mean of
0 and a standard deviation of 0.02.

As presented in Tab. 3, CLAP surpasses both CLIP and Im.Aug across all
evaluated prompts for every dataset. Unlike the uniform enhancement in zero-
shot performance CLAP achieves over CLIP, Im.Aug displays inconsistent re-
sults. A closer examination reveals CLAP’s superiority over CLIP is especially
significant for the dynamic ZS(NC) prompt. This demonstrates CLAP’s effective-
ness in significantly improving zero-shot performance compared to the original
CLIP representations.

In assessing the model’s robustness to prompt perturbations, we examine the
variances in zero-shot performance across different prompts by analyzing the
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Table 3: Zero-shot results across three distinct prompts: "C" for "[class]", "CP" for
"a [class] in a photo", "PC" for "a photo of a [class]", and a dynamic prompt "NC" for
"[noise][class]" showcase that CLAP consistently outperforms CLIP’s zero-shot perfor-
mance across all datasets, whereas image augmentation exhibits mixed outcomes.

Prompt Method Zero-shot performance, avg. top-1 acc. (%) (↑)

PACS VLCS Off.Home Dom.Net Overall

ZS(C)
CLIP 95.7 76.4 79.8 57.8 77.4

Im.Aug 96.5 79.5 77.0 51.5 76.1
CLAP 97.2 82.6 81.0 58.7 79.9

ZS(CP)
CLIP 95.2 82.0 79.5 57.0 78.4

Im.Aug 96.3 82.9 75.8 50.7 76.4
CLAP 97.3 83.4 80.5 58.0 79.8

ZS(PC)
CLIP 96.1 82.4 82.5 57.7 79.7

Im.Aug 96.5 83.0 78.6 51.6 77.4
CLAP 97.2 83.4 83.0 59.0 80.6

ZS(NC)
CLIP 90.8 68.3 71.5 51.0 70.4

Im.Aug 94.8 73.1 67.5 44.0 69.9
CLAP 97.2 81.0 73.5 52.6 76.1

range (R) and standard deviation (δ) of results derived from ZS(C), ZS(CP),
and ZS(PC). Additionally, we investigate the decline (∆(NC)) in performance
from ZS(C) to ZS(NC) as a broad indicator of resilience to noised prompts.

As presented in Tab. 4, CLAP significantly reduces the variance in zero-shot
performance across various testing prompts, evidenced by markedly lower val-
ues of δ and R, and a less pronounced decrease in performance with a noised
prompt, in contrast to Im.Aug and the baseline representations of CLIP. Al-
though Im.Aug aids in reducing performance variance to some extent, its efficacy
is notably inferior to that of CLAP. These findings highlight CLAP’s enhanced
robustness in maintaining consistent zero-shot performance across a diverse ar-
ray of prompts.

Few-Shot Performance We conduct evaluations of 1-shot, 4-shot, 8-shot, and
16-shot linear probes across each domain within the four datasets. As illustrated
in Fig. 4, CLAP significantly outperforms both CLIP and Im.Aug in few-shot
learning scenarios. Notably, in the 1-shot setting CLAP achieves performance
improvements over the linear-probe CLIP model by margins of +10%, +3.5%,
+2.5%, and +1.5% on the PACS, VLCS, OfficeHome, and DomainNet datasets,
respectively. These improvements are especially significant in comparison to the
gains observed with Im.Aug counterparts, underpinning CLAP’s efficacy in few-
shot scenarios. For detailed quantitative results, please refer to Appendix A.4.

Adversarial Performance To assess adversarial robustness, zero-shot (ZS(C))
and one-shot classifiers are evaluated against prominent adversarial attack meth-
ods, such as FGSM [15], PGD [30], and CW [5], by generating adversarial sam-
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Table 4: CLAP more effectively reduces zero-shot performance variance across
prompts than image augmentation, with R and δ indicating the range and standard
deviation for ZS(C), ZS(CP), and ZS(PC). The decrease ∆(NC) from ZS(C) to ZS(NC)
highlights CLAP’s enhanced robustness against prompt perturbations.

Metric Method Performance variance, avg. top-1 acc. (%) (↓)

PACS VLCS Off.Home Dom.Net Overall

R
CLIP 0.9 6.1 3.1 0.8 2.7

Im.Aug 0.1 3.6 2.8 0.9 1.9
CLAP 0.1 0.8 2.5 1.0 1.1

δ
CLIP 0.4 2.8 1.4 0.4 1.2

Im.Aug 0.1 1.7 1.2 0.4 0.8
CLAP 0.0 0.4 1.1 0.4 0.5

∆(NC)

CLIP 4.9 8.1 8.3 6.8 7.0
Im.Aug 1.6 6.4 9.5 7.5 6.3
CLAP 0.0 1.6 7.5 6.1 3.8
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Fig. 4: Few-shot linear probe comparisons of image-encoder features show that CLAP
enhances CLIP’s few-shot performance more effectively than Im.Aug. In the accompa-
nying figure, "ZS" indicates the zero-shot performance using a "[class]" prompt.

ples for testing. For FGSM, 1 adversarial iteration is employed, whereas for
PGD and CW, 20 iterations are used, all with an epsilon of 0.031. As indi-
cated in Tab. 5, classifiers utilizing CLAP representations demonstrate superior
resilience to these adversarial attacks compared to those based on CLIP repre-
sentations. Across the four datasets, CLAP’s zero-shot and 1-shot classifiers sur-
pass CLIP by margins of +7.6% and +8.5% against FGSM, +1.0% and +11.7%
against PGD-20, and +1.1% and +2.3% against CW-20, respectively. These fig-
ures notably exceed the performance improvements of +4.4% and +4.6% against
FGSM, +0.3% and +6.2% against PGD-20, and 0% and +1.3% against CW-20
achieved by Im.Aug. The result suggests that CLAP efficiently enhances robust-
ness against adversarial attacks in both zero-shot and one-shot scenarios.

