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Abstract. Reliable usage of object detectors require them to be calibrated—
a crucial problem that requires careful attention. Recent approaches to-
wards this involve (1) designing new loss functions to obtain calibrated
detectors by training them from scratch, and (2) post-hoc Temperature
Scaling (TS) that learns to scale the likelihood of a trained detector to
output calibrated predictions. These approaches are then evaluated based
on a combination of Detection Expected Calibration Error (D-ECE) and
Average Precision. In this work, via extensive analysis and insights, we
highlight that these recent evaluation frameworks, evaluation metrics,
and the use of TS have notable drawbacks leading to incorrect conclu-
sions. As a step towards fixing these issues, we propose a principled eval-
uation framework to jointly measure calibration and accuracy of object
detectors. We also tailor efficient and easy-to-use post-hoc calibration
approaches such as Platt Scaling and Isotonic Regression specifically for
object detection task. Contrary to the common notion, our experiments
show that once designed and evaluated properly, post-hoc calibrators,
which are extremely cheap to build and use, are much more powerful and
effective than the recent train-time calibration methods. To illustrate,
D-DETR with our post-hoc Isotonic Regression calibrator outperforms
the recent train-time state-of-the-art calibration method Cal-DETR by
more than 7 D-ECE on the COCO dataset. Additionally, we propose
improved versions of the recently proposed Localization-aware ECE and
show the efficacy of our method on these metrics. Code is available at:
https://github.com/fiveai/detection_calibration.
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1 Introduction

Object detectors have been widely-used in a variety of safety-critical applica-
tions related to, but not limited to, autonomous driving [6, 9, 13, 14, 61, 65] and
medical imaging [22, 28, 29, 64]. In addition to being accurate, their confidence
estimates should also allow characterization of their error behaviour to make
them reliable. This feature, known as calibration, can enable a model to pro-
vide valuable information to subsequent systems playing crucial role in making
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Fig. 1: The performance of different detectors over operating confidence thresholds on
COCO minitest. Orange: Faster R-CNN, Green: RS R-CNN, Purple: ATSS, Red:
PAA, Blue: D-DETR. All measures are lower better except AP. It is not trivial to
identify an operating threshold and compare detectors, especially when the common
evaluation [30, 41–43, 52], combining D-ECE for calibration and AP for accuracy, is
used. Instead, we use LaECE0 and Localisation-Recall-Precision Error (LRP).

safety-critical decisions [4, 24, 26, 37, 39]. Despite its importance, calibration of
detectors is a relatively underexplored area in the literature and requires sig-
nificant attention. Therefore, in this work, we focus on different aspects of the
evaluation framework that is now being adopted by most recent works building
calibrated detectors and discuss their pitfalls and propose fixes. Additionally, we
tailor the well-known post-hoc calibration methods to improve the calibration
of a given object detector (trained) with minimal effort.

Naturally, practitioners prefer detectors that perform well in terms of both
accuracy and calibration, which we will refer to as joint performance. However,
unlike classification, choosing the best performing model is non-trivial for object
detection. This is because different detectors commonly yield detection sets with
varying cardinalities for the same image, and this difference in population size
is shown to affect the joint performance evaluation [48]. Furthermore, when
object detectors are used in practice, an operating threshold is normally chosen
[4, 24, 26, 31, 36, 37, 39], and the choice of this threshold directly influences a
detector’s performance. Thus, comparing the performance of a detector in terms
of calibration or accuracy over different operating thresholds as well as with
different detectors is not straightforward, as illustrated in Fig. 1.

We assert that a framework for joint evaluation should follow certain basic
principles. Firstly, the detectors should be evaluated on a thresholded set of
detections to align with their practical usage. While doing so, the evaluation
framework will require a principled model-dependent threshold selection mecha-
nism, as the confidence distribution of each detector can differ significantly [47].
Secondly, the calibration should enforce the confidence scores to provide unam-
biguous and fine-grained information about the detection quality. For example,
if the confidence score represents the localisation quality of a detection, this
provides more fine-grained information than representing whether the object is
detected or not. Thirdly, the datasets should be properly-designed for evaluation.
That is, the training, validation (val.) and in-distribution (ID) test splits should
be sampled from the same underlying distribution, and additionally, the domain-
shifted test splits — which are crucial for safety-critical applications — should
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Table 1: Principles of joint performance evaluation of object detectors in terms of
accuracy and calibration, and whether existing evaluation approaches violate them.

Principles of Joint Evaluation D-ECE-style [30,41–43,52] LaECE-style [48] CE-style [55] Ours
Model-dependent threshold selection ✗ ✓ ✗ ✓

Unambiguous & fine-grained confidence scores ✗ ✗ ✗ ✓

Properly-designed datasets ✗ ✗ ✗ ✓

Properly-trained detectors & calibrators ✗ ✓ ✗ ✓

be included. Finally, baseline detectors and calibration methods must be trained
properly, as otherwise the evaluation might provide misleading conclusions.

There are three approaches for jointly evaluating accuracy and calibration:
◦ D-ECE-style [30,41–43,52] thresholds the detections commonly from a con-

fidence of 0.30 to compute Detection Expected Calibration Error (D-ECE)
and use top-100 detections from each image for Average Precision (AP),

◦ LaECE-style [48] enforces the detectors to be thresholded properly, and com-
bine Localisation-aware Expected Calibration Error (LaECE) with LRP [47],

◦ CE-style [55] thresholds the detections from a confidence score of 0.50 to
obtain Calibration Error (CE) and AP.

As summarized in Tab. 1, these evaluations do not adhere to the basic principles
mentioned above. To exemplify, D-ECE-style evaluation — the most common
evaluation approach [30, 41–43, 52] — uses different operating thresholds for
calibration and accuracy, which does not align well with the practical usage
of detectors. Also, using a fixed threshold (i.e., 0.30) for all detectors artificially
promotes certain detectors. To illustrate, while D-ECE-style evaluation ranks
the green detector as the worst in Fig. 1(a), the green one yields the best D-
ECE at 0.70. Besides, as shown in Fig. 1(b), AP is maximized at the confidence
of 0 (leading to too many detections with low confidences) for all the detectors,
and thus AP cannot be used to obtain a proper operating threshold [47, 48].
In terms of conveying fine-grained information, D-ECE aims to align confidence
with the precision only, which effectively ignores the localisation quality of the
detections, a crucial performance aspect of object detection. Finally, this type of
evaluation also has limitations in terms of dataset splits and the chosen baselines
as we explore in Sec. 3.

