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Abstract. We present EchoScene, an interactive and controllable gener-
ative model that generates 3D indoor scenes on scene graphs. EchoScene
leverages a dual-branch diffusion model that dynamically adapts to scene
graphs. Existing methods struggle to handle scene graphs due to vary-
ing numbers of nodes, multiple edge combinations, and manipulator-
induced node-edge operations. EchoScene overcomes this by associating
each node with a denoising process and enables collaborative informa-
tion exchange, enhancing controllable and consistent generation aware of
global constraints. This is achieved through an information echo scheme
in both shape and layout branches. At every denoising step, all processes
share their denoising data with an information exchange unit that com-
bines these updates using graph convolution. The scheme ensures that
the denoising processes are influenced by a holistic understanding of the
scene graph, facilitating the generation of globally coherent scenes. The
resulting scenes can be manipulated during inference by editing the in-
put scene graph and sampling the noise in the diffusion model. Extensive
experiments validate our approach, which maintains scene controllabil-
ity and surpasses previous methods in generation fidelity. Moreover, the
generated scenes are of high quality and thus directly compatible with
off-the-shelf texture generation. Our code and models are open-sourced.

1 Introduction

Controllable Scene Generation (CSG) refers to synthesizing realistic 3D scenes
according to input prompts while enabling specific entities within the scene to be
user-interactive [5,6,49]. It has successfully been applied in robotics [38,57], Vir-
tual Reality / Augmented Reality [2], and autonomous driving [31,45]. Recently,
combining CSG with scene graph diffusion models has attracted significant re-
search interest [32,53,58], since on the one hand, diffusion models empower more
realistic and diverse 3D content generation [9,10,44,48], on the other hand scene
graphs capture the structure of the scene in a compact manner and facilitate in-
tuitive user manipulation [15,58]. Importantly, users can modify the input scene
graph to dynamically change the generated scene.
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Fig. 1: EchoScene Schematic. EchoScene uses a dual-branch diffusion model to
generate 3D scenes from scene graphs. In both branches, each node is allocated a
denoising process, and different processes are aware of global states through layout
and shape "echoes" (waves in different colors) with an information exchange unit (grey
block) along the denoising steps.

Despite its significant progress so far, CSG with scene graph diffusion still
suffers from two open challenges. First, due to varying numbers of graph nodes
and manipulator-induced node-edge operations, the input scene graphs dynam-
ically describe global scene states, thus demanding adaptability from networks
to accurately represent changing states. This status includes nodes appearing
or disappearing and edges altering during scene creation. Second, it is crucial
yet difficult when encapsulating both fine-grained node classes and diverse edge
combinations into a network to be aware of global constraints. Existing solu-
tions either simplify graphs by preserving only node sets, avoiding complex edge
encoding in the diffusion while losing key structural relationships [53], or con-
vert nodes and edges into tokens for transformer-based denoiser [32], which is
effective for the layout generation from simple graphs but not scalable for larger
ones due to exponential token growth. For a graph with P nodes and Q types
of edges, the maximum token count grows with Q · P !, making such a strategy
hard to model intricate relations and computationally infeasible for large graphs.
CommonScenes [58] collapses graphs to triplets (subject, predicate, object) and
employs graph convolution to aggregate features for each node, which are then
conditioned on individual denoising processes for shape generation. While this
approach adapts well to varying graph sizes, each denoising process is isolated
from the other, resulting in insufficient awareness of global shape states and,
thus, undesired inter-object inconsistency. Additionally, its reliance on VAE and
GAN for layout generation complicates synchronized training.

To fully utilize the controllability of scene graphs for scene generation and
manipulation, the feature aggregation of multiple edges to the respective nodes
is essential. In an attempt to flexibly encapsulate information from an indefi-
nite number of nodes without losing global graph constraints, it can be helpful
to allocate an individual denoising process per node and encourage information
communication among all processes to achieve a common goal state. Integrating
both concepts, CSG becomes promising with complex scene graphs by adhering
to graph constraints and manipulating object-level diffusion. With EchoScene
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we move a step further and introduce a scene-generative framework equipped
with dual-branch diffusion models capable of producing object shapes and scene
layouts simultaneously (see Fig. 2 for the pipeline). Each branch contains mul-
tiple denoising processes, with an equal number of nodes in the scene graph.
The denoiser is weight-shared for all processes without introducing additional
costs. To consolidate global awareness in every denoising process, we introduce
an information echo scheme to exchange information at each denoising step in
the respective branches, as illustrated in the middle of Fig. 1. Here, an informa-
tion echo in the graph diffusion happens when a node first sends the denoising
data and other features to an information exchange unit, which echoes back the
aggregated features to the node as the condition signal for its denoiser. More
clearly, for a single denoising process, the echo route is: {current denoising input
�! information exchange unit �! denoising conditioner}.

In this design, EchoScene is able to generate and edit scenes from complex
scene graphs with an indefinite number of nodes and edges. More importantly,
the information echo scheme supports temporally global information exchange
within both branches, thus continuously making the generation compliant with
the scene graph description. For example, in the shape branch, shape echoes
enable steady awareness of object appearance along the denoising steps for each
generation process, bringing more inter-object consistency to the global style.
Last but not least, the pure diffusion-based model dynamics enables synchro-
nized training. EchoScene outperforms the previous state-of-the-art method on
generation fidelity by a large margin and is more robust when handling graph
manipulation. Moreover, we show that scenes generated by EchoScene are com-
patible with off-the-shelf texture generators, e.g., SceneTex [9], facilitating po-
tential downstream applications.

The main contributions of this work can be summarized as follows:

1. We present EchoScene, a scene generation method with a dual-branch dif-
fusion model on dynamic scene graphs, to simultaneously generate layouts
and shapes with more controllability.

2. We introduce an information echo scheme inside each branch of EchoScene
that allows multiple denoising processes to exchange their denoising status
among each other at each time step, bringing global awareness to each indi-
vidual process.

3. We show in the experiments that the proposed generative framework achieves
more generation fidelity, more robustness in handling graph manipulation,
and effectively handles inter-object style consistency.

2 Related work

Semantic Scene Graph. Scene graphs have become a fundamental tool for
semantic scene understanding, offering a structured and symbolic representation
of scenes through nodes (objects) and edges (relationships) [21]. Their versatil-
ity spans various domains, including image manipulation, caption generation,
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and visual question answering, demonstrating their capacity to enrich 2D image
generation [14,20,27]. Beyond 2D, scene graphs have been extended to 3D scene
understanding [56, 62], dynamic modeling [47], and notably, controllable scene
synthesis [29], showcasing their adaptability in representing complex spatial and
semantic relations in multi-dimensional spaces [26,29,40,47,56,58,61]. EchoScene
proposes an indoor 3D scene generation method conditioned fully on semantic
scene graphs coupled with a scene controlling ability.
Diffusion Models. Applications of diffusion models [50] have witnessed rapid
expansion, from generating intricate images to modeling complex distributions
in various data types [19, 52]. Recent advances have focused on improving their
flexibility and realism, with significant efforts to enhance conditional generation
and refine the models’ understanding of input conditions [4, 8, 25, 39, 59]. Score
Distillation Sampling (SDS) was proposed to enable training Neural Radiance
Fields through pretrained diffusion models [44]. A line of work addressed text-to-
3D via SDS [34,48], studied the compositionality of scenes via SDS [13,17,33,43],
and more recently via Gaussian Splatting [60]. These methods can create realistic
3D assets from text via a small number of images; however, they are limited in
terms of number of objects within a scene while capturing their relationships.
Comparably, a set of works used diffusion models to learn 3D shapes explicitly
[12,35]. Finally, diffusion models have recently been shown to be useful for graph
generative processes [24, 54, 55]. EchoScene draws from the recent advances in
diffusion models, where both shape and layout generation are through graph
diffusion processes.
Controllability in Scene Synthesis. The quest for controllable scene syn-
thesis has led to diverse methodologies, ranging from text descriptions to spa-
tial layouts and probabilistic grammars for creating 3D scenes. Methods have
explored generating scenes from images [11], texts [5], and layouts [1], employ-
ing various strategies such as autoregressive models and deep priors to achieve
controllable outputs [22, 37, 42]. Recent work has also seen graph-based condi-
tioning emerge as a powerful approach for controlled scene synthesis, enabling
more precise manipulation of scene elements and their relations [29,32,53,58,61].
CommonScenes [58] came up with a scene graph conditioned scene generation
method, which is based on a VAE and a GAN for capturing the layout and
creating shapes via a latent diffusion model. Even though these methods have
high quality in layout generation, their shape generation abilities are limited, as
well as their manipulation quality still has room for improvement. EchoScene
addresses these challenges through a diffusion-based layout generation with a
novel information echo scheme.

3 Preliminary

Scene Graph. The scene graph we use is semantic scene graph [7], denoted
as G = {V, E}, which serves as a structured representation of a visual scene. In
such representation, V = {vi | i = 1, . . . , N} refers to the set of object nodes,
while E = {ei!j | i, j = 1, . . . , N, i 6= j} represents the set of directed edges
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connecting each pair of nodes vi ! vj . As structured in the Fig. 2.A.1, each
node vi and edge ei!j can encompass various extensible attributes, e.g., object
categorical information.
Scene Graph Convolution. The scene graph convolution we use in this work,
originally from [20] and applied in [15,36,58], is the fundamental module process-
ing semantic scene graphs, as known as triplet-GCN. A typical K-layer triplet-
GCN module is:

(↵(k)
vi

,�(k+1)
ei!j

,↵(k)
vj ) = h1(�

(k)
vi ,�(k)

ei!j
,�(k)

vj ), k = 0, . . . ,K � 1,

�(k+1)
vi = ↵(k)

vi + h2

⇣
Avg

�
↵(k)
vj | vj 2 NG(vi)

�⌘
,

(1)

where k represents an individual layer in triplet-GCN, and h1, h2 are MLP.
NG(vi) encompasses all nodes that are directly connected to vi, and Avg denotes
the process of average pooling. The initial attributes of nodes and edges, denoted
by (�(0)

vi ,�(0)
ei!j ,�

(0)
vj ), able to be customized for specific usages.

Contextual Graph. CLIP features are proven to bring strong inter-object in-
formation to the scene graph [58]. Thus, a semantic scene graph evolves to a
contextual graph by using the readily available CLIP text encoder to infer the
semantic information for each node and each triplet in the graph to provide
semantic anchors (pi, pi!j), and each node and edge have their own learnable
vectors (oi, ⌧i!j). As shown in the Fig. 2.A.1, the node and edge feature of a
contextual graph is vi := {pi, oi} and ei!j := {pi!j , ⌧i!j}, respectively.
Conditional Diffusion Models. Diffusion models learn to estimate a target
distribution through a progressive Markov Process of length T where a denoiser
"✓ is trained to gradually remove noise from diffused noisy versions dt with
t 2 {1, . . . , T} of a data sample d [19,52]. Latent Diffusion Models (LDMs) [46]
efficiently establish this process in latent space where a conditioner c can guide
the generation process [12]. Learning the denoising is reached by minimization
of the objective

LLDM = Ed,"⇠N (0,1),t

⇥
||"� "✓(dt, t, c)||22

⇤
. (2)

Once the denoiser "✓ is learned, the inverse process can be established using
Langevin dynamics [51].

4 Method

Overview. We present EchoScene, a method that accomplishes scene genera-
tion through layout and shape generation from scene graphs. EchoScene evolves
the contextual graph to the latent space utilizing an encoder and a manipulator
based on triplet-GCN, as shown in Fig. 2.A and as introduced in Sec. 4.1. Then,
as shown in Fig. 2.B, it conditions latent nodes to layout branch (Fig. 2.B.1)
and shape branch (Fig. 2.B.2) separately based on an information echo scheme
defined in Sec. 4.2. In the layout branch, each diffusion process interacts with



6 G. Zhai, E. P. Örnek, D. Z. Chen, R. Liao, Y. Di, N. Navab, et al.

each other through layout echo to acquire global layout awareness at each de-
noising step, so that the final layout generation is compliant with the scene graph
description (see Sec. 4.3 and Fig. 3.A). Similarly, in the shape branch, each dif-
fusion process interacts with each other through shape echo to be aware of other
shape appearances at each denoising step, so that the final generated shapes in
the scene are consistent (see Sec. 4.4 and Fig. 3.B). Moreover, our generated
scenes are compatible with off-the-shelf texture generators, e.g., SceneTex [9],
making more photorealistic appearances.

4.1 Graph Preprocessing

Graph Encoding. To make the layout and shape branches aware of the seman-
tic and spatial information among the objects, we first encode the contextual
graph to have latent relation embedding for each node by a triplet-GCN-based
encoder Er. In this case, we initialize the input embeddings of layer 0 with the
features from the contextual graph, thus, (�(0)

vi ,�(0)
ei!j ,�

(0)
vj ) = (vi, ei!j , vj) in

Eq. 1. After the encoding, node features evolve to VZ = {vzi | i = 1, . . . , N},
where vzi consists of an explicit semantic representation vi with an implicit em-
bedding zi encapsulating relation information with other nodes.
Graph Manipulation. The manipulation includes node addition and relation
change, mimicking the user interaction. An example of manipulation is shown
in Fig. 2. We inherit the manipulation functionality of Graph-to-3D [15] and
CommonScenes [58] by setting up a graph manipulator, another triplet-GCN
module, to adjust the graph in the latent space, but with an orthogonal strategy
during training. We illustrate more details in the Supplementary Materials. After
the manipulation, Node features in the scene graph are updated to VZ = {vzi | i =
1, . . . ,M,M � N}. Subsequently, we send the updated graph to the diffusion-
based layout branch and shape branch, where we set each node with an individual
denoising process.

4.2 Information Echo Scheme

Before introducing the layout and shape branch, we illustrate the core of the two
branches–the information echo scheme in graph diffusion.
Challenges from a Dynamic Graph. While "Denoising Diffusion Probabilis-
tic Models" (DDPM) [19] has significantly advanced the field of generative mod-
els by producing realistic and diverse content, their application to dynamic data
structures, such as scene graphs, is limited. Scene graphs contain indefinite nodes
and multiple edge combinations between nodes, describing compact and flexible
relationships among objects. Some concurrent work based on DDPM [32,53] to
ours either models the object graph as a set or preserves it with a single edge
between two nodes, where the representation ability of a scene graph degrades.
Besides, they set a maximum number of tokens and model them in a single
DDPM. As such, the local controllability of the generation is limited when users
want to manipulate the specific elements. We believe a better solution is for each
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Fig. 2: Overview of EchoScene. Our pipeline consists of graph preprocessing and
two collaborative branches Layout Branch and Shape Branch. The details of two
branches in one step are shown in Fig. 3. During inference, EchoScene evolves the
contextual graph to the latent space, where a manipulator optionally adjust the graph
by editing nodes and edges. Then, EchoScene samples a random noise from Gaussian
Distribution B and S for both branches conditioned on the latent graph to generate
shapes and layouts. Finally, the generated shapes are populated into layouts to synthe-
size the scenes. Moreover, an external texture generator [9] can be optionally utilized
to provide a more photorealistic appearance.

node in the graph to be allocated with an individual denoising process, jointly
forming a diffusion model for specific tasks, which, in our case, are shape and
layout generation. Thus, the content generation is fully controllable by node and
edge manipulation.
Echo-Formed Condition. However, even though each denoising process the-
oretically realizes more controllability, it also brings isolation problems. As each
generation proceeds individually, there is no awareness of scene content dur-
ing the denoising steps, which makes the generation inconsistent with global
constraints in the graph. To achieve both highly controllable and consistent gen-
eration at the same time, we propose to couple the inverse iterative conditional
diffusion mechanism on graph node features with a recurrent intermediate mes-
sage exchange strategy over the graph G = {V, E}. In analogy to an echo in
the real world, a node can send its information and receive it back along with
information from other nodes during the steps of the inverse diffusion process.

The cornerstone of echo is the introduction of an information exchange unit
U that enables dynamic and interactive diffusion processes among the elements
of a dynamic graph. The incorporation of U on the conditioner during the inverse
diffusion process allows each element within the group to share and receive in-
formation. At every denoising step, each diffusion process assembles the current
denoising data di

t with other available node attributes, where we choose latent
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feature vzi , to construct a new node set VDt := {f
�
di
t, v

z
i ,⇡(t)

�
| i = 1, . . . ,M},

where f(·) depicts a feature assembling function, and we choose simple concate-
nation here. ⇡(·) illustrates the temporal process embedding function. Then, the
process sends VDt to U , which comprehensively understands group dynamics
according to graph edges E , by subscribing and aggregating information from all
processes. In our task, we set U based on triplet-GCN. The feature aggregation
function U(·) is based on Eq. 1, with input (�(0)

vi ,�(0)
ei!j ,�

(0)
vj ) = (vdt

i , ei!j , v
dt
j ),

where vdt
i and vdt

j are elements in VDt . The denoiser of each process receives the
aggregated features for conditioning. In this form, one sending and one receiving
step constitute an ‘ information echo.’ Note that the Langevin dynamics here
are different from the ones in a normal diffusion model, where we introduce the
relationship of a group of denoising data into the condition CDt , making it tem-
porarily changed and steadily introducing constraints to generate next states.
With forward process variances �t and �t =

p
�t as well as the shorthand no-

tations ↵t := 1 � �t and ↵̄t :=
Qt

s=1 ↵s, we define one conditional step in the
denoising procedure as:

di
t�1 =

1
p
↵t

✓
di
t �

1� ↵tp
1� ↵̄t

"✓(d
i
t,⇡(t), CDt)

◆
+ �tz,

CDt = U (GDt) ,GDt = {VDt , E} ,
(3)

where z ⇠ N (0, 1) if t > 1, else z = 0. The information echo is repeated at every
timestep, collectively forming the information over the scene graph diffusion.

4.3 Layout Branch

As described in Sec. 4.2, we model the layout generation by setting each node
with its own denoising process and encouraging them to interact with their
diffused layout with each other at every denoising step.
Layout Parametrization. The scene layout is represented by object bounding
boxes. Initially, each bounding box bi

0 has 7 parameters, e.g., location (x, y, z),
size (l, h, w), and a yaw angle ✓. Before training, we normalize location and size
by their maximum and minimum values on each axis. For angles, we calculate its
sine and cosine values. Thereby, the final representation contains 8 parameters:
bi
0 = {x, y, z, l, h, w, sin ✓, cos ✓}, as shown in Fig. 3.A.3.

Layout Echoes. Since the bounding box generation needs to be compliant with
the spatial constraints described in the scene graph, state observation from other
nodes is needed to determine the bounding box of a specific node. In this branch,
we encourage all nodes to communicate their current diffused bounding boxes
Bt := {bi

t | i = 1, ...,M} in the graph by a layout exchange unit U 7! Ul

to achieve global awareness at each time step. As shown in Fig. 3.A.1, in the
implementation, we substitute denoising data di

t to the diffused bounding box
bi
t, resulting in VDt 7! VBt and GDt 7! GBt . Thus, layout echoes happen at each

time step by using Eq. 3, which are essential for the functionality of this branch.
Training objective. We follow a normal DDPM training routine, in which we
set 1000 time steps for all diffusion processes with weight-shared �✓. In each
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Fig. 3: One Step of Dual-Branch Information Echo. For each time step, we
encourage the layout (left) and shape (right) branches to exchange information within
each branch for all objects in the same scene.

time step, the objective is to minimize the noise prediction errors supervised by
� sampled from Gaussian Distribution:

Llayout = EB,�⇠N (0,1),t

⇥
||� � �✓(Bt,⇡(t), Ul(GBt)||22

⇤
,GBt = {VBt , E}. (4)

4.4 Shape Branch

As shown in Fig. 2.B.2, we pretrain a VQ-VAE as a shape en-decoder and treat
the latent codes X0 in the bottleneck of the VQ-VAE as the ground truth of
the LDM, as deployed in CommonScenes [58]. Similar to our layout branch,
we introduce the information echo scheme to shape generation, enhancing the
generation consistency.
Isolation Problems. Unlike layout generation, shape generation can be condi-
tioned solely with the semantic information [12,30] or relation information [58],
which means the shape branch is already functional when allocating each node to
a denoising process driven by semantics or latent relation embeddings. However,
each process still lacks consistency control from the shape appearance aspect.
In other words, each generation process only focuses on its own, while ignor-
ing others’ shape generation state throughout the whole denoising. Thus, the
generations are isolated from each other, resulting in suboptimal inter-object
consistency of the global style.
Shape Echoes. We solve the problem by introducing shape observation of
other processes for each process, which is achieved by shape echoes. As shown
in Fig. 3.B.3, before shape echoes happen, we first feed diffused shape codes
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Xt := {xi
t, | i = 1, ...,M} to 3D convolutional layers and flatten to St :=

{sit, | i = 1, ...,M}, aligning the dimension with the node’s attribute. The mean-
ing of the Xt and St becomes more obvious when the time step is closer to 0.
Similar to the layout branch, we substitute denoising data di

t to the diffused
shape code sit, resulting in VDt 7! VSt and GDt 7! GSt . Thus, with a shape
exchange unit U 7! Us, shape echoes happen at each time step by using Eq. 3.
Training objective. For each latent diffusion process, the weight-shared de-
noiser "✓ takes time step t, shape codes Xt, and shape-aggregated feature as
input to predict the noise, which is supervised by " sampled from Gaussian Dis-
tribution. The objective of the training is to minimize the noise prediction errors:

Lshape = EX,"⇠N (0,1),t

⇥
||"� "✓(Xt,⇡(t), Us(GSt)||22

⇤
,GSt = {VSt , E} (5)

4.5 Dual-Branch Joint Training

Since both branches are based on diffusion models, the framework supports end-
to-end synchronized training optimized by two losses weighted by �1,�2:

L = �1Llayout + �2Lshape. (6)

5 Experiments

Dataset. We conduct our experiments on SG-FRONT dataset [58], which pro-
vides scene-graph annotations for the high-quality 3D-FRONT [16] with house-
hold environments. SG-FRONT contains 15 relationship types and 45K object
instances from three types of scenes.
Metrics. We follow the metrics used in [32, 57, 58], to measure the fidelity
and diversity of generated scenes, where we adopt Fréchet Inception Distance
(FID) [18], FIDCLIP [28] and Kernel Inception Distance (KID) [3] metrics [42]. To
measure the scene graph consistency, we follow the scene graph constraints [15],
which measure the accuracy of a set of relations on a generated layout. To
measure the shape consistency and diversity following [58], we test dining rooms,
a typical scenario in which tables and chairs should be in suits.
Baselines. For retrieval-based methods i.e., a layout generation network 3D-
SLN [36], a progressive method to add objects one-by-one designed in [15],
Graph-to-Box from [15], DiffuScene [53] with text conditioning, and InstructScene
[32] with graph conditioning. For generative methods, Graph-to-3D [15], mod-
eling shape and layouts both in VAE. CommonScenes [58], which model scene
layouts through VAE and generate each object via LDM conditioned on relation
embeddings. EchoLayout/CommonLayout+SDFusion that we design stacking
the layout branch and a text-to-shape generation model SDFusion [12] sequen-
tially. More details are in Supplementary Material.
Implementation Details. The training, evaluation, and visualization are car-
ried out on a single NVIDIA A40 GPU with 40 GB of memory. Training is
optimized with AdamW with an initial learning rate of 1e-4. The values of �1,�2

are set to 1.0. More details are provided in Supplementary Material.
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Method Shape Bedroom Living room Dining room
Representation FID FIDCLIP KID FID FIDCLIP KID FID FIDCLIP KID

3D-SLN [36]

R
et

ri
ev

al

57.90 5.45 3.85 77.82 7.02 3.65 69.13 7.99 6.23
Progressive [15] 58.01 5.67 7.36 79.84 7.41 4.24 71.35 8.28 6.21
Graph-to-Box [15] 54.61 5.26 2.93 78.53 6.88 3.32 67.80 7.75 6.30
CommonLayout [58] 52.69 5.22 2.82 76.52 6.58 2.08 65.10 7.55 6.11
DiffuScene [53] 52.02 5.01 2.52 81.61 7.52 1.23 65.90 7.39 0.09
InstructScene⇤ [32] 45.40 3.87 1.06 75.83 6.98 4.15 61.56 6.49 4.90
EchoLayout (Ours) 46.53 4.24 0.33 75.54 6.35 1.60 59.66 6.24 2.63

Graph-to-3D [15] DeepSDF [41] 63.72 6.01 17.02 82.96 7.80 11.07 72.51 7.25 12.74
CommonLayout+SDFusion [12] txt2shape 68.08 5.61 18.64 85.38 7.23 10.04 64.02 6.92 5.08
EchoLayout+SDFusion [12] txt2shape 57.68 4.96 10.54 83.66 6.83 9.62 65.55 7.02 4.99
CommonScenes [58] rel2shape 57.68 4.86 6.59 80.99 7.05 6.39 65.71 7.04 5.47
EchoScene (Ours) echo2shape 48.85 4.26 1.77 75.95 6.73 0.60 62.85 6.28 1.72

Table 1: Scene generation realism as measured by FID, FIDCLIP and KID (⇥0.001)
scores at 2562 pixels between the top-down rendering of generated and real scenes,
following [53,58] (lower is better). We color the best and the second . Two main rows
are separated with respect to the reliance on an external shape database. InstructScene⇤

represents its 3D layout decoder solely. Both EchoLayout and CommonLayout refer to
the single layout branch.

5.1 Scene Fidelity

As a generation task, the fidelity of scene synthesis is essential to measure.
Quantitative results. We perform two types of scene synthesis, which are
shape retrieval-based and generation-based synthesis, and provide FID / FIDCLIP
/ KID in Tab. 1. For retrieval, our layout branch EchoLayout performs bet-
ter than the layout branch of the previous SoTA CommonLayout [58] across
all metrics, and concurrent work DiffuScene [53] on most of the metrics. In
terms of shape generation, our 3D scene generation version EchoScene shows
clear advantages against CommonScenes [58], for example, improving FID by
15%, FIDCLIP by 12% and KID by 73% in the bedroom generation. Notably,
although retrieval-based methods overall score better due to the mesh align-
ment with the test database, EchoScene remains competitive, showcasing gener-
ative effectiveness. Moreover, our text-to-shape baseline Echolayout+SDFusion
outperforms the equivalent CommonLayout+SDFusion. Despite under the issue
of shape inconsistency, it still achieves similar results as CommonScenes. This
also underscores the effectiveness of our layout branch, driven by layout echoes,
in generating more coherent scene layouts. For shape consistency, we test the
Chamfer Distance (CD) between two generated objects that are supposed to be
identical (i.e. shape consistency [58]). We report common objects in three room
types in Tab. 3, showing that our shape echoes alleviate the isolation problem
in CommonScenes and thus bring better inter-object consistency.
Qualitative results. Graph-to-3D [15] and CommonScenes [58] have the same
settings as EchoScene, which belong to (semi-/full-)generative models condi-
tioned on scene graphs for the whole scene generation. We provide a comparison
of these methods for each different room type in Fig. 4. For example, in the bed-
room, beds and nightstands of Graph-to-3D and CommonScenes are in twisted
poses, indicating VAE-based layout generator does not learn angles well, while
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Graph-to-3D

CommonScenes

EchoScene (Ours)

Input Scene Graph

Bedroom Dining Room Living Room

Fig. 4: Comparisons with other generative methods. Input scene graphs have
more edges between two nodes than the ones visualized here. Red rectangles highlight
the inconsistent generation. (Zoom for details)

our diffusion-based architecture can provide neat results. In the dining room,
Graph-to-3D generates chairs in different styles, which breaks the inter-object
consistency. Although CommonScenes can generate chairs in a suit, the gener-
ated table on the left is problematic, having a chair-like shape, which makes an
unsatisfactory global appearance as well. Ours achieves higher shape consistency.

5.2 Graph Constraints

In this part, we evaluate the layout generation performance with respect to
scene graph constraints. We compare against the closest methods: 3D-SLN [36],
Graph-to-3D [15], InstructScene [32], and CommonScenes [58].

We optionally manipulate scene graphs in the latent by either adding a node
and relevant edges to the graph or changing relations between two nodes, as
illustrated in Fig. 2. As shown in the top and middle row of Tab. 2, for both
node addition and relation change, EchoLayout and EchoScene perform better
on most metrics. 3D-SLN, CommonScenes, and Graph-to-3D, for instance, loose
the constraints smaller/bigger than and close by after graph manipulation,
while ours largely keeps it. We believe that the improvement is caused by our
scene graph diffusion strategy, where a graph-consistent sample is generated
within a realistic appearance distribution.
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Method Shape
Representation Mode left/

right
front/
behind

smaller/
larger

taller/
shorter close by symmetrical

3D-SLN [36]

R
et

ri
ev

al

C
ha

ng
e

0.89 0.90 0.55 0.58 0.10 0.09
Progressive [15] 0.89 0.89 0.52 0.55 0.08 0.09
Graph-to-Box [15] 0.91 0.91 0.86 0.91 0.66 0.53
CommonLayout [58] 0.91 0.92 0.86 0.92 0.70 0.53
EchoLayout (Ours) 0.94 0.93 0.92 0.92 0.72 0.56

Graph-to-3D [15] DeepSDF [41] 0.91 0.92 0.86 0.89 0.69 0.46
CommonScenes [58] rel2shape 0.91 0.92 0.86 0.91 0.69 0.59
EchoScene (Ours) echo2shape 0.94 0.96 0.92 0.93 0.74 0.50

3D-SLN [36]

R
et

ri
ev

al

A
dd

it
io

n

0.92 0.92 0.56 0.58 0.05 0.05
Progressive [15] 0.92 0.91 0.53 0.54 0.02 0.06
Graph-to-Box [15] 0.94 0.93 0.90 0.94 0.67 0.58
CommonLayout [58] 0.95 0.95 0.90 0.94 0.73 0.63
EchoLayout (Ours) 0.98 0.99 0.97 0.96 0.74 0.58

Graph-to-3D [15] DeepSDF [41] 0.94 0.95 0.91 0.93 0.63 0.47
CommonScenes [58] rel2shape 0.95 0.95 0.91 0.95 0.70 0.61
EchoScene (Ours) echo2shape 0.98 0.99 0.96 0.96 0.76 0.49

3D-SLN [36]

