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Abstract The diffusion model has long been plagued by scalability and
quadratic complexity issues, especially within transformer-based struc-
tures. In this study, we aim to leverage the long sequence modeling ca-
pability of a State-Space Model called Mamba to extend its applicability
to visual data generation. Firstly, we identify a critical oversight in most
current Mamba-based vision methods, namely the lack of consideration
for spatial continuity in the scan scheme of Mamba. Secondly, build-
ing upon this insight, we introduce Zigzag Mamba, a simple, plug-and-
play, minimal-parameter burden, DiT style solution, which outperforms
Mamba-based baselines and demonstrates improved speed and memory
utilization compared to transformer-based baselines, also this heteroge-
neous layerwise scan enables zero memory and speed burden when we
consider more scan paths. Lastly, we integrate Zigzag Mamba with the
Stochastic Interpolant framework to investigate the scalability of the
model on large-resolution visual datasets, such as FacesHQ 1024 x 1024
and UCF101, MultiModal-CelebA-HQ, and MS COCO 256 x 256.

Keywords: Diffusion Model - State-Space Model - Stochastic Inter-
polants

1 Introduction

Diffusion models have demonstrated significant advancements across various ap-
plications, including image processing [45,48,84], video analysis [44], point cloud
processing [109], representation learning [30] and human pose estimation [32].
Many of these models are built upon Latent Diffusion Models (LDM) [84], which
are typically based on the UNet backbone. However, scalability remains a signifi-
cant challenge in LDMs [50]. Recently, transformer-based structures have gained
popularity due to their scalability [9,80] and effectiveness in multi-modal train-
ing [10]. Notably, the transformer-based structure DiT [80] has even contributed
to enhancing the high-fidelity video generation model SORA [78] by OpenAl
Despite efforts to alleviate the quadratic complexity of the attention mechanism
through techniques such as windowing [71], sliding [13], sparsification [19, 56],
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hashing [20, 93], Ring Attention [15,66], Flash Attention [23] or a combination
of them [8,124], it remains a bottleneck for diffusion models.

On the other hand, State-Space Models [34,35,39] have demonstrated signif-
icant potential for long sequence modeling, rivaling transformer-based methods.
Their biological similarity [95] and efficient memory state also advocate for the
use of the State-Space model over the transformer. Several methods [29,33,35,88]
have been proposed to enhance the robustness [116], scalability [33], and effi-
ciency [35,30] of State-Space Models. Among these, a method called Mamba [33]
aims to alleviate these issues through work-efficient parallel scanning and other
data-dependent innovations. However, the advantage of Mamba lies in 1D se-
quence modeling, and extending it to 2D images is a challenging question. Pre-
vious works [70, 123] have proposed flattening 2D tokens directly by computer
hierarchy such as row-and-column-major order, but this approach neglects Spa-
tial Continuity, as shown in Figure 1. Other works [67, 73] consider various di-
rections in a single Mamba block, but this introduces additional parameters and
GPU memory burden. In this paper, we aim to emphasize the importance of
Spatial Continuity in Mamba and propose several intuitive and simple meth-
ods to enable the application of Mamba blocks to 2D images by incorporating
continuity-based inductive biases in images. We also generalize these methods
to 3D with spatial-temporal factorization on 3D sequence.

In the end, Stochastic Interpolant [3] provides a more generalized framework
that can uniform various generative models including, Normalizing Flow [17],
diffusion model [43,89,91], Flow matching [4,64,69], and Schrédinger Bridge [65].
Previously, some works [74] explore the Stochastic Interpolant on relatively small
resolutions, e.g., 256 x 256, 512 x 512. In this work, we aim to explore it in further
more complex scenarios e.g., 1024 x 1024 resolution and even in videos.