Having proper baseline calibration methods is also essential to monitor the
progress in the field. Recently proposed train-time calibration methods com-
monly employ an auxiliary loss term to regularize the confidence scores during
training [30,41–43,52]. Such methods are shown to be effective against the Tem-
perature Scaling (TS) [15], which is used as the only post-hoc calibration base-
line. Post-hoc calibrators are obtained on a held-out val. set, and hence can easily
be applied to any off-the-shelf detector. Despite their potential advantages, un-
like for classification [15,20,23,38,56,62,69], post-hoc calibration methods have
not been explored for object detection sufficiently [30,48].

In this paper, we introduce a joint evaluation framework which respects the
aforementioned principles (Tab. 1), and thus address the critical drawbacks of
existing evaluation approaches. That is, we first define LaECE0 and LaACE0,



4 Kuzucu et al.

as novel calibration errors, each of which aims to align the detection confidence
scores with their localisation qualities. Thus, the detectors respecting LaECE0

and LaACE0 provide informative confidence estimates about their behaviours.
We measure accuracy using LRP [45,47], which requires a proper combination of
false-positive (FP), false-negative (FN) and localisation errors. Thereby requir-
ing the detectors to be properly-thresholded as shown by the bell-like curves in
Fig. 1(d). Also, we design three datasets with different characteristics, and in-
troduce Platt Scaling (PS) as well as Isotonic Regression (IR) as highly effective
post-hoc calibrators tailored to object detection. Our main contributions are:
◦ We identify various quirks and assumptions in state-of-the-art (SOTA) meth-

ods in quantifying miscalibration of object detectors and show that they, if
not treated properly, can provide misleading conclusions.

◦ We introduce a framework for joint evaluation consisting of properly-designed
datasets, evaluation measures tailored to practical usage of object detectors
and baseline post-hoc calibration methods. We show that our framework
addresses the drawbacks of existing approaches.

◦ In contrast to the literature, we show that, if designed properly, post-hoc
calibrators can significantly outperform the SOTA training time calibration
methods. To illustrate, on the common COCO benchmark, D-DETR with
our IR calibrator outperforms the SOTA Cal-DETR [43] significantly: (i) by
more than 7 points in terms of D-ECE and (ii) ∼ 4 points in terms of our
challenging LaECE0.

2 Background and Notation

Object Detectors and Evaluating their Accuracy Denoting the set of M
objects in an image X by {bi, ci}M where bi ∈ R4 is a bounding box and ci ∈
{1, . . . ,K} is its class; an object detector produces the bounding box b̂i, the class
label ĉi and the confidence score p̂i for the objects in X, i.e., f(X) = {ĉi, b̂i, p̂i}N
withN being the number of predictions. During evaluation, each detection is first
labelled as a true-positive (TP) or a FP using a matching function ψ(·) relying
on an Intersection-over-Union (IoU) threshold τ to validate TPs. We assume
ψ(i) returns the index of the object that a TP i matches to; else i is a FP and
ψ(i) = −1. Then, AP [11, 16, 33], the common accuracy measure, corresponds
to the area under the Precision Recall (PR) curve. Though widely-used, AP has
been criticized recently from different aspects [5,45,47,50,58]. To illustrate, AP
is maximized when the number of detections increases [48] as shown in Fig. 1(b).
Therefore, AP does not help choosing an operating threshold, which is critical
for practical deployment. As an alternative, LRP [45,47] combines the numbers
of TP, FP, FN with the localisation error of the detections, which are denoted
by NTP, NFP, NFN and Eloc(i) ∈ [0, 1] respectively:

LRP =
1

NFP +NFN +NTP

NFP +NFN +
∑
ψ(i)>0

Eloc(i)

 . (1)
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Unlike AP, LRP requires the detection set to be thresholded properly as both
FPs and FNs are penalized in Eq. (1).

Evaluating the Calibration of Object Detectors The alignment of ac-
curacy and confidence of a model, termed calibration, is extensively studied for
classification [8, 15, 27, 40, 44, 63]. That is, a classifier is calibrated if its accu-
racy is p for the predictions with confidence of p for all p ∈ [0, 1]. For object
detection, [30] extends this definition to enforce that the confidence matches the
precision of the detector, P(ĉi = ci|p̂i) = p̂i,∀p̂i ∈ [0, 1], where P(ĉi = ci|p̂i) is
the precision. Then, discretizing the confidence space into J bins, D-ECE is

D-ECE =

J∑
j=1

|D̂j |
|D̂|

|p̄j − precision(j)| , (2)

where D̂ and D̂j are the set of all detections and the detections in the j-th
bin, and p̄j and precision(j) are the average confidence and the precision of
the detections in the j-th bin. Alternatively, considering that object detection
is a joint task of classification and localisation, LaECE [48] aims to match the
confidence with the product of precision and average IoU of TPs. Also, to prevent
certain classes from dominating the error, LaECE is introduced as a class-wise
measure. Using superscript c to refer to each class and ¯IoU

c
(j) as the average

IoU of D̂c
j , LaECE is defined as:

LaECE =
1

K

K∑
c=1

J∑
j=1

|D̂c
j |

|D̂c|
∣∣p̄cj − precisionc(j)× ¯IoU

c
(j)

∣∣ . (3)

Calibration Methods in Object Detection The existing methods for
calibrating object detectors can be split into two groups: (1) Training-time cal-
ibration approaches [41–43,52,55] regularize the model to yield calibrated confi-
dence scores during training, which is generally achieved by an additive auxiliary
loss. (2) Post-hoc calibration methods use a held-out val. set to fit a calibration
function that maps the predicted confidence to the calibrated confidence. Specif-
ically, TS [15] is the only method considered as a baseline for recent training time
methods [41, 42, 52, 55]. As an alternative, IR [1–3, 66] is used within a limited
scope for a specific task called Self-aware Object Detection [48]. Furthermore, its
effectiveness neither on a wide range of detectors nor against existing training-
time calibration approaches has yet been investigated.

3 Analysis of the Common D-ECE-style Evaluation

D-ECE-style evaluation is the most common evaluation approach adopted by
several methods [30,41–43,52]. For that reason, here we provide a comprehensive
analysis of this evaluation approach and analyse the LaECE-style and CE-style
evaluations in App. B. Our analyses below are based on the principles outlined
in Sec. 1 and Tab. 1, and show that all approaches have notable drawbacks.
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Fig. 2: Comparison of calibration
methods in terms of D-ECE on
COCO mini-test using D-DETR
[71]. Post-hoc TS and IR calibra-
tors are obtained on a subset of
Objects365 [60] as in D-ECE-style
evaluation.

1. Model-dependent threshold selec-
tion. As AP is obtained using the top-100
detections and D-ECE is computed on de-
tections thresholded above 0.30, D-ECE-style
evaluation uses two different detection sets.
This inconsistency is not reflective of how
detectors are used in practice. Also, we ob-
serve that a fixed threshold of 0.30 for eval-
uating the calibration induces a bias for cer-
tain detectors. To illustrate, we compare the
performance of different calibration methods
over different thresholds in Fig. 2, where Cal-
DETR [43] performs the best only for the
threshold 0.30 and the post-hoc TS signifi-
cantly outperforms it on all other thresholds.
Therefore, this method of evaluation is sen-
sitive to the choice of threshold, leading to
ambiguity on the best performing method.

2. Fine-grained confidence scores. Manipulating Eq. (2), we show in
App. B that D-ECE for the j-th bin can be expressed as,∣∣∣∣∣ ∑

b̂i∈D̂j ,ψ(i)>0

(
p̂i − 1

)
+

∑
b̂i∈D̂j ,ψ(i)=−1

p̂i

∣∣∣∣∣. (4)

Eq. (4) implies that D-ECE is minimized when the confidence scores p̂i of TPs
are 1 and those of FPs are 0, which is also how the prediction-target pairs are
usually constructed to train post-hoc TS [30, 41–43, 52]. Even if the detector is
perfectly calibrated for these binary targets, the confidence scores do not provide
information about localisation quality as illustrated by binary-valued p̂D-ECE for
both detections in Fig. 3(b). Also, Popordanoska et al. [55] utilise D-ECE in a
COCO-style manner, that is they average D-ECE over different TP validation
IoU thresholds similar to COCO-style AP [33]. However, we observe that this
way of using D-ECE can promote ambiguous confidence scores. As an example,
given two IoU thresholds τ1 and τ2, a detection b̂i with τ1 ≤ IoU(b̂i, bψ(i)) < τ2

is a TP for τ1 but a FP for τ2. Thus, given Eq. (4), it follows that b̂i has
contradictory confidence targets for τ1 and τ2. This is illustrated in Fig. 3(d) in
which D-ECEC (red line) remains constant regardless of the confidence. Thus,
using D-ECE (or another calibration measure) in this way should be avoided.

3. Properly-designed datasets. In the literature, the val. set to obtain the
post-hoc calibrator is typically taken from a different dataset than the ID dataset
[41–43, 52]. Specifically, the post-hoc calibrators are obtained on a subset from
from Objects365 [60] and BDD100K [65] for the models trained with COCO [33]
and Cityscapes [9] respectively. Hence, as expected, a different dataset inevitably
induces domain shift, affecting the performance of the post-hoc calibrator [51].
To show that, following existing approaches, we obtain an IR calibrator [48] on
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(e) FP for τ = 0.5, TP for τ = 0
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Fig. 3: A pictorial comparison of the different calibration errors. (a) Uncalibrated
detections of D-DETR on an image from [65]. The detections on the left and right
have IoUs of 0.74 and 0.48 with the objects. (b) Calibrated detections in terms of
D-ECE and LaECE using τ = 0.50, and D-ECEC, COCO-style D-ECE as in [55].
D− ECEC =? as calibration error does not have a global minimum as shown in (d).
(c) Calibrated detections in terms of LaECE0 and LaACE0 in which confidence matches
IoU. (d-f) Calibration errors for different types of detections, for which LaACE0 behave
the same as LaECE0, hence excluded for clarity. App. B presents the details.

Objects365 and compare it with the one obtained on the ID val. set in terms
of D-ECE-style evaluation. Tab. 2 shows that the latter IR now outperforms (i)
the former one by ∼ 11 D-ECE and (ii) SOTA Cal-DETR [43] by 7.4 D-ECE,
showing the importance of dataset design for proper evaluation.

4. Properly-trained detectors and calibrators. Though Cityscapes is
commonly used in the literature [41–43, 52], the models trained on this dataset
follow COCO-style training. Specifically, D-DETR [71] was trained on Cityscapes
for only 50 epochs though the training set of Cityscapes is ∼ 40× smaller than
that of COCO (3K vs. ∼ 118K). We now tailor the training of D-DETR for
Cityscapes by (i) 4× longer training considering the smaller training set and (ii)
increasing the training image scale considering the original resolution following
[7, 9]. We kept all other hyperparameters as they are for both Cal-DETR and
D-DETR, and App. B presents the details. Tab. 3 shows that, once trained in
this setting, D-DETR is more accurate and calibrated than Cal-DETR.

4 A Framework for Joint Evaluation of Object Detectors

We now present our evaluation approach that respects to the principles in Sec. 1.
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Table 2: Effect of using domain-shifted
val. set on IR calibrator. Results are re-
ported on COCO-minitest. Val. set is N/A
for uncalibrated D-DETR and training
time calibration method Cal-DETR.

Method Val set D-ECE AP ↑
D-DETR N/A 12.8 44.1

Cal-DETR N/A 8.7 44.4

IR Objects365 14.2 44.1

IR COCO 1.3 (+7.4) 44.1

Table 3: COCO training settings are
commonly adopted while training D-
DETR on Cityscapes. When trained with
larger images and longer, DETR performs
slightly better than Cal-DETR.

Method Training Style D-ECE AP↑
D-DETR [43] COCO 13.8 26.8

Cal-DETR [43] COCO 8.4 28.4

Cal-DETR Cityscapes 4.0 34.9

D-DETR Cityscapes 2.9 36.1

4.1 Towards Fine-grained Calibrated Detection Confidence Scores

Calibration refers to the alignment of accuracy and confidence of a model. There-
fore, for an object detector to be calibrated, its confidence should respect both
classification and localisation accuracy. We discussed in Sec. 3 that D-ECE,
as the common calibration measure, only considers the precision of a detector,
thereby ignoring its localisation performance (Eq. (2)). LaECE [48], defined in
Eq. (3) as an alternative to D-ECE, enforces the confidence scores to represent
the product of precision and average IoU of TPs. Thus, LaECE considers IoUs of
only TPs, and effectively ignores the localisation qualities of detections if their
IoU is less than the TP validation threshold τ > 0. We assert that this selection
mechanism based on IoU unnecessarily limits the information conveyed by the
confidence score. We illustrate this on the right car in Fig. 3(b) for which LaECE
requires a target confidence of 0 (p̂LaECE = 0) as its IoU is less than τ = 0.50.
However, instead of conveying a 0 confidence and implying no detection, repre-
senting its IoU by p̂i provides additional information. Hence, we propose using
τ = 0, in which case the calibration criterion of LaECE reduces to,

Eb̂i∈Bi(p̂i)
[IoU(b̂i, bψ(i))] = p̂i,∀p̂i ∈ [0, 1], (5)

where we define IoU(b̂i, bψ(i)) = 0 for FPs when τ = 0, Bi(p̂i) is the set of boxes
with the confidence of p̂i and bψ(i) is the ground-truth box that b̂i matches with.
To derive the calibration error for Eq. (5), we follow LaECE by using J = 25
equally-spaced bins and averaging over class-wise errors and define,

LaECE0 =
1

K

K∑
c=1

J∑
j=1

|D̂c
j |

|D̂c|
∣∣p̄cj − ¯IoU

c
(j)

∣∣ , (6)

where D̂c and D̂c
j denote the set of all detections and those in jth bin respec-

tively, p̄cj is the average confidence score and ¯IoU
c
(j) is the average IoU of de-

tections in the j-th bin for class c, and the subscript 0 refers to the chosen τ
which is 0. Furthermore, similar to the classification literature [40,44], we define
Localisation-aware Adaptive Calibration Error (LaACE) using an adaptive bin-
ning approach in which the number of detections in each bin is equal. In order
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Table 4: Datasets for evaluating object detection and instance segmentation methods.

Type Train set Val set ID test set Domain-shifted test set
Common Objects COCO train COCO minival COCO minitest COCO minitest-C, Obj45K

Autonomous Driving CS train CS minival CS minitest CS minitest-C, Foggy-CS
Long-tailed Objects LVIS train LVIS minival LVIS minitest LVIS minitest-C

to capture the model behaviour precisely, we adopt the extreme case in which
each bin has only one detection, resulting in an easy-to-interpret measure which
corresponds to the mean absolute error between the confidence and the IoU,

LaACE0 =
1

K

K∑
c=1

|D̂c|∑
i=1

1

|D̂c|

∣∣∣p̂i − IoU(b̂i, bψ(i))
∣∣∣ . (7)

As we show in App. C, LaECE0 and LaACE0 are both minimized when p̂i =
IoU(b̂i, bψ(i)) for all detections, which is also a necessary condition for LaACE0.
Hence, as illustrated on the right car in Fig. 3(c) and (e), LaECE0 and LaACE0

requires conveying more fine-grained information compared to other measures.

4.2 Model-dependent Thresholding for Proper Joint Evaluation

In practice, object detectors employ an operating threshold to preferably output
only TPs with high recall. However, AP as the common performance measure
does not enable cross-validating such a threshold as it is maximized when the
recall is maximized despite a drop in precision [47, 48]. This can be observed in
Fig. 1(b) where AP consistently decreases as the confidence threshold increases.
Alternatively, LRP (Eq. 1) prefers detectors with high precision, recall and low
localisation error as illustrated by the bell-like curves in Fig. 1(d). This is be-
cause, unlike AP, LRP severely penalises detectors with low recall or precision,
making it a perfect fit for our framework. As a result, we consider LaECE0 and
LaACE0 with LRP and require each model to be thresholded properly.

4.3 Properly-designed Datasets

We curate three datasets summarized in Tab. 4: (i) COCO [33] including common
daily objects; (ii) Cityscapes [9] with autonomous driving scenes; and (iii) LVIS
[16], a challenging dataset focusing on the calibration of long-tailed detection.
For each dataset, we ensure that train, val. and ID test sets are sampled from
the same distribution, and include domain-shifted test sets. As these datasets do
not have public labels for test sets, we randomly split their val. sets into two as
minival and minitest similar to [17,48,49]. In such a way, we provide ID val. sets
to enable obtaining post-hoc calibrators and the operating thresholds properly.
For domain-shifted test sets, we apply common corruptions [21] to the ID test
sets, and include Obj45K [48, 60] and Foggy Cityscapes [59] as more realistic
shifts. Our datasets also have mask annotations and hence they can be used to
evaluate instance segmentation methods. App. C includes further details.
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4.4 Baseline Post-hoc Calibrators Tailored to Object Detection

It is essential to develop post-hoc calibration methods tailored to object detec-
tion, which has certain differences from the classification task. Existing meth-
ods [41–43,52,55] use only TS as a baseline without considering the peculiarities
of detection. Specifically, a single temperature parameter T is learned to ad-
just the predictive distribution while the confidence p̂i is commonly assumed to
be a Bernoulli random variable [30]. However, PS, fitting both a scale and a
shift parameter, is the widely-accepted calibration approach when the underly-
ing distribution is Bernoulli [15,54]. Also, how to construct a useful subset of the
detections to train the post-hoc calibrators has not been explored. To address
these shortcomings, we present (i) Platt Scaling in which the bias term makes a
notable difference in the performance, and (ii) Isotonic Regression by modeling
the calibration as a regression problem. Before introducing them, we now present
an overview on how we determine the set of detections to train the calibrators.

Overview We obtain post-hoc calibrators on a held out val. set using the
detections that are similar to those seen at inference to prevent low-scoring
detections from dominating the training of the calibrator. To do so, we cross-
validate a calibration threshold ūc for each class c and train a class-specific
calibrator ζc : [0, 1] → [0, 1] using the detections with higher scores than ūc.
Still, as ζc(·) changes the confidence scores, we need another threshold v̄c, as
the operating threshold, to remove the redundant detections after calibration.
Following the accuracy measure, we cross-validate ūc and v̄c using LRP. As for
inference time, for the i-th detection (p̂i, b̂i, ĉi), if p̂i ≥ ūĉi , it survives to the
calibrator and then p̂cali = ζ ĉi(p̂i). Finally, if p̂cali ≥ v̄ĉi , the i-th detection is
an output of the detector. Alg. A.1 and A.2 provide the details. For ζc(·), we
prefer monotonically increasing functions in order not to affect the ranking of
the detections significantly and to keep their accuracy as we detail below.

Distribution Calibration via Platt Scaling Assuming that p̂i is sampled
from Bernoulli distribution B(·), we aim to minimize the Negative Log-Likelihood
(NLL) of the predictions on the target distribution B(IoU(b̂i, bψ(i))) using PS
[54]. Accordingly, we recover the logits, and then shift and scale the logits to
obtain the calibrated probabilities p̂cali ,

p̂cali = σ(aσ−1(p̂i) + b), (8)

where σ(·) is the sigmoid and σ−1(·) is its inverse, as well as a ≥ 0 and b are the
learnable parameters. We derive the NLL for the ith detection in App. C as

−(IoU(b̂i, bψ(i)) log(p̂
cal
i ) + (1− IoU(b̂i, bψ(i))) log(1− p̂cali )). (9)

Please note that Eq. (9), which is in fact the cross-entropy loss, is minimized
if p̂cali = IoU(b̂i, bψ(i)) when LaECE0 and LaACE0 are minimized. We optimize
Eq. (9) via the second-order optimization strategy L-BFGS [35] following [30].

Confidence Calibration via Isotonic Regression As an alternative per-
spective, p̂i can also be directly calibrated by modelling the calibration as a re-
gression task. To do so, we construct the prediction-target pairs ({p̂i, IoU(b̂i, bψ(i))})
on the held-out val. set and then fit an IR model using scikit-learn [53].
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Table 5: Comparison with SOTA methods in terms of other evaluation measures on
COCO [33]. LRP is reported on LRP-optimal thresholds obtained on val. set. AP is
reported on top-100 detections. τ is taken as 0.50. All measures are lower-better, except
AP. Bold: the best, underlined: second best. PS: Platt Scaling, IR: Isotonic Regression.

Cal. Calibration (thr. 0.30) Calibration (LRP thr.) Accuracy
Type Method D-ECE LaECE D-ECE LaECE LRP AP ↑

Uncal. D-DETR [71] 12.8 13.2 15.0 12.1 66.3 44.1

Training

MbLS [34] 15.6 16.3 18.7 15.8 65.9 44.3
MDCA [19] 12.2 13.5 14.3 12.6 66.4 43.8
TCD [42] 12.4 13.1 14.4 12.3 66.6 44.0

Time BPC [41] 9.8 13.1 11.4 12.3 66.8 43.6
Cal-DETR [43] 8.7 12.9 9.7 11.8 66.0 44.4

PS for D-ECE 0.9(+7.8) 16.3 2.4(+7.3) 15.8 66.3 44.1
Post-hoc PS for LaECE 11.0 11.5(+1.4) 9.4 10.1(+1.7) 66.3 44.1
(Ours) IR for D-ECE 1.3(+7.4) 15.7 2.6(+7.1) 15.3 66.2 44.1

IR for LaECE 10.2 8.9(+4.0) 9.3 8.2(+3.6) 66.3 43.7

Adapting Our Approach to Different Calibration Objectives Until
now, we considered post-hoc calibrators for LaECE0 and LaACE0 though in
practice different measures can be preferred. Our post-hoc calibrators can easily
be adapted for such cases by considering the dataset design and optimisation
criterion. To illustrate, for D-ECE-style evaluation, the calibration dataset is to
be class-agnostic where the detections are thresholded from 0.30 with prediction-
target pairs for IR as ({p̂i, 0}) and ({p̂i, 1}) for FPs and TPs respectively.

5 Experimental Evaluation

We now show that our post-hoc calibration approaches consistently outperform
training time calibration methods by significant margins (Sec. 5.1) and that they
generalize to any detector and can thus be used as a strong baseline (Sec. 5.2).

5.1 Comparing Our Baselines with SOTA Calibration Methods

Here, we compare PS and IR with recent training-time calibration methods con-
sidering various evaluation approaches. As these training-time methods mostly
rely on D-DETR, we also use D-DETR with ResNet-50 [18]. We obtain the detec-
tors of training time approaches trained with COCO dataset from their official
repositories, whereas we incorporate Cityscapes into their official repositories
and train them using the recommended setting in Tab. 3.

Comparison on Other Evaluation Approaches Before moving on to our
evaluation approach, we first show that our PS and IR outperform all existing
training time methods on existing evaluation approaches. For that, we consider
D-ECE and the LaECE from τ = 0.5 by including two different evaluation
settings for each: (i) the detection set is obtained from the fixed threshold of
0.30 following the convention [30, 41–43], and (ii) the operating thresholds are
cross-validated using LRP. Following their standard usage, we use 10 and 25
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Table 6: Comparison with SOTA calibration methods on Common Objects using our
proposed evaluation. Our gains (green/red) are reported for IR compared to the best
existing approach. Bold: the best, underlined: second best in terms of calibration.

COCO minitest COCO-C Obj45K
Calibration (ID) (Domain Shift) (Domain Shift)

Type Method LaECE0 LaACE0 LRP LaECE0 LaACE0 LRP LaECE0 LaACE0 LRP

Uncalibrated D-DETR [71] 12.7 27.1 57.3 14.6 28.7 71.5 16.4 35.8 72.0

Training-time

MbLS [34] 16.5 30.3 56.8 16.8 31.1 71.8 17.3 37.1 71.6
MDCA [19] 13.1 27.2 57.5 14.5 28.7 71.8 16.6 35.6 72.2
TCD [42] 13.0 26.7 57.6 14.6 28.3 71.9 16.3 35.5 71.7
BPC [41] 12.4 25.5 57.7 14.1 27.1 72.1 17.3 34.5 72.0

Cal-DETR [43] 11.6 24.6 56.2 13.8 26.4 70.6 18.8 35.3 71.1

Post-hoc Platt Scaling 9.6 23.5 57.3 12.8 25.6 71.5 17.0 33.7 72.0
(Ours) Isotonic Regression 7.7 23.1 57.2 10.7 25.3 71.5 17.2 33.3 72.0

(+3.9) (+1.5) (+3.1) (+1.1) (-0.9) (+1.2)

Table 7: Comparison with SOTA on Autonomous Driving using our proposed evalua-
tion. Our gains (green/red) are reported for IR compared to the best existing approach.
Bold: the best, underlined: second best in terms of calibration.

Cityscapes minitest Cityscapes-C Foggy Cityscapes
Calibration (ID) (Domain Shift) (Domain Shift)

Type Method LaECE0 LaACE0 LRP LaECE0 LaACE0 LRP LaECE0 LaACE0 LRP

Uncalibrated D-DETR [71] 20.3 26.0 57.2 21.4 25.6 80.2 18.5 22.3 69.4

Training-time
TCD [42] 16.8 31.7 59.2 23.2 32.4 81.6 24.4 33.8 71.6
BPC [41] 23.8 31.8 64.9 28.1 33.3 83.7 24.7 30.9 73.8

Cal-DETR [43] 21.3 25.3 56.9 23.0 26.4 80.8 20.0 23.2 71.0

Post-hoc Platt Scaling 9.6 23.3 57.2 17.7 26.2 80.2 11.3 21.6 69.4
(Ours) Isotonic Regression 9.0 23.7 56.8 16.4 25.8 80.5 10.0 21.2 69.5

(+7.8) (+1.6) (+5.0) (-0.2) (+8.5) (+1.1)

bins to compute D-ECE and LaECE respectively. We optimize PS and IR by
considering the calibration objective as described in Sec. 4.4. Tab. 5 shows that
PS and IR outperform SOTA Cal-DETR significantly by more than 7 D-ECE
and up to 4 LaECE on COCO minitest. Please note that all previous approaches
are optimized for D-ECE thresholded from 0.30, in terms of which our PS yields
only 0.9 D-ECE improving the SOTA by 7.8. Tab. 5 also suggests that post-hoc
calibrators perform the best when the calibration objective is aligned with the
measure. App. D shows that our observations generalize to Cityscapes.

Common Objects Setting We now evaluate detectors using our evaluation
approach. Tab. 6 shows that IR and PS share the top-2 entries on almost all test
subsets by preserving the accuracy (LRP) of D-DETR. Specifically, our gains on
ID set and COCO-C are significant, where IR outperforms Cal-DETR by around
3 − 4 LaECE0 and 1.0 − 1.5 LaACE0. As for Obj45K, the challenging test set
with natural shift, IR and PS improve LaACE0 but perform slightly worse in
terms of LaECE0. This is an expected drawback of post-hoc approaches when
the domain shift is large as they are trained only with ID val. set [51].
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Table 8: Comparison with TS using D-DETR. Bold: the best, underlined: second
best. ✗ : domain-shifted val. set is used to obtain thresholds and calibrators, decreasing
the accuracy (red font). Bias term only exists for PS (b in Eq. (8)), thus N/A for IR.

Ablations on Dataset Ablations on Model COCO minitest Cityscapes minitest
Method ID Val. Set Threshold Class-wise Bias Term LaECE0 LaACE0 LRP LaECE0 LaACE0 LRP

Temperature Scaling ✗ 12.3 20.8 61.5 21.0 25.9 60.3
(Current Baseline) ✓ 12.5 23.1 57.3 20.9 26.3 57.2

Ablations on ✓ ✓ 11.3 24.8 57.3 13.3 25.5 57.2
Temperature ✓ ✓ 12.4 22.9 57.3 23.1 27.5 57.2

Scaling ✓ ✓ ✓ 10.6 24.2 57.3 12.7 24.6 57.2

Platt Scaling (Ours) ✓ ✓ ✓ ✓ 9.6 23.5 57.3 9.6 23.3 57.2
Isotonic Regression (Ours) ✓ ✓ ✓ N/A 7.7 23.1 57.2 9.0 23.7 56.8

Table 9: Calibrating and evaluating different object detectors. We use Common Ob-
jects setting and report the results on COCO minitest. ∗ denotes the detectors in Fig. 1.
Bold: the best, underlined: second best for calibration.

Uncalibrated Platt Scaling Isotonic Regression
Type Detector Backbone LaECE0 LaACE0 LRP LaECE0 LaACE0 LRP LaECE0 LaACE0 LRP AP ↑

One-Stage

PAA [25]∗ R50 15.9 28.1 59.7 9.7 24.3 59.7 7.7 23.8 59.7 43.2
ATSS [70]∗ R50 19.1 34.0 59.5 10.3 24.7 59.5 8.5 24.1 59.5 43.1
GFL [32] R50 13.7 28.5 59.3 10.3 24.5 59.3 8.3 24.0 59.3 43.0

VFNet [68] R50 13.9 25.8 57.7 10.7 25.1 57.7 8.3 24.6 57.7 44.8

Two-Stage Faster R-CNN [57]∗ R50 27.0 29.9 60.4 10.4 23.8 60.4 8.6 23.5 60.4 40.1
RS R-CNN [46]∗ R50 19.7 28.9 58.7 10.2 23.5 58.7 8.1 23.0 58.8 42.4

DETR-like

D-DETR [71]∗ R50 12.7 27.1 57.3 9.6 23.5 57.3 7.7 23.1 57.2 44.1
UP-DETR [10] R50 34.4 35.2 55.8 10.0 22.6 55.8 8.2 22.2 55.9 42.9

DINO [67] R50 13.6 26.9 53.6 10.6 23.5 53.6 8.9 22.8 53.6 50.4

OVOD GLIP [31] Swin-T 13.0 25.3 49.0 9.2 22.4 49.0 7.7 21.8 49.0 55.7
G. DINO [36] Swin-T 13.8 27.5 46.9 8.9 21.9 46.9 7.7 21.3 47.0 58.3

SOTA
Co-DETR [72] Swin-L 10.8 23.0 41.5 8.6 20.2 41.5 6.7 19.3 41.6 64.5

EVA [12] ViT(EVA) 17.4 21.2 41.2 8.6 20.3 41.2 7.1 19.9 41.2 64.5
MoCaE [49] N/A 10.6 21.4 40.7 8.9 20.4 40.7 7.3 19.9 40.7 65.0

Autonomous Driving Setting Tab. 7 shows that our approaches consis-
tently outperform all training time calibration approaches on this setting as well.
Specifically, our gains are very significant ranging between 5.0-8.5 LaECE0 com-
pared to the SOTA Cal-DETR, further presenting the efficacy of our approaches.

Comparison with Existing Temperature Scaling Baseline and Ab-
lations Tab. 8 compares TS for different design choices as well as with our PS
and IR. Please note that ✗ corresponds to the baseline setting used in the re-
cent approaches [41–43, 52] that employ Objects365 [60] and BDD100K [60] as
domain-shifted val. sets for obtaining the calibrator. Due to this domain shift,
the accuracy of TS degrades by up to 4 LRP, in red font, as the operating
thresholds obtained on these val. sets do not generalize to the ID set; showing
that it is crucial to use an ID val set. In ablations, thresholding the detections
and class-wise calibrators generally improves the performance of TS and a more
notable gain is observed once the bias term is used in PS. Our PS outperforms
TS baseline obtained on ID val. set by ∼ 3 LaECE0 on COCO and 11.4 LaECE0

on Cityscapes. Finally, IR performs on par or better compared to PS.
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5.2 Calibrating and Evaluating Different Detection Methods
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Fig. 4: The reliability diagrams of UP-DETR.

Another benefit of our post-hoc
calibrators is that they general-
ize to any object detector, thus
they can be reliably used as base-
lines. To show that, we calibrate 14
different detectors with a diverse
set of architectures using PS and
IR in Tab. 9. The results suggest
that both IR and PS perform bet-
ter than uncalibrated detectors. IR
consistently outperforms PS as it
fits multiple piece-wise linear func-
tions while PS learns only two pa-
rameters (Eq. (8)). Specifically, IR
decreases the range of LaECE0 from 10.6−34.4 to 6.7−8.9 on COCO minitest by
preserving the accuracy, making it a solid baseline. For further insights, Fig. 4
provides the reliability diagrams of the overconfident UP-DETR, of which IR
significantly improves its calibration. As for SOTA, MoCaE performs the best
in terms of accuracy with 40.7 LRP while Co-DETR has the best calibration
with 6.7 LaECE0 and 19.3 LaACE0, which the future work should aim to sur-
pass. App. D.3 includes our results on our Long-tailed Objects setting (including
object detection and instance segmentation), showing the effectiveness of our
post-hoc calibrators on this challenging setting as well.

The performance measures we use in our evaluation framework are also easily
interpretable. For accuracy, LRP is a weighted combination of its FP, FN and
localisation error components (App. A), which, as an example, are 10.1, 22.7
and 18.8 respectively for Co-DETR [72] calibrated with IR. Also considering
LaACE0 = 19.3, one can easily infer that: once deployed with the operating
thresholds determined by our framework, Co-DETR finds 77.3% of the objects
with 89.9% precision and 81.2% IoU where 19.3% is the mean absolute error of
the confidence to represent IoU. We believe these intuitive measures will enable
practicioners to make better decision when deploying object detectors.

6 Conclusions

The progress in a field heavily relies on the evaluation tools and the baselines
used. In this paper, we showed that existing evaluation tools for calibration as
well as the baseline post-hoc calibrators for object detectors have significant
drawbacks. We remedied that by introducing an evaluation framework includ-
ing baseline post-hoc calibrators tailored to object detection. Our experiments
suggested that, once evaluated and designed properly, the post-hoc calibrators
significantly outperform all existing training-time calibrators. This implies the
need for research to develop better calibration techniques for object detection,
for which, we believe, our evaluation framework will be an essential pillar.



On Calibration of Object Detectors 15

References

1. Ayer, M., Brunk, H.D., Ewing, G.M., Reid, W.T., Silverman, E.: An empirical dis-
tribution function for sampling with incomplete information. The annals of math-
ematical statistics pp. 641–647 (1955)

2. Barlow, R.E., Brunk, H.D.: The isotonic regression problem and its dual. Journal
of the American Statistical Association 67(337), 140–147 (1972)

3. Best, M.J., Chakravarti, N.: Active set algorithms for isotonic regression; a unifying
framework. Mathematical Programming 47(1), 425–439 (1990)

4. Bewley, A., Ge, Z., Ott, L., Ramos, F., Upcroft, B.: Simple online and realtime
tracking. In: 2016 IEEE International Conference on Image Processing (ICIP).
IEEE (Sep 2016). https://doi.org/10.1109/icip.2016.7533003, http://dx.
doi.org/10.1109/ICIP.2016.7533003

5. Bolya, D., Foley, S., Hays, J., Hoffman, J.: Tide: A general toolbox for identifying
object detection errors. In: The IEEE European Conference on Computer Vision
(ECCV) (2020)

6. Caesar, H., Bankiti, V., Lang, A.H., Vora, S., Liong, V.E., Xu, Q., Krishnan, A.,
Pan, Y., Baldan, G., Beijbom, O.: nuscenes: A multimodal dataset for autonomous
driving. In: Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. pp. 11621–11631 (2020)

7. Chen, K., Wang, J., Pang, J., Cao, Y., Xiong, Y., Li, X., Sun, S., Feng, W., Liu, Z.,
Xu, J., Zhang, Z., Cheng, D., Zhu, C., Cheng, T., Zhao, Q., Li, B., Lu, X., Zhu, R.,
Wu, Y., Dai, J., Wang, J., Shi, J., Ouyang, W., Loy, C.C., Lin, D.: MMDetection:
Open mmlab detection toolbox and benchmark. arXiv 1906.07155 (2019)

8. Cheng, J., Vasconcelos, N.: Calibrating deep neural networks by pairwise con-
straints. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) (2022)

9. Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R.,
Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene
understanding. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2016)

10. Dai, Z., Cai, B., Lin, Y., Chen, J.: Unsupervised pre-training for detection trans-
formers. IEEE Transactions on Pattern Analysis and Machine Intelligence p. 1–11
(2022). https://doi.org/10.1109/tpami.2022.3216514, http://dx.doi.org/
10.1109/TPAMI.2022.3216514

11. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The
pascal visual object classes (voc) challenge. International Journal of Computer
Vision (IJCV) 88(2), 303–338 (2010)

12. Fang, Y., Wang, W., Xie, B., Sun, Q., Wu, L., Wang, X., Huang, T., Wang, X.,
Cao, Y.: Eva: Exploring the limits of masked visual representation learning at scale.
In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
(2023)

13. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti
vision benchmark suite. In: Conference on Computer Vision and Pattern Recogni-
tion (CVPR) (2012)

14. Grigorescu, S., Trasnea, B., Cocias, T., Macesanu, G.: A survey of deep learning
techniques for autonomous driving. Journal of Field Robotics 37(3), 362–386 (Nov
2019). https://doi.org/10.1002/rob.21918, http://dx.doi.org/10.1002/rob.
21918

https://doi.org/10.1109/icip.2016.7533003
https://doi.org/10.1109/icip.2016.7533003
http://dx.doi.org/10.1109/ICIP.2016.7533003
http://dx.doi.org/10.1109/ICIP.2016.7533003
https://doi.org/10.1109/tpami.2022.3216514
https://doi.org/10.1109/tpami.2022.3216514
http://dx.doi.org/10.1109/TPAMI.2022.3216514
http://dx.doi.org/10.1109/TPAMI.2022.3216514
https://doi.org/10.1002/rob.21918
https://doi.org/10.1002/rob.21918
http://dx.doi.org/10.1002/rob.21918
http://dx.doi.org/10.1002/rob.21918


16 Kuzucu et al.

15. Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neu-
ral networks. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th Inter-
national Conference on Machine Learning. Proceedings of Machine Learning Re-
search, vol. 70, pp. 1321–1330. PMLR (2017)

16. Gupta, A., Dollar, P., Girshick, R.: Lvis: A dataset for large vocabulary instance
segmentation. In: The IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR) (2019)

17. Harakeh, A., Waslander, S.L.: Estimating and evaluating regression predictive un-
certainty in deep object detectors. In: International Conference on Learning Rep-
resentations (ICLR) (2021)

18. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
(2016)

19. Hebbalaguppe, R., Prakash, J., Madan, N., Arora, C.: A stitch in time saves nine:
A train-time regularizing loss for improved neural network calibration. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). pp. 16081–16090 (June 2022)

20. Hekler, A., Brinker, T.J., Buettner, F.: Test time augmentation meets post-hoc
calibration: Uncertainty quantification under real-world conditions. Proceedings of
the AAAI Conference on Artificial Intelligence 37(12), 14856–14864 (Jun 2023).
https://doi.org/10.1609/aaai.v37i12.26735, https://ojs.aaai.org/index.
php/AAAI/article/view/26735

21. Hendrycks, D., Dietterich, T.: Benchmarking neural network robustness to common
corruptions and perturbations. In: International Conference on Learning Represen-
tations (ICLR) (2019)

22. Jin, C., Udupa, J.K., Zhao, L., Tong, Y., Odhner, D., Pednekar, G., Nag, S., Lewis,
S., Poole, N., Mannikeri, S., Govindasamy, S., Singh, A., Camaratta, J., Owens,
S., Torigian, D.A.: Object recognition in medical images via anatomy-guided deep
learning. Medical Image Analysis 81, 102527 (2022). https://doi.org/https:
//doi.org/10.1016/j.media.2022.102527, https://www.sciencedirect.com/
science/article/pii/S1361841522001748

23. Joy, T., Pinto, F., Lim, S.N., Torr, P.H., Dokania, P.K.: Sample-dependent adaptive
temperature scaling for improved calibration. Proceedings of the AAAI Conference
on Artificial Intelligence 37(12), 14919–14926 (Jun 2023). https://doi.org/10.
1609/aaai.v37i12.26742, https://ojs.aaai.org/index.php/AAAI/article/
view/26742

24. Karimi, D., Dou, H., Warfield, S.K., Gholipour, A.: Deep learning with noisy la-
bels: Exploring techniques and remedies in medical image analysis. Medical Image
Analysis 65, 101759 (2020). https://doi.org/https://doi.org/10.1016/j.
media.2020.101759, https://www.sciencedirect.com/science/article/pii/
S1361841520301237

25. Kim, K., Lee, H.S.: Probabilistic anchor assignment with iou prediction for object
detection. In: The European Conference on Computer Vision (ECCV) (2020)

26. Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T.,
Whitehead, S., Berg, A.C., Lo, W.Y., et al.: Segment anything. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision. pp. 4015–4026
(2023)

27. Kumar, A., Liang, P.S., Ma, T.: Verified uncertainty calibration. In: Advances in
Neural Information Processing Systems (NeurIPS). vol. 32 (2019)

https://doi.org/10.1609/aaai.v37i12.26735
https://doi.org/10.1609/aaai.v37i12.26735
https://ojs.aaai.org/index.php/AAAI/article/view/26735
https://ojs.aaai.org/index.php/AAAI/article/view/26735
https://doi.org/https://doi.org/10.1016/j.media.2022.102527
https://doi.org/https://doi.org/10.1016/j.media.2022.102527
https://doi.org/https://doi.org/10.1016/j.media.2022.102527
https://doi.org/https://doi.org/10.1016/j.media.2022.102527
https://www.sciencedirect.com/science/article/pii/S1361841522001748
https://www.sciencedirect.com/science/article/pii/S1361841522001748
https://doi.org/10.1609/aaai.v37i12.26742
https://doi.org/10.1609/aaai.v37i12.26742
https://doi.org/10.1609/aaai.v37i12.26742
https://doi.org/10.1609/aaai.v37i12.26742
https://ojs.aaai.org/index.php/AAAI/article/view/26742
https://ojs.aaai.org/index.php/AAAI/article/view/26742
https://doi.org/https://doi.org/10.1016/j.media.2020.101759
https://doi.org/https://doi.org/10.1016/j.media.2020.101759
https://doi.org/https://doi.org/10.1016/j.media.2020.101759
https://doi.org/https://doi.org/10.1016/j.media.2020.101759
https://www.sciencedirect.com/science/article/pii/S1361841520301237
https://www.sciencedirect.com/science/article/pii/S1361841520301237


On Calibration of Object Detectors 17

28. Kumar, N., Verma, R., Anand, D., Zhou, Y., Onder, O.F., Tsougenis, E., Chen, H.,
Heng, P.A., Li, J., Hu, Z., Wang, Y., Koohbanani, N.A., Jahanifar, M., Tajeddin,
N.Z., Gooya, A., Rajpoot, N., Ren, X., Zhou, S., Wang, Q., Shen, D., Yang, C.K.,
Weng, C.H., Yu, W.H., Yeh, C.Y., Yang, S., Xu, S., Yeung, P.H., Sun, P., Mahbod,
A., Schaefer, G., Ellinger, I., Ecker, R., Smedby, O., Wang, C., Chidester, B., Ton,
T.V., Tran, M.T., Ma, J., Do, M.N., Graham, S., Vu, Q.D., Kwak, J.T., Gunda,
A., Chunduri, R., Hu, C., Zhou, X., Lotfi, D., Safdari, R., Kascenas, A., O’Neil,
A., Eschweiler, D., Stegmaier, J., Cui, