Supplementary Material of EchoScene

Guangyao Zhai' Evin Pmar Ornek! Dave Zhenyu Chen' Ruotong Liao??
Yan Di! Nassir Navab! Federico Tombari’** Benjamin Busam®3

!Technical University of Munich ?Ludwig Maximilian University of Munich
3Munich Center for Machine Learning *Google
guangyao.zhai@tum.de

In this Supplementary Material, we provide a scene graph visualization
of one scene from SG-FRONT to comprehensively illustrate the complexity and
the identity of the semantic scene graph. Furthermore, within the Supplementary
Manuscript, we provide the following;:

— Section 1: Manipulation Strategy.

— Section 2: Manipulation Qualitatives.
Section 3: Additional Results.

— Section 4: Additional Qualitatives.

Section 5: Additional Experimental Details.

1 Manipulation Strategy

We propose a novel training strategy for node and edge manipulation tailored
for scene graph diffusion, thus editing the generated scenes.
VAE+GAN-based strategy. In the previous methods [3,8], the layout branch
is modeled by a VAE architecture. During training, the input scene graph must
be augmented by ground truth bounding boxes. In this case, pseudo layouts are
created from the output side after the manipulation, and there is no matching
ground truth to supervise them. To make the pipeline functional, they set an
additional GAN module to help train the pseudo label. For example, as shown
in Fig. 1.A, the original relationship is {Bed — Left of — TV stand }, with
a manipulator changing it to {Bed — Right of — TV stand }. Only the
bounding boxes on the input side exist in the dataset, while the ones on the
output side are generated and need to be discriminated. Such a manipulation
strategy relies on the performance of GAN, whose training scheme is not stable
and requires large-scale training, consequently affecting the training quality of
layout VAE. Thus, the results shown in Tab. 2 in the main paper are always
unsatisfactory.

Our strategy. In contrast, we set both branches through diffusion processes,
avoiding the necessity of input ground truth bounding boxes during training.
Instead, we are able to simulate an inverted workflow by setting input as pseudo
graphs with fake relations, and we manipulate them back to the existing graphs
in the dataset. For example, as shown in Fig. 1.B, the ground truth relation
label is {Bed — Right of — Nightstand}, we simulate the relation changing
by setting an arbitrary label, e.g., {Bed — Front of — Nightstand}. In

guangyao.zhai@tum.de

2 Authors Suppressed Due to Excessive Length

(A. VAE+GAN-based Workflow | .=’ Real / Fake

Manipulator
e
+ Box-Enhanced Graph

LT
—
 —

- % Pseudo Layouts |

Latent Graph

Right-of

Training Set
Graph-Layout Pair 1 Graph-Layout Pair 2 Graph-Layout Pair n]\
O @ @ O E @ cee O {4

.-| % Pseudo Graph |- Latent Graph

H —
Front of] '
H——

[B Diffusion-based Workflow (Ours) Mampulamr

Fig. 1: Manipulation workflow. (Top) Previous VAE-based methods set the input
as real and use a GAN-based module to facilitate the output prediction. (Bottom) Our
Diffusion-based framework inverse the workflow by starting with a pseudo graph and
ending with ground truth, without redundant modules.

this case, we do not need to provide real data as input and further do not set an
additional GAN module to facilitate the training. Thus, the arbitrary pseudo side
enables large-scale training, maintaining a good manipulation performance. More
importantly, we do not need to discriminate the final layout prediction. With
our proposed strategy, we maintain the typical diffusion training routine, which
has Gaussian noise as supervision during training without further exhausting
inference. Last but not least, pure diffusion dynamics guarantee stable training.

2 Manipulation Qualitatives

We provide several qualitative results of the scenes before and after manipulation
in Fig. 2. The procedure includes EchoScene generating a scene based on a
provided scene graph, followed by scene modification according to adjustments
made to the graph.

Object addition. We first show object addition in the scene through the in-
corporation of new nodes and their corresponding edges into the scene graph.
For instance, the second row illustrates the addition of a sofa node to the graph.

Wardrobe

Frontof =~ Taller

v Front of:

L\ than
S .
Bigger than Nl Cabinet

\ A . I
\ Chair B¢

4 Standing on
Table =
- Floor
Close by: Sofa
/ Right of ~ T Leftof

»

X
Table 1 L=
4
-7, er‘um‘ of\ Table 2
Frontof | 4, N
7 il TV stand

Y, ' Bigger than
S‘;anding on @
R)
Floor

Close by: —_
44— Close by;

k \ Above:
s ‘;"" o Lamp
'

/

w72 ‘Standing on

Standing on

Floor

/ Bigger than \
Left of —
Above

Wardrobe v |
‘ R standingon» Floor Abave
Bi than. Right of:
ot Sholler shan Standing on
A NN
Right K. /
of ~ -
pragerTran el
. Taller than
Standingon P Floor w.
~ 4 Standing on
Bookshelf 1
- Abpee Above. \
% A
Above;
Right of Bookshelf 2
Abuu' Aboye '
> Front of
T Leftof -%
Rightof

Right of B
Right of
1 N\
Above ag Nightstand 2
\ Behind

"

EchoScene 3

=

S

~S <&

Object Addition
I
g

Relation Change

o
b

&
-

&

Fig. 2: Scene manipulation. (Upper main row) Object addition to the scene graph.
(Bottom main row) Partial relation change in the graph. (Zoom for details)

Upon this addition, EchoScene adeptly reconfigures the scene, modifying the
pose and appearance of pre-existing objects to seamlessly integrate the sofa into

the scene.

Relation change. Next, we show object rearrangement within the scene through
modifications to specific graph relations. The depiction is organized row-wise,
showcasing various types of edge manipulations: the first row highlights the

4 Authors Suppressed Due to Excessive Length

Method Metric ‘ Bed N.stand Ward. Chair Table Cabinet Lamp Shelf Sofa TV stand
Graph-to-3D [3] 1.56 391 1.66 268 577 3.67 6.53 6.66 1.30 1.08
CommonScenes [8] MMD () |049 092 054 099 191 096 1.50 2.73 0.57 0.29
EchoScene (Ours) 0.37 0.75 039 0.62 1.47 083 0.66 2.52 048 0.35
Graph-to-3D [3] 432 142 504 6.90 6.03 345 2.59 13.33 0.86 1.86
CommonScenes [8] COV (%,1) |24.07 24.17 26.62 26.72 40.52 28.45 36.21 40.00 28.45 33.62
EchoScene (Ours) 39.51 25.59 37.07 17.25 35.05 43.21 33.33 50.00 41.94 40.70
Graph-to-3D |[3] 98.15 99.76 98.20 97.84 98.28 98.71 99.14 93.33 99.14 99.57
CommonScenes [8] 1-NNA (%,])|85.49 95.26 88.13 86.21 75.00 80.17 71.55 66.67 85.34 78.88
EchoScene (Ours) 72.84 91.00 81.90 92.67 75.74 69.14 78.90 35.00 69.35 78.49

Table 1: Object-level generation performance. We report MMD(x0.01), COV
and 1-NNA for evaluating shapes by means of quality and diversity.

front of/behind relationship, the second focuses on bigger/smaller than,
and the final row on left/right of. An interesting case is observed in the sec-
ond row, where the bed is adjusted to be bigger than the wardrobe from the
volume perspective. This particular relationship between the bed and wardrobe
is comparatively rare within the dataset. Yet, EchoScene can jointly adjust the
bounding box sizes of both the wardrobe and bed to achieve the goal. In the
last row, EchoScene successfully alters the relationship between the desk and
chair, while reorienting the chair’s pose to face the desk, thereby maintaining
inter-object consistency within the scene.

3 Additional Results

We believe our shape branch driven by shape echoes can bring more object gen-
eration compliance to the global scenes. Thus, we further conduct object-level
analysis, following [8], to report the MMD (x0.01), COV (%), and 1-nearest
neighbor accuracy (1-NNA, %) for evaluating per-object generation. As shown
in the first two rows of Table 1, our method shows better performance on most of
the categories in both MMD and COV, which highlights the object-level shape
generation ability of EchoScene. 1-NNA directly measures distributional similar-
ity to the ground truth objects in both diversity and quality. The closer 1-NNA is
to 50%, the better the shape distribution is captured. It can be observed that in
most of the categories, our method surpasses CommonScenes in the evaluation of
distributional similarity. Overall, EchoScene exhibits more plausible object-level
generation than the previous state-of-the-art.

4 Additional Qualitatives

Generative methods. We first show more quantitative results in Fig. 3. Our
method can achieve more inter-object consistency and generation quality. For
example, in the bedroom, Graph-to-3D fails to achieve desk-and-chair consis-
tency, while EchoScene can generate a desk whose appearance is closer to a

EchoScene 5

Bedroom Dining Room Living Room

Rightof, ||
smaller than Close bys

Right of
\

Above Aogve
Wardrobe

Above ¥

Close by;
Right of

Above

(R uetaf
| Leftof
‘Standing on ez

Standing on-
“\a Floon 425"

{;ﬂ
CommonScenes
=

EchoScene (Ours)

Fig.3: More comparisons with other methods. Red rectangles highlight the
inconsistent generation. (Zoom for details)

desk in the real scenario with a chair suitable for it. In the living and dining
rooms, Graph-to-3D either fails on shape consistency or angle predictions of
chairs. CommonScenes cannot guarantee a fine-grained shape consistency, while
the chairs coarsely look similar. In contrast, EchoScene can generate coherent
shapes and make pose prediction more accurate.