In summary, our contributions are as follows: Firstly, we identify the critical
issue of Spatial Continuity in generalizing the Mamba block from 1D sequence
modeling to 2D image and 3D video modeling. Building on this insight, we
propose a simple, plug-and-play, zero-parameter heterogeneous layerwise scan
paradigm named Zigzag Mamba (ZigMa) that leverages spatial continuity to
maximally incorporate the inductive bias from visual data. Secondly, we ex-
tend the methodology from 2D to 3D by factorizing the spatial and temporal
sequences to optimize performance. Secondly, we provide comprehensive analy-
sis surrounding the Mamba block within the regime of diffusion models. Lastly,
we demonstrate that our designed Zigzag Mamba outperforms related Mamba-
based baselines, representing the first exploration of Stochastic Interpolants on
large-scale image data (1024 x 1024) and videos.

2 Related Works

Mamba. Several works [102,103,103] have demonstrated that the State-Space
Model possesses universal approximation ability under certain conditions. Mamba,
as a new State-Space Model, has superior potential for modeling long sequences
efficiently, which has been explored in various fields such as medical imag-
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Figure 1: Motivation. Our Zigzag Mamba method improves the network’s position-
awareness by arranging and rearranging the scan path of Mamba in a heuristic manner.

ing [73,86,108,111], video [58,79], image restoration [38,122], graphs [12], NLP
word byte [100], tabular data [2], point clouds [61], human motion [106, 120],
multi-task [62] and image generation [27]. Among them, the most related to
us are VisionMamba [70,123], S4ND [77] and Mamba-ND [59]. VisionMamba
[70,123] uses a bidirectional SSM in discriminative tasks which incurs a high
computational cost. Our method applies a simple alternative mamba diffusion
in generative models. S4ND [77] introduces local convolution into Mamba’s rea-
soning process, moving beyond the use of only 1D data. Mamba-ND [59] takes
multi-dimensionality into account in discriminative tasks, making use of various
scans within a single block. In contrast, our focus is on distributing scan com-
plexity across every layer of the network, thus maximizing the incorporation of
inductive bias from visual data with zero parameter burden. Scan curve is an
important direction in SSM, PointMamba [61] is a representative work that em-
ploys SSM with space curves (e.g., Hilbert) for point cloud analysis, achieving
remarkable performance. In contrast with them, our preliminary results show
that the Hilbert curve doesn’t work well with our method (see Appendix), while
our method can be regarded as the simplest Peano curve. For more information
related to Mamba’s work, please refer to the survey [105].

Backbones in Diffusion Models. Diffusion models primarily employ UNet-
based [43,84] and ViT-based [9, 80] backbones. While UNet is known for high
memory demands [84], VIiT benefits from scalability [18,24] and multi-modal
learning [10]. However, ViT’s quadratic complexity limits visual token process-
ing, prompting studies towards mitigating this issue [13,23,104]. Our work, in-
spired by Mamba [33], explores an SSM-based model as a generic diffusion back-
bone, retaining ViT’s modality-agnostic and sequential modeling advantages.
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Concurrently, DiffSSM [112] concentrates on unconditional and class condition-
ing within the S4 model [35]. DIS [27] mainly explores the state-space model on
a relatively small resolution, which is not the exact focus of our work. Our work
significantly differs from theirs as it primarily focuses on the backbone design
using the Mamba block and extends it to text conditioning. Furthermore, we
apply our method to more complex visual data.

SDE and ODE in Diffusion models. The realm of Score-based Generative
Models encompasses significant contributions from foundational works such as
Score Matching with Langevin Dynamics (SMLD) by Song et al. [90], and the ad-
vent of Diffusion Models with Denoising Score Matching (DDPMs) proposed by
Ho et al. [43]. These methodologies operate within the framework of Stochastic
Differential Equations (SDEs), a concept further refined in the research of Song
et al. [91]. Recent research strides, as exemplified by Karras et al. [52] and Lee et
al. [57], have showcased the efficacy of employing Ordinary Differential Equation
(ODE) samplers for diffusion SDEs, offering significant reductions in sampling
costs compared to traditional approaches that entail discretizing diffusion SDEs.
Furthermore, within the domain of Flow Matching [64] and Rectified Flow [68],
both SMLD and DDPMs emerge as specialized instances under distinct paths
of the Probability Flow ODE framework [91], with broad applications in vi-
sion [22,28,49], depth [37], human motion [47], even language [46]. These models
typically utilize velocity field parameterizations employing the linear interpolant,
a concept that finds broader applications in the Stochastic Interpolant frame-
work [3], with subsequent generalizations extending to manifold settings [14].
The SiT model [74] scrutinizes the interplay between interpolation methods in
both sampling and training contexts, albeit in the context of smaller resolutions
such as 512 x 512. Our research endeavors to extend these insights to a larger
scale, focusing on the generalization capabilities for 2D images of 1024 x 1024
and 3D video data.

3 Method

In this section, we begin by providing background information on State-Space
Models [34,35,39], with a particular focus on a special case known as Mamba [33].
We then highlight the critical issue of Spatial Continuity within the Mamba
framework, and based on this insight, we propose the Zigzag Mamba. This en-
hancement aims to improve the efficiency of 2D data modeling by incorporating
the continuity inductive bias inherent in 2D data. Furthermore, we design a ba-
sic cross-attention block upon Mamba block to achieve text-conditioning. Subse-
quently, we suggest extending this approach to 3D video data by factorizing the
model into spatial and temporal dimensions, thereby facilitating the modeling
process. Finally, we introduce the theoretical aspects of stochastic interpolation
for training and sampling, which underpin our network architecture.
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3.1 Background: State-Space Models

State Space Models (SSMs) [34, 35, 39] have been proven to handle long-range
dependencies theoretically and empirically [36] with linear scaling w.r.t sequence
length. In their general form, a linear state space model can be written as follows:

2/ (t) = A(t)x(t) + B(t)u(t)
y(t) = C(t)x(t) + D(t)u(t),

mapping a 1-D input sequence u(t) € R to a 1-D output sequence y(t) € R
through an implicit N-D latent state sequence z(t) € R™. Concretely, deep SSMs
seek to use stacks of this simple model in a neural sequence modeling architec-
ture, where the parameters A,B,C and D for each layer can be learned via
gradient descent.
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Figure 2: ZigMa. Our backbone is structured in L layers, mirroring the style of
DiT [80]. We use the single-scan Mamba block as the primary reasoning module
across different patches. To ensure the network is positionally aware, we’ve designed
an arrange-rearrange scheme based on the single-scan Mamba. Different layers follow
pairs of unique rearrange operation {2 and reverse rearrange (2, optimizing the position-
awareness of the method.

Recently, Mamba [33] largely improved the flexibility of SSMs in Language
Modelling by relaxing the time-invariance constraint on SSM parameters, while
maintaining computational efficiency. Several studies [70, 123] have been con-
ducted to adapt the use of Mamba from unidimensional language data to mul-
tidimensional visual data. While most of these studies try to duplicate the A to
facilitate the new (reversed) direction, this approach can lead to additional pa-
rameters and an increased memory burden. In this paper, we focus on exploring
the scanning scheme of Mamba in diffusion models to efficiently maximize the
use of inductive-bias from multi-dimensional visual data with zero parameter
and memory burden.

3.2 Diffusion Backbone: Zigzag Mamba

DiT-Style Network. We opt to use the framework of DiT by AdaLN [80] rather
than the skip-layer focused U-ViT structure [9], as DiT has been validated as a
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scalable structure in literature [10,18,78]. Additionally, the Hourglass structure
with downsampling [76,85] requires selecting the depth and width based on the
complexity of the dataset and task. This requirement limits the flexibility of the
solution. Considering the aforementioned points, it informs our Mamba network
design depicted in Figure 4. The core component of this design is the Zigzag
Scanning, which will be explained in the following paragraph.

Zigzag Scanning in Mamba. Previous studies [101, 112] have used bidirec-
tional scanning within the SSM framework. This approach has been expanded
to include additional scanning directions [67,70,115] to account for the charac-
teristics of 2D image data. These approaches unfold image patches along four
directions, resulting in four distinct sequences. Each of these sequences is sub-
sequently processed together through every SSM. However, since each direction
may have different SSM parameters (A, B, C, and D), scaling up the number of
directions could potentially lead to memory issues. In this work, we investigate
the potential for amortizing the complexity of the Mamba into each layer of the
network.

Our approach centers around the concept of token rearrangement before feed-
ing them into the Forward Scan block. For a given input feature z; from layer i,
the output feature z;,1 of the Forward Scan block after the rearrangement can
be expressed as:

20, = arrange(z, ), 1)
Zgo, = scan(zg, ), (2)
z;11 = arrange(Zo,, (2;), (3)

§2; represents the 1D permutation of layer i, which rearranges the order of the
patch tokens by §2;, and (2; and {2; represent the reverse operation. This ensures
that both z; and z;,; maintain the sample order of the original image tokens.
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Figure 3: The 2D Image Scan. Our mamba scan design is based on the sweep-scan
scheme shown in subfigure (a). From this, we developed a zigzag-scan scheme displayed
in subfigure (b) to enhance the continuity of the patches, thereby maximizing the
potential of the Mamba block. Since there are several possible arrangements for these
continuous scans, we have listed the eight most common zigzag-scans in subfigure (c).

Now we explore the design of the (2; operation, considering additional in-
ductive biases from 2D images. We propose one key properties: Spatial Con-
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tinuity. Regarding Spatial Continuity, current innovations of Mamba in im-
ages [67,70,123] often squeeze 2D patch tokens directly following the computer
hierarchy, such as row-and-column-major order. However, this approach may
not be optimal for incorporating the inductive bias with neighboring tokens, as
illustrated in Figure 3. To address this, we introduce a novel scanning scheme
designed to maintain spatial continuity during the scan process. Additionally,
we consider space-filling, which entails that for a patch of size N x N, the length
of the 1D continuous scanning scheme should be N2. This helps to efficiently
incorporate tokens to maximize the potential of long sequence modeling within
the Mamba block.

Heterogeneous Layerwise Scan. To achieve the aforementioned property, we
heuristically design eight possible space-filling continuous schemes', denoted as
S; (where j € [0,7]), as illustrated in Figure 3. While there may be other con-
ceivable schemes, for simplicity, we limit our usage to these eight. Consequently,
the scheme for each layer can be represented as 2; = Sy;o5y, where % denotes
the modulo operator.
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Figure 4: The Detail of our Zigzag Mamba block. The detail of Mamba Scan
is shown in Figure 2. The condition can include a timestep and a text prompt. These
are fed into an MLP, which separately modulates the Mamba scan for long sequence
modeling and cross-attention for multi-modal reasoning.

Deploying text-condition on Zigzag Mamba. While Mamba offers the ad-
vantage of efficient long sequence modeling, it does so at the expense of the
attention mechanism. As a result, there has been limited exploration into in-
corporating text-conditioning in Mamba-based diffusion models. To address this

1 We also experimented with more complex continuous space-filling paths, such as
the Hilbert space-filling curve [75]. However, empirical findings indicate that this
approach may lead to deteriorated results. For further detailed comparisons, please
refer to the Appendix.
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gap, we propose a straightforward cross-attention block with skip layers built
upon the Mamba block, as illustrated in Figure 4. This design not only en-
ables long sequence modeling but also facilitates multi-token conditioning, such
as text-conditioning. Furthermore, it has the potential to provide interpretabil-
ity [16,42,94], as cross-attention has been utilized in diffusion models.
Generalizing to 3D videos by factorizing spatial and temporal informa-
tion. In previous sections, our focus has been on the spatial 2D Mamba, where
we designed several spatially continuous, space-filling 2D scanning schemes. In
this section, we aim to leverage this experience to aid in designing correspond-
ing mechanisms for 3D video processing. We commence our design process by
extrapolating from the conventional directional Mamba, as depicted in Figure 5.
Given a video feature input z € REXTXCxWxH "woe propose three variants of
the Video Mamba Block for facilitating 3D video generation.

(a) Sweep-scan: In this approach, we directly flatten the 3D feature z without
considering spatial or temporal continuity. It’s worth noting that the flattening
process follows the computer hierarchy order, meaning that no continuity is
preserved in the flattened representation.

(b) 3D Zigzag: Compared with the formulation of the 2D zigzag in previous
subsections, we follow the similar design to generalize it to 3D Zigzag to keep the
continuity in 2D and 3D simultaneously. Potentially, the scheme has much more
complexity. We heuristically list 8 schemes as well. However, we empirically find
that this scheme will lead to suboptimal optimization.

(c) Factorized 3D Zigzag = 2D Zigzag + 1D Sweep: To address the sub-
optimal optimization issue, we propose to factorize the spatial and temporal
correlations as separate Mamba blocks. The order of their application can be
adjusted as desired, for example, "sstt" or "ststst", where "s" represents the
spatial-zigzag Mamba and "t" represents the temporal-zigzag Mamba. For a 1D
temporal sweep, we simply opt for forward and backward scanning, since there
is only one dimension on the time axis.

Computation Analysis. For a visual sequence T € RM*M*D the computation
complexity of global self-attention and k-direction mamba and our zigzag mamba
are as follows:

((self-attention) = 4MD? 4 2M?D, (4)
¢(k-mamba) = k x [3M(2D)N + M(2D)N?], (5)
((zigzag) = 3M(2D)N + M(2D)N?, (6)

where self-attention exhibits quadratic complexity with respect to sequence length
M, while Mamba exhibits linear complexity (N is a fixed parameter, set to 16
by default). Here, k represents the number of scan directions in a single Mamba
block. Therefore, k-mamba and zigzag share linear complexity with respect to
self-attention. Moreover, our zigzag method can eliminate the k series, further
reducing the overall complexity.
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Figure 5: The 3D Video Scan. (a) We illustrate the bidirectional Mamba with the
sweep scan, where the spatial and temporal information is treated as a set of tokens
with a computer-hierarchy order. (b) For the 3D zigzag-scan, we aim to maximize the
potential of Mamba by employing a spatial continuous scan scheme and adopting the
optimal zigzag scan solution, as depicted in Figure 3. (¢) We further separate the rea-
soning between spatial and temporal information, resulting in a factorized combination
of 2D spatial scan (£2) plus a 1D temporal scan (.Q/) scheme.

Upon completing the design of the Zigzag Mamba network for improved
visual inductive-bias integration, we proceed to combine it with a new diffusion
framework, as illustrated below.

3.3 Diffusion Framework: Stochastic Interpolant

Sampling based on vector v and score s. Following [3, 96], the time-
dependent probability distribution p;(x) of x; also coincides with the distribution
of the reverse-time SDE [6]:

1 _
dXt = V(Xt, t)dt + §th(Xt, t)dt + \/’LTtth, (7)

where W/ is a reverse-time Wiener process, w; > 0 is an arbitrary time-dependent
diffusion coefficient, s(x,t) = V log p;(x) is the score, and v(x, ) is given by the
conditional expectation

v(x,t) = E[x¢|x; = x],

(8)

= G E[x.|x: = x] + 6, Ele|x: = %],

where o is a decreasing function of ¢, and oy is an increasing function of ¢. Here,
&; and J; denote the time derivatives of a; and oy, respectively.

