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6 Limitations and Future Work

Our method relies solely on the Mamba Block with a DiT-style layout and con-
ditioning manner. However, a potential limitation of our work is that we cannot
exhaustively list all possible spatial continuous zigzag scanning schemes given a
specific global patch size. Currently, we set these scanning schemes empirically,
which may lead to sub-optimal performance. Additionally, due to GPU resource
constraints, we were unable to explore longer training durations, although we
anticipate similar conclusions.

For future work, we aim to delve into various applications of the Zigzag
Mamba, leveraging its scalability for long-sequence modeling. This exploration
may lead to improved utilization of the Mamba framework across different do-
mains and applications.

Ultimately, we anticipate that our scan path will be suitable for other linear
attention models such as RWKV [81], xLSTM [11], HGRN [82], GLA [113], and
several others listed at FLA [114].

7 Impact Statement

This work aims to enhance the scalability and unlock the potential of the Mamba
algorithm within the framework of diffusion models, enabling the generation of
large images with high-fidelity. By incorporating our cross-attention mechanism
into the Mamba block, our method can also facilitate text-to-image generation.
However, like other endeavors aimed at enhancing the capabilities and control
of large-scale image synthesis models, our approach carries the risk of enabling
the generation of harmful or deceptive content. Therefore, ethical considerations
and safeguards must be implemented to mitigate these risks.

8 Appendix

Table 7: The ablation about Hilbert and Zigzag scan path under various
Order Receptive Field ( ORF ) on unconditional MultiModal-CelebA256.

Scan-ORF | FID**
hilbert-2 61.67
hilbert-8 27.38
zigzag-2 15.45
zigzag-8 13.32

3 https://github.com/sustcsonglin/flash-linear-attention
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Table 8: Various methods for text-to-image generation on the MultiModal-
CelebA 256 dataset.

Method | FID*  FDD*  KID*
In-Context 61.1 391 0.061
Cross-Attention | 45.5 26.4 0.011

Table 9: Details of ZigMa Model Variants. We follow previous works [9, 25,
80] model configurations for the Small (S), Base (B) and Large (L) variants; we also
introduce an XLarge (XL) config as our largest model. CA denotes the cross-attention
for text-to-image conditioning.

Model Layers N Hidden size d #params
ZigMa-S 12 384 31.3M
ZigMa-B 12 768 133.8M
ZigMa-L 24 1024 472.5M
ZigMa-XL 28 1152 1058.7M
CA-ZigMa-S 12 384 59.2M
CA-ZigMa-B 12 768 214.1M
CA-ZigMa-L 24 1024 724.4M
CA-ZigMa-XL 28 1152 1549.8M

8.1 Visualization

FacesHQ 1024 x 1024 uncurated visualization in Fig. 16.
MS-COCO uncurated visualization. We visualize the samples in Fig. 15.

Zigzag Mamba (Our) Zigzag Mamba (Our)
Parallel Mamba Parallel Mamba

-
&

GPU Memory (G)
« S

0 0
Model-S Model-B Model-L Model-H Model-S Model-B Model-L Model-H

(a) Model Complexity v.s. FPS. (b) Model Complexity v.s. GPU Memory.

Figure 7: The ablation study about Model Complexity, FPS, GPU Memory.

8.2 Spatial Continuity is Critical

We first explore the importance of spatial continuity in Mamba design by group-
ing patches of size N X N into various sizes: 2x 2, 4x 4, 8x8, and 16 x 16, resulting
in groups of patch sizes N/2 x N/2, N/4 x N/4, N/8 x N/8, and N/16 x N/16,
respectively. Then, we apply our designed Zigzag-8 scheme at the group level
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Figure 8: The FID trends comparing the Hilbert scan, Sweep scan, and our
Zigzag scan. The y-axis is logarithmic scale.
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Figure 9: The Hilbert space-filling curve with various sizes.

instead of the patch level. Figure 11 illustrates that with increased spatial conti-
nuity, notably improved performance is achieved. Furthermore, we compare our
approach with random shuffling of NV x N patches, revealing notably inferior
performance under random shuffling conditions. All of these results collectively
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Peano curve from simple to complex.

Figure 10: The demonstration of Peano Curve. The figure is borrowed from
https://en.wikipedia.org/wiki/Peano_curve.

indicate that spatial continuity is a critical requirement when applying Mamba
in 2D sequences.

—@— Patch Size 32x32
—@— Patch Size 64x64
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Figure 11: Spatial Continuity Analysis. As we incrementally enlarge the patch
group size, the continuous segment of the patch also expands. This enhances spatial
continuity, which we find improves FID on MultiModal-CelebA 256, 512 dataset.

8.3 Visualization

We demonstrate the image visualization of our best results on FacesHQ 1024
and MultiModal-CelebA 512 in Figure 12. For the visualization of videos, please
refer to Appendix 8.1. It is evident that the visualization is visually pleasing
across various resolutions, indicating the efficacy of our methods.

8.4 New Result about the Scanning Scheme

We also conduct basic ablations on various factors, including position embedding
and various Hilbert space-filling curves. Unlike the experiments in the main
paper, we perform these experiments on unconditional MultiModal-CelebA256
dataset for a uniform comparison. We train the network for 100,000 steps.
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FacesHQ 1024 x 1024 MultiModal-CelebA 512 x 512

Figure 12: Visualization of various resolutions on FacesHQ 1024 x 1024 and
MultiModal-CelebA 512 x 512. Our generated samples present high fidelity across
various resolutions.

Exploration of Hilbert space-filling curve. Primarily, we ablate the Hilbert
scan curve [75], as depicted in Figure 9. There are also eight variants of this
scan considering different angles and starting points. We rearrange them in a
similar manner to our Zigzag scan. All parameters are kept consistent for a fair
comparison. We utilize the Gilbert algorithm * to guarantee that the Hilbert
curve remains continuous across any square size. We train our network on single
A100-SXM4-80GB for 120k iterations. We evaluate the FID on 5,000 images for
a fixed step, the FID curve is demonstrated in Figure 8.

While the Hilbert space-filling curve offers increased locality compared to our
zigzag scan and maintains continuity, its complex structure appears to hinder the
SSM'’s ability to work on the flattened sequence, resulting in a worse inductive
bias than our zigzag curve on natural images. Therefore, we hypothesize that
structure may hold greater significance than locality in generative tasks.

Hilbert Curve is difficult to optimize. We show the result in Table 7.
We can observe that the performance of the Hilbert scan path drops signifi-
cantly, even if we decrease the Order of Receptive Field (ORF). This confirms
the assumption that the Hilbert scan path is difficult to optimize, even when
considering only two different schemes of the Hilbert scan.

Another Interpretation: Zigzag scan is the simplest Peano curve. Our
Zigzag scan can be seen as the simplest case of Peano Curve as shown in Fig-
ure 10.

8.5 New Result of 2D visual data

The variants of our ZigMa Models. We list the variants of our model in Ta-
ble 9. We use the Base (B) Model as the default. Applying the cross-attention
model is optional, as this module can introduce some parameter and speed bur-
dens. However, any advancements in attention optimization can be seamlessly
integrated into our model.

4 https://github.com/jakubcerveny /gilbert



ZigMa 27

Ablation of patch size. We conducted an ablation study on patch sizes ranging
from 1, 2, 4, to 8 in Figure 13, aiming to explore their behaviors under the
framework of Mamba. The results reveal that the FID deteriorates as the patch
size increases, aligning with the common understanding observed in the field
of transformers [25, 98]. This suggests that smaller patch sizes are crucial for
optimal performance.

= MultiModal-CelebA 256x256, Patch Size 32x32
1201 ___ MultiModal-CelebA 512x512, Patch Size 64x64
100
2 3o/
(19
601
40
201 - , , ,
1 2 4 8
Patch Size

Figure 13: FPS v.s. Patch Size.

Ablation study about the Model Complexity and FPS/GPU-Memory.
As shown in Figure 7. Our method can achieve much better parameter efficiency
when incorporating the receptive order. The receptive order refers to the cumula-
tive spatial-continuous zigzag scan path in 2D images, which we’ve incorporated
into the Mamba as an inductive bias. We list the parameter consumption when
we gradually increase the receptive order in Figure 7. The receptive order refers
to the cumulative spatial-continuous zigzag scan path in 2D images, which we’ve
incorporated into the Mamba as an inductive bias.

Loss and FID curve. The training loss curve and the FID curve are demon-
strated in Figure 14. The loss and FID show the same trend, with our Zigzag
Mamba consistently outperforming other baselines like Sweep-1 and Sweep-2.

In-context v.s. Cross Attention We compare our cross-attention with in-
context attention in Table 8. For in-context attention, we concatenate the text
tokens with the image tokens and feed them into the Mamba block. Our results
demonstrate that in-context attention performs worse than our cross-attention.
We hypothesize that this is due to the discontinuity between the text tokens
and the image patch tokens. We discovered that PointMamba [61] arrives at the
same conclusion and hypothesis as we do.
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Loss Trend FID Trend
eep-1 veep-1

(a) Loss trend of the MultiModal-CelebA256. (b) FID trend of the MultiModal-CelebA256.

Loss Trend FID Trend

10k 15k 20k 25k 30k 35k 40l

(¢) Loss trend of the MultiModal-CelebA512. (d) FID trend of the MultiModal-CelebA512.

Figure14: The loss and FID trend under various resolutions on dataset
MultiModal-CelebA. Sweep-1 and Sweep-2 are the Mamba scans without spatial conti-
nuity, while Zigzag-8 represents our method. This is the direct log from weight-and-bias
(wandb).

8.6 New result of 3D Visual Data

The choice of the 3D Zigzag Mamba. For Factorized 3D Zigzag Mamba
in video processing, we deploy the sst scheme for factorizing spatial and tem-
poral modeling. This scheme prioritizes spatial information (ss)complexity over
temporal information (t), hypothesizing that redundancy exists in the temporal
domain. There are numerous other possible combinations of s and t to explore,
which we leave for future work.

8.7 More related works

Several works [102, 103] have demonstrated that the State-Space Model pos-
sesses universal approximation ability under certain conditions. Mamba, as a
new State-Space Model, has superior potential for modeling long sequences
efficiently, which has been explored in various fields such as medical imag-
ing [31,73,86,108,111], image restoration [38, 122], graphs [12,99], NLP word
byte [100], tabular data [2], human motion synthesis [121], point clouds [61,118],
image generation [27], semi-supervised learning [107],interpretability [5], image
dehazing [122] and pan sharpening [41]. It has been extended to Mixture of
Experts [7], spectral space [1], multi-dimension [59, 70,77, 123] and dense con-
nection [40]. Among them, the most related to us are VisionMamba [70, 123],
SAND [77] and Mamba-ND [59]. VisionMamba [70,123] uses a bidirectional SSM
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in discriminative tasks which incurs a high computational cost. Our method
applies a simple alternative mamba diffusion in generative models. SAND [77]
introduces local convolution into Mamba’s reasoning process, moving beyond
the use of only 1D data. Mamba-ND [59] takes multi-dimensionality into ac-
count in discriminative tasks, making use of various scans within a single block.
In contrast, our focus is on distributing scan complexity across every layer of the
network, thus maximizing the incorporation of inductive bias from visual data
with zero parameter burden.

Certain studies, such as Li’s work in 2024 [60], often explore the order of
patches in token-based networks. However, while these studies concentrate on
auto-regressive transformers, our focus is on the Mamba-based structure.

Several previous works [51,119] have focused on the shuffling operation to
exchange information along the spatial or channel dimension. For instance, the
Shuffle Transformer [51] applies shuffling to spatial tokens to encourage cross-
reasoning outside the attention windows. Our method follows the same approach.
We shuffle the tokens to maintain a continuous spatial-filling scan path, pro-
moting optimization across various layers. Given that the shuffling order differs
across the layers, it could potentially avert the overfit problem [70].

8.8 More Details

Double-Indexing Issue for f2;. As shown in Fig. 2. We need to arrange
and rearrange operation that needs to conduct indexing along the token number
dimension to achieve spatial-continuous mamba reasoning, as the indexing can be
time-consuming ° when considering the large token numbers, We can formulate
the arrange and rearrange operation as follows:

Q=21+ 12, (14)
Zi41 = scan(z, ), (15)
(16)

where £2_; = I, this assumes that the Mamba-based networks are permuta-
tion equivariant to the order of the tokens. They require 50% fewer indexing
operations, a point which we reiterate here for clearer comparison:

zg, = arrange(z;, {2;), (17)
Zp, = scan(zp), (18)
z;11 = arrange(Zo,, {2;), (19)

Evaluation Metrics. For image-level fidelity, we use established metrics such as
Fréchet Inception Distance (FID) and Kernel Inception Distance (KID), follow-
ing previous works. However, since studies [21,92] have shown that FID does not

® We found that using the torch.compile() can largely ease the time issue, see https:
//taohu.me/zigma for more detail comparison.
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fully reflect human-based opinions, we also adopt the Fréchet DINOv2 Distance
(FDD) using the official repository °. Our method primarily involves sampling
5,000 real and 5,000 fake images to compute the related metrics.

We primarily consider two metrics for video fidelity evaluation: framewise
FID and Fréchet Video Distance (FVD) [97]. We sample 200 videos and compute
the respective metrics based on these samples.

We utilize the EMA models for evaluation, as they can deliver superior per-
formance, as indicated in [117].

Extra Training Details. For text-conditioned generation, we conduct the ex-
periments on the MultiModal-CelebA 2562,5122 [110] and MS COCO 256 x
256 [63] datasets. Both datasets are composed of text-image pairs for training.
Typically, there are 5 to 10 captions per image in COCO and MultiModal-
CelebA. We convert discrete texts to a sequence of embeddings using a CLIP
text encoder [83] following Stable Diffusion [84]. Then these embeddings are fed
into the network as a sequence of tokens.

The training parameters of various datasets are listed in Tab. 10. We don’t
apply any position encoding because Mamba, unlike Transformer, is not permu-
tation invariant. Therefore, its position is automatically encoded by its order in
Mamba. Surprisingly, we also found that adding extra learnable position encod-
ing can lead to better performance compared to the baseline. We hypothesize
that these extra inductive biases can further benefit performance, even though
the order of the tokens already incorporates some bias. For the COCO dataset, a
weight decay of 0.01 can contribute to marginal FID gains (approximately 0.8).

The conditioning of timestep and prompt. The conditioning process is
illustrated in Algorithm 1. For the Mamba block, we incorporate the condition
information. Specifically, we concatenate the condition token with the image
patch token to enhance the conditioning mechanism.

S https://github.com/layer6ai-labs /dgm-eval
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Table 10: Hyperparameters and number of parameters for our network in
various datasets. All models are trained on a single A100 with 40GB of VRAM using
a bfloat16 of accelerator package.

FacesHQ 1024 MS-COCO 256 MultiModal-CelebA 512 UCF-101

Autoencoder f 8 8 8 8
z-shape 4x128 x 128 4 x32x 32 4 x 64 x 64 4 x 32 x 32
Model size 133.8M 133.8M 133.8M 133.8M
Patch size 2 1 1 2
Channels 768 768 768 768
Depth 12 12 12 12
Optimizer AdamW AdamW AdamW AdamW
Batch size/GPU 8 8 4 8
GPU num 32 32 16 16
Learning rate le-4 le-4 le-4 le-4
weight decay 0 0 0 0
EMA rate 0.9999 0.9999 0.9999 0.9999
Warmup steps 0 0 0 0
A100-hours 768 768 384 384

Algorithm 1 Mamba Block

def mamba_block(x, t, c = None):
# x: input data, shape [B, (W x H), C] or [B, (Tx W x H) , C]
# t: timestep, (B, C)
# c: condition, (B, D, C)
x =reshape(x) # (B, K, C)

def _mamba(x):
x = rearrange(x) # rearrange by a zigzag manner
X = mamba(x)
x = rearrange_back(x)# rearrange back by a zigzag manner

m, n = AdaLN(t)
X =_mamba( X *m+n )+ X

if ¢ is not None:

p,q=AdaLN(c)

X = cross_attention( X *p+q ) + X
return x
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Figure 15: The Uncurated Visualization of MS-COCO dataset. The first row
is illustrated with pairs of images and their captions, while the remaining rows only
images.
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Figure 16: Uncurated Visualization of FacesHQ dataset.
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Figure 17: Uncurated Visualization of Landscape HQ dataset [87], with 5k
FID of 10.07.