Retrieval methods. Retrieval methods select objects from the database based
on how closely their bounding box sizes match those of the generated layouts.
Therefore, this line of work suffers from inter-object inconsistency; for example,
chairs are not recalled in suits. Such inconsistencies often stem from even minor
misalignment in the size of generated bounding boxes, leading to the selection
of entirely different objects than intended. Despite this, our focus in Figure 4
is to illustrate the effectiveness of graph constraints, instead of consistency. It
is observable that even though InstructScene [5] demonstrates the capability
to generate objects in a decent manner, it fails to adhere to the partial graph

6 Authors Suppressed Due to Excessive Length

Bedroom Dining Room Living Room
o R =+ G0 B Toves I Ly 1
- aller han g = " [p— m
= Behind . Close m oy Lo s a;:

Front.of G Gy e
’ . D BN _i- =0 mh oY
0 Leftof P Right of by e Rightof | Front of "\W

| =\
Left of F"‘;’"’ BIOGET | Stonding o

- Rghgf et / _

\m X | h o Frontof | Rightef N Standing on
Table 2 S s = . Pe
Standing on e Stonding

pryest Toble 1& smmm(Lt Swﬂdmgun/ Abovey, > Floor

~— Floor

Input Scene Graph

InstructScene

CommonLayout

EchoLayout (Ours)
Fig. 4: Comparisons with other retrieval methods. Input scene graphs have more

edges between two nodes than the ones visualized here. Red rectangles highlight the
inaccurate graph constraints. (Zoom for details)

"Room in Bohemian S’ tyle”

EchoScene EchoScene™” SceneTex

Fig. 5: Off-the-shelf texture creation. A bedroom with a complex structure bed
inside generated by EchoScene and textured in different styles by SceneTex [1].

EchoScene 7

constraints. On the contrary, both CommonLayout [8] and EchoLayout exhibit
proficiency in complying with these constraints.

Texture Generation. We finally show additional texture generation on a rel-
atively complex structured bedroom in Fig. 5. EchoScene can provide well-
generated scenes that are compatible with an off-the-shelf SceneTex [1] to gen-
erate textures.

5 Additional Experimental Details

5.1 Baselines.

Graph-to-3D series [3]. This series includes one generative method and three
object retrieval methods. First, the full generative version Graph-to-3D, stacking
two VAE-based branches for object and layout generation, respectively. Second,
Graph-to-Bozx, the single layout branch focusing on the object retrieval task.
Third, Progressive, a modified baseline upon Graph-to-Box, specifically adding
objects one by one in an autoregressive manner. Fourth, 3D-SLN [6], sharing the
same architecture as Graph-to-Box, but without layout standardization during
training. We follow the illustration in the supplementary of CommonScenes.

CommonScenes series [8]. This series includes the fully generative version
CommonScenes, and its layout branch for object retrieval, CommonLayout. We
follow the illustration in the supplementary of CommonScenes.

Text-to-shape series. This series includes two generative baselines. One is
built upon CommonScenes called CommonLayout+SDFusion, and the other is
EchoLayout+SDFusion, with EchoLayout as our layout branch. Both methods
achieve the fully generative ability by first generating the bounding boxes and
further generating shapes upon a text-to-shape method SDFusion [2] within each
bounding box, according to the textual information in the graph nodes.

DiffuScene [7]. DiffuScene is a diffusion-based retrieval method, which can be
both unconditional and text-conditional. It uses a diffusion process to generate
bounding boxes of an object set as the scene layout. We test its text-conditional
version to perform scene synthesis on the SG-FRONT dataset. Specifically, we
transfer scene graph description to sentences based on the script provided by
DiffuScene. Then, we feed the sentences to the BERT [4] encoder to have tex-
tual embeddings for conditioning the denoising process. The experimental set-
tings are kept the same as the original ones. DiffuScene is explicitly designed
for scene completion tasks, where it uses partial inputs as a basis and generates
additional content. Our task, however, concentrates on achieving fully control-
lable scene synthesis. This means we aim to produce scenes that precisely match
the descriptions provided in the scene graph. Consequently, the evaluation of
DiffuScene focuses solely on the fidelity of the generated scenes, assessing how
closely the distribution of the generated content aligns with the original data.
We do not enforce strict adherence to the graph constraints, recognizing that a
significant portion of the content is creatively inferred or ‘hallucinated.’

8 Authors Suppressed Due to Excessive Length

InstructScene [5]. InstructScene is another retrieval method with a closer
setting to us. It stacks two diffusion-based stages: Firstly, it transfers sentences
using a graph transformer denoiser to a semantic graph containing shape prior
as nodes and allocates each two nodes a single edge. Secondly, another graph
transformer denoiser serves as a 3D layout decoder, taking the graph and steadily
denoising the 3D bounding boxes as the scene layouts. Our task focuses on graph-
conditioned scene synthesis. Therefore, we conduct the experiment solely in the
second stage of InstructScene. We train the graph transformer denoiser with
scene graphs in SG-FRONT until its convergence. As the synthesized scenes are
fully controllable by the scene graph, we are able to evaluate both scene fidelity
and the performance of graph constraints. When synthesis the scenes, we retrieve
the objects whose sizes are closest to the ones of generated bounding boxes. This
retrieval strategy is kept the same for all methods for comparison fairness.

5.2 Implementation Details.

Trainval and test splits. We use the settings in DiffuScene [7] and Common-
Scenes [8] to train and test all methods on SG-FRONT and 3D-FRONT. The
whole dataset contains 4,041 bedrooms, 900 dining rooms, and 813 living rooms.
The training split contains 3,879 bedrooms, 614 dining rooms, and 544 living
rooms, with the rest as the test split.

Batch size definition. The two branches use individual batches in terms of
the different training objectives. The layout branch uses a scene batch By during
one training step, containing all bounding boxes in scenes. There are two ways
to determine the batch size for the shape branch.

First, if it is the ablated version where the shape branch is without shape
echoes, we can straightforwardly sample B, objects (nodes) out of the scene
batch to train, as illustrated in CommonScenes [8]. This method allows for ran-
dom sampling of objects since the lack of shape echoes means there’s no require-
ment for the objects to originate from the same scene.

Second, if it is the full version, we set up a maximum batch size B}, and
select scenes where the total number of objects B, closely approaches but does
not exceed B}. This method ensures that we efficiently utilize the batch capac-
ity while adhering to the constraint of keeping the sum of objects within the
predetermined maximum batch size. In this case, the batch size in shape branch
B, slightly fluctuates, as the object numbers are not fixed in the scene.

Training procedure. We train EchoLayout (layout branch) for 2000 epochs
with B; = 64. The learning rate is set to [le-4, 5e-5, 1le-5, 5e-6] at [0, 35,000,
70,000, 140,000] step. For the full EchoScene, which integrates shape information
via a shape branch into the pipeline—where both branches utilize a shared latent
graph representation—we extend the training by an additional 50 epochs. The
maximum batch size B} for the shape branch is set to 64. The learning rate is
kept in the same fashion.

EchoScene 9

References

. Chen, D.Z., Li, H., Lee, H.Y., Tulyakov, S., Nieftner, M.: SceneTex: High-quality
texture synthesis for indoor scenes via diffusion priors. In: CVPR (2024) 6, 7

. Cheng, Y.C., Lee, H.Y., Tuyakov, S., Schwing, A., Gui, L.: SDFusion: Multimodal
3D shape completion, reconstruction, and generation. In: CVPR (2023) 7

. Dhamo, H., Manhardt, F., Navab, N., Tombari, F.: Graph-to-3D: End-to-end gen-
eration and manipulation of 3D scenes using scene graphs. In: ICCV (2021) 1, 4,
7

. Kenton, J.D.M.W.C., Toutanova, L.K.: BERT: Pre-training of deep bidirectional
transformers for language understanding. In: NAACL-HLT (2019) 7

. Lin, C., MU, Y.: InstructScene: Instruction-driven 3D indoor scene synthesis with
semantic graph prior. In: ICLR (2024) 5, 8

. Luo, A., Zhang, Z., Wu, J., Tenenbaum, J.B.: End-to-end optimization of scene
layout. In: CVPR (2020) 7

. Tang, J., Nie, Y., Markhasin, L., Dai, A., Thies, J., Niefiner, M.: DiffuScene: Scene
graph denoising diffusion probabilistic model for generative indoor scene synthesis.
In: CVPR (2024) 7, 8

. Zhai, G., Ornek, E.P., Wu, S.C., Di, Y., Tombari, F., Navab, N., Busam, B.:
CommonScenes: Generating commonsense 3D indoor scenes with scene graphs. In:
NeurIPS (2023) 1, 4, 7, 8

	Supplementary Material of EchoScene