As long as we can estimate the velocity v(x,t) and/or score s(x,t) fields,
we can utilize it for the sampling process either by probability flow ODE [91]
or the reverse-time SDE (7). Solving the reverse SDE (7) backwards in time
from X7 = € ~ N(0,I) enables generating samples from the approximated data
distribution pg(x) ~ p(x). During sampling, we can perform direct sampling
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from either ODE or SDEs to balance between sampling speed and fidelity. If
we choose to conduct ODE sampling, we can achieve this simply by setting the
noise term s to zero.

In [3], it shows that one of the two quantities sg(x,t) and vy(x,t) needs to
be estimated in practice. This follows directly from the constraint

x = E[x¢|x; = x|,

(9)

= E[x.|x: = xX] + 0:E[e|x: = %],

which can be used to re-express the score s(x, ) in terms of the velocity v(x, t)
as

_papv(x,t) — aux

s(x,t) = oy (10)

G0t — 0t
Thus, v(x,t) and s(x,t) can be mutually conversed. We illustrate how to com-
pute them in the following.

Estimating the score s and the velocity v. It has been shown in score-based
diffusion models [91] that the score can be estimated parametrically as sy(x,t)
using the loss

T
£0) = [ Ellowso(xt)+ e (11)

Similarly, the velocity v(x,t) can be estimated parametrically as vg(x,t) via the
loss

T
Lo(0) = /0 E[||vo(xe, t) — Guxs — Gre|2]dt, (12)

where 0 represents the Zigzag Mamba network that we described in the previous
section, we adopt the linear path for training, due to its simplicity and relatively
straight trajectory:

ap=1-1, oy =1. (13)

We note that any time-dependent weight can be included under the integrals
in both (11) and (12). These weight factors play a crucial role in score-based
models when T becomes large [54,55]. Thus, they provide a general form that
considers both the time-dependent weight and the stochasticity.

4 Experiment

4.1 Dataset and Training Detail

Image Dataset. To explore the scalability in high resolution, we conduct exper-
iments on the FacesHQ 1024 x 1024. The general dataset that we use for training
and ablations is FacesHQ, a compilation of CelebA-HQ [110] and FFHQ [53], as
employed in previous work such as [26,28].
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Table 1: Ablation of Scanning Scheme Number. We evaluate various zigzag
scanning schemes. Starting from a simple “Sweep” baseline, we consistently observe
improvements as more schemes are implemented.

MultiModal-CelebA-256 MultiModal-CelebA-512
FID*| | FDD*| | KID*| || FID**| | FDD* | | KID** |
Sweep 158.1 75.9 0.169 162.3 103.2 0.203
Zigzag-1 65.7 47.8 0.051 121.0 78.0 0.113
Zigzag-2 54.7 455 0.041 96.0 59.5 0.079
Zigzag-8 455 26.4 0.011 34.9 29.5 0.023

Video Dataset. UCF101 dataset consists of 13,320 video clips, which are clas-
sified into 101 categories. The total length of these video clips is over 27 hours.
All these videos are collected from YouTube and have a fixed frame rate of 25
FPS with the resolution of 320 x 240. We randomly sample continuous 16 frames
and resize the frames to 256 x 256.

Training Details. We uniformly use AdamW [72] optimizer with 1e—4 learning
rate. For extracting latent features, we employ off-the-shelf VAE encoders. To
mitigate computational costs, we adopted a mixed-precision training approach.
Additionally, we applied gradient clipping with a threshold of 2.0 and a weight
decay of 0.01 to prevent NaN occurrences during Mamba training. Most of our
experiments were conducted on 4 A100 GPUs, with scalability exploration ex-
tended to 16 and 32 A100 GPUs. For sampling, we adopt the ODE sampling for
speed consideration. For further details, please refer to the Appendix 8.8.

4.2 Ablation Study

Table 2: Ablation about Position Embedding (PE) on unconditional CelebA
dataset (2562). To better abate PE and eliminate the conditional signal’s influence, we
use an unconditional dataset.

FID/FDD | ‘ No PE Cosine PE Learnable PE
VisionMamba [123]]21.33/21.00 18.47/19.90  16.38,/18.20
ZigMa, 14.27/18.00 14.04/17.91 13.32/17.40

Scan Scheme Ablation. We provide several important findings based on our
ablation studies on MultiModal-CelebA dataset in various resolutions in Table 1.
Firstly, switching the scanning scheme from sweep to zigzag led to some gains.
Secondly, as we increased the zigzag scheme from 1 to 8, we saw consistent
gains. This indicates that alternating the scanning scheme in various blocks can
be beneficial. Finally, the relative gain between Zigzag-1 and Zigzag-8 is more
prominent at higher resolutions (512 x 512, or longer sequence token number)
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Figure 6: (a, b).GPU Memory usage and FPS between our method and transformer-
based methods(U-VIT [9] and DiT [80]). (c¢). Order Receptive Field and GPU memory
(d). Order Receptive Field and FPS. Order Receptive Field denotes how many scan
paths we consider in our network design.

compared to lower resolutions (256 x 256, or shorter sequence token number),
this shows the great potential and more efficient inductive-bias incorporation in
longer sequence number.

Ablation about Position Embedding. As shown in Table 2, the learnable em-
bedding performs better than the Sinusoidal embedding, which in turn performs
better than no position embedding. In various cases, our zigzag method surpasses
the baselines. Notably, our performance remains almost unchanged whether we
use the Sinusoidal position embedding or no position embedding. This suggests
that our method can better incorporate spatial inductive-bias compared to our
baseline. Finally, using the learnable position embedding provides further, albeit
marginal, gains suggesting that better position embedding exists even within
our zigzag scan scheme. We find that [79] shares the same conclusion as us in
video-related tasks.

Ablation study about the Network and FPS/GPU-Memory. In Figure 6
(a,b),we analyze the forward speed and GPU memory usage while varying the
global patch dimensions from 32 x 32 to 196 x 196. For the speed analysis,
we report Frame Per Second (FPS) instead of FLOPS, as FPS provides a more
explicit and appropriate evaluation of speed 2. For simplicity, we uniformly apply
the zigzag-1 Mamba scan scheme and use batch size=1 and patch size=1 on
an A100 GPU with 80GB memory. It’s worth noting that all methods share
nearly identical parameter numbers for fair comparison. We primarily compare
our method with two popular transformer-based Diffusion backbones, U-ViT [9]
and DiT [80]. It is evident that our method achieves the best FPS and GPU

2 https://github.com/state-spaces/mamba,/issues/110#issuecomment-1916464012
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utilization when gradually increasing the patching number. U-ViT demonstrates
the worst performance, even exceeds the memory bounds when the patch number
is 196. Surprisingly, DiT’s GPU utilization is close to our method, which supports
our backbone choice of DiT from a practical perspective.

Table 4: Main Results on MS-
COCO dataset with bs=256. Our
method consistently outperforms the
baseline. ZigMa with 8 scans performs
much better compared with the base-

Table 3: Main result on FacesHQ-
1024 dataset with 4,094 tokens in la-
tent space and bs=512. Our method
can outperform the baseline and can
achieve even better results when the

training scale is increased. line.
Method FID’* | FDD®* | Method FID™ |
VisionMamba [123][51.1 __ 66.3 Sweep 195.1
ZigMa 37.8  50.5 Zigzag-1 3l
ZigMa bs x 2 6.6 310 VisionMamba [123]|60.2
Zigzag-8 41.8
Table 5: Transformer-based meth- Table 6: Video Scan Scheme on
ods comparison on unconditional UCF101 dataset with bs=32.
CelebA256.
Method Frame-FID®* | FVD®k|
Method|FID) Memory(G) | FLOPS(G) | SB]‘Dd‘er;;Og“ [123] 20l 5202
U-ViT |14.50 35.10 1255 Our 2161 2102
DiT |14.64 29.20 5.5 Bidirection [123] bsx4 116.2 2011
ZigMa |14.27 17.80 5.2 ZigMa bsx 4 121.2 140.1

Order Receptive Field. We propose a new concept in Mamba-based structure
for multidimensional data. Given that various spatially-continuous zigzag paths
may exist in multidimensional data, we introduce the term Order Receptive Field
which denotes the number of zigzag paths explicitly employed in the network
design.