5.3 More Analysis

t-SNE Visualization In our t-SNE visualizations, we examine the representa-
tions of CLIP, Im.Aug, and CLAP for all images within the Art Painting domain
of the PACS dataset. Fig. 5 shows that CLAP’s image representations display
a marked inter-class separation and tighter intra-class clustering than those of
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Table 5: Image augmentation and CLAP both enhance CLIP’s zero-shot with the
"[class]" prompt and 1-shot robustness against adversarial attacks, with CLAP showing
greater improvements.

Setting Method
Avg. top-1 acc. (%) under adversarial attacks(↑)

FGSM PGD-20 CW-20 Avg.PACS VLCS O.H. D.N. PACS VLCS O.H. D.N. PACS VLCS O.H. D.N.

ZS(C)
CLIP 86.8 65.6 57.9 22.5 29.1 2.0 10.1 10.7 27.4 1.5 7.4 7.6 29.2

Im.Aug 88.0 69.6 55.1 37.9 31.3 2.1 10.4 9.0 29.4 1.7 7.0 5.8 31.1
CLAP 88.7 71.9 58.5 44.2 30.8 3.2 10.6 11.2 29.8 2.3 8.1 8.0 32.7

1-shot
CLIP 66.7 45.2 34.3 22.5 34.8 16.0 5.6 11.3 18.9 0.7 4.5 3.2 23.7

Im.Aug 79.4 47.1 37.1 23.5 55.2 16.1 8.5 12.5 23.2 0.9 5.1 3.4 28.0
CLAP 89.6 52.2 37.1 23.9 73.4 21.2 7.4 12.5 27.0 1.1 5.0 3.5 31.9

(a) CLIP (b) Im.Aug (c) CLAP

Fig. 5: t-SNE visualizations of all images in the Art Painting of PACS dataset show
CLAP outperforms the original CLIP and Im.Aug, with clearer inter-class distinctions
and tighter intra-class clusters.

CLIP and Im.Aug. This observation suggests that CLAP’s representations are
more closely tied to content information and less influenced by style information,
in contrast to the other two.

Ablations In Fig. 6, we assess the zero-shot capabilities of our model using two
distinct prompts, ZS(C) and ZS(PC), on the VLCS dataset. This analysis forms
part of an ablative study aimed at understanding the influence of various hyper-
parameters on model performance. Specifically, we examine: the dimensions of
the latent layer within the MLP of the disentangled network, as illustrated in
Fig. 6a; the temperature parameter (τ) in the loss function, as depicted in Fig. 6b;
and the weight coefficient (α) during the inference stage, as shown in Fig. 6c. Our
findings indicate that CLAP consistently enhances zero-shot performance across
all tested configurations for both prompts, while also significantly reducing the
gap between the performances elicited by each prompt. These results underscore
the efficacy of CLAP in accommodating a wide range of hyper-parameters.

Prompt Augmentation Combinations We explore diverse combinations of
our tailored prompt augmentation methods and examine Easy Data Augmenta-
tion (EDA) techniques [42] on the VLCS dataset. Each tested technique show-
cases CLAP’s enhancements over CLIP, with details available in Appendix A.2.
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Fig. 6: We conduct ablative study on hyper-parameter choices on the VLCS dataset,
including latent dimensions, τ values, and α values during the inference stage. CLAP
continuously enhance CLIP’s performance throughout the tested values.

Prompt Sources We assess the impact of different training prompt formats,
originating from various synthetic sources, on the performance of the VLCS
dataset, incorporating EDA techniques. Our evaluation includes our template-
based prompts, LLM-generated prompts by ChatGPT-3.5 [3] (with the genera-
tion process detailed in Appendix B.2 ), prompts structured as "a [random] style
of [class]," where "[random]" is filled with terms from a random word generator2,
and prompts produced using the PromptStyler method [9]. The findings indicate
that the training prompts with simpler forms tend to yield better performance,
with detailed quantitative results presented in Appendix A.3.

Experiments on Different Model Scales In our repeated experiments as-
sessing zero-shot performance on the ViT-L/14 and ResNet50x16 pre-trained
with CLIP, we consistently find that CLAP improves zero-shot performance
while also reducing performance variances. This consistent observation under-
scores CLAP’s effectiveness in enhancing the quality of CLIP representations.
For quantitative details supporting these findings, please see the Appendix C.

6 Conclusion

To enhance pre-trained CLIP-like models, this study delves into disentangling
latent content variables. Through a causal analysis of the underlying generative
processes of vision-language data, we discover that training a disentangled net-
work in one modality can effectively disentangle content across both modalities.
Given the high semantic nature of text data, we identify that disentanglement is
more achievable within the language modality through text augmentation inter-
ventions. Building on these insights, we introduce CLAP (Contrastive Learning
with Augmented Prompts) to acquire disentangled vision-language content fea-
tures. Comprehensive experiments validate CLAP’s effectiveness, demonstrating
significant improvements in zero-shot and few-shot performance, and enhancing
robustness against perturbations. We anticipate that our work will inspire further
exploration into disentangling latent variables within vision-language models.
2 https://github.com/vaibhavsingh97/random-word

https://github.com/vaibhavsingh97/random-word
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