R
et

ri
ev

al

N
on

e

0.97 0.99 0.95 0.91 0.72 0.47
Progressive [15] 0.97 0.99 0.95 0.82 0.69 0.46
Graph-to-Box [15] 0.98 0.99 0.96 0.95 0.72 0.45
CommonLayout [58] 0.98 0.99 0.97 0.95 0.74 0.63
InstructScene⇤ [32] 0.99 0.99 0.85 0.86 0.52 0.58
EchoLayout (Ours) 1.00 0.99 0.95 0.96 0.74 0.67

Graph-to-3D [15] DeepSDF [41] 0.98 0.99 0.97 0.95 0.74 0.57
CommonScenes [58] rel2shape 0.98 1.00 0.97 0.95 0.77 0.60
EchoScene (Ours) echo2shape 0.98 0.99 0.96 0.96 0.74 0.55

Table 2: Scene graph constraints (higher is better). Top: Relationship change
mode. Middle: Node addition mode. Bottom: No manipulation (i.e., generation only).

The decrease in symmertical category compared with CommonScenes is
likely caused by the same effect. Inspection of the data reveals that symmertical
is an extremely rare label in the supplementary of CommonScenes [58], with an
occurrence of only 0.9%. Thus, the learned part of the distribution is underrep-
resented and less accurate. The residual echo correction diffuses the latent code
towards the learned distribution, resulting in a slight variation. In the bottom
row, we report the results without manipulation. All baselines show good per-
formance, yet our EchoLayout and EchoScene are still competitive on their own
track. Notably, even though InstructScene shows impressive performance on the
global generation fidelity shown in Tab. 1, it struggles to maintain the multiple
graph constraints simultaneously, as we described in Sec. 1, while our information
echo scheme can sufficiently aggregate relations and condition each process to
achieve better results. Distribution-dependant effects from data equally manifest
in the results where we can see some drop for symmertical again. Interestingly,
the effect is less pronounced for a lower parametric final task such as layout
generation. This can be explained by the fact that the variability of bounding
boxes is smaller compared to shape variations.

5.3 Ablation study

We ablate three parts and report the performance in Tab. 4. Firstly, we ablate
⇡(t) to check the influence on the model without explicit time information. We
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EchoScene EchoScene!SceneTex

“Room in French-country Style”

“Room in Baroque Style”

“Room in Bohemian Style”

“Room in Midcentury Style”

“Room in Modern Style”

“Room in Japanese Style”

Fig. 5: Off-the-shelf texture creation. A bedroom (top) and living room (bottom)
generated by EchoScene and textured in different styles by SceneTex [9].

Method Bedroom Living room Dining room

Ward. N.stand Chair Table Chair Table

CommonScenes [58] 0.61 2.69 6.64 11.75 1.96 9.04
EchoScene 0.14 1.68 0.99 3.02 1.75 1.26

Table 3: Inter-object Consistency. The
consistent object shapes within a scene are
indicated by low CD values (⇥0.001).

Ablation FID FIDCLIP KID mSG

Ours w/o ⇡(t) 40.55 3.14 1.69 0.87
Ours w/o shape echoes 46.88 3.81 4.17 0.88
Ours with concat 48.32 3.82 6.87 0.87
Ours 39.74 3.14 1.24 0.88

Table 4: Ablations under three cir-
cumstances. mSG means average graph
constraints.

observe a marginal decrease, indicating even without ⇡(t), the model still learns
temporal information through every denoising step. Secondly, we exclude the
shape echoes to degrade the shape branch. We clearly see a drop in the fidelity
evaluation, where ‘mSG’ focusing on the layouts is not influenced. Thirdly, we
substitute cross-attention for concatenation to check if the condition way influ-
ences the information echo scheme. We also observe a drop in all metrics.

5.4 Application

The limitation of EchoScene is that it can generate semantic yet only textureless
scenes, which prohibits it from downstream tasks requiring photorealistic tex-
tures. Yet, the limitation can be alleviated by directly equipping EchoScene with
a subsequent off-the-shelf texture generator. Here, we demonstrate that textured
scenes can be generated via SceneTex [9] in Fig. 5.

6 Conclusion

We have introduced EchoScene, a scene-generative method based on dual-branch
diffusion models, which are layout branch and shape branch. To make two
branches functional, we have proposed an information scheme encouraging infor-
mation exchange within both branches at each denoising step, generating final
scenes that are compliant with the scene graph description. Experiments show
that EchoScene can achieve higher generation fidelity and more inter-object con-
sistency of the global scene style.
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