Ablation study about the Order Receptive Field and FPS/GPU-Memory.
As depicted in Fig. 6 (c,d), Zigzag Mamba consistently maintains its GPU mem-
ory consumption and FPS rate, even with a gradually increasing Order Receptive
Field. In contrast, our primary baseline, Parallel Mamba, along with variants like
Bidirectional Mamba and Vision Mamba [70, 123], experience a consistent de-
crease in FPS due to increased parameters. Notably, Zigzag Mamba, with an
Order Receptive Field of 8, can perform faster without altering parameters.

Comparison with transformer-based methods. We show the result in Ta-
ble 5 on unconditional generation task.Our method achieves performance compa-

rable to Transformer-based methods, with significantly less memory consumption
and fewer FLOPS.
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4.3 Main Result

Main Result on 1024x1024 FacesHQ. To elaborate on the scalability of our
method within the Mamba and Stochastic Interpolant framework, we provide
comparisons on a high-resolution dataset (1024x1024 FacesHQ) in Table 3. Our
primary comparison is against Bidirectional Mamba, a commonly used solution
for applying Mamba to 2D image data [70,123]. With the aim of investigating
Mamba’s scalability in large resolutions up to 1,024, we employ the diffusion
model on the latent space of 128 x 128 with a patch size of 2, resulting in 4,096
tokens. The network is trained on 16 A100 GPUs. Notably, our method demon-
strates superior results compared to Bidirectional Mamba. Details regarding loss,
FID curves, and visualization can be found in the Appendix. While constrained
by GPU resource limitations, preventing longer training duration, we anticipate
consistent outperformance of Bidirectional Mamba with extended training du-
ration.

COCO dataset. To further compare the performance of our method, we also
evaluate it on the more complex and common dataset MS COCO. We compare
with the Bidirection Mamba as the baseline in Table 4. It should be noted that
all methods share nearly identical parameter numbers for fair comparison. We
trained all methods using 16 A100 GPUs. please check Appendix 8.8 for details.
As depicted in Table 4, our Zigzag-8 method outperforms Bidirectional Mamba
as well as Zigzag-1. This suggests that amortizing various scanning schemes
can yield significant improvements, attributed to better incorporation of the
inductive bias for 2D images in Mamba.

UCF101 dataset. In Table 6, we present our results on the UCF101 dataset,
training all methods using 4 A100 GPUs, with further scalability exploration
conducted using 16 A100 GPUs. We mainly compare our method consistantly
with Vision Mamba [123]. For the choice of the 3D Zigzag Mamba, please refer
to Appendix 8.8. For Factorized 3D Zigzag Mamba in video processing, we de-
ploy the sst scheme for factorizing spatial and temporal modeling. This scheme
prioritizes spatial information complexity over temporal information, hypothe-
sizing that redundancy exists in the temporal domain. Our results consistently
demonstrate the superior performance of our method across various scenarios,
underscoring the intricacy and effectiveness of our approach.

5 Conclusion

In this paper, we present the Zigzag Mamba Diffusion Model, developed within
the Stochastic Interpolant framework. Our initial focus is on addressing the
critical issue of spatial continuity. We then devise a Zigzag Mamba block with
heterogeneous layerwise scan to better utilize the inductive bias in 2D images.
Further, we factorize the 3D Mamba into 2D and 1D Zigzag Mamba to facilitate
optimization. We empirically design various ablation studies to examine different
factors. This approach allows for a more in-depth exploration of the Stochastic
Interpolant theory. We hope our endeavor can inspire further exploration in the
Mamba network design.
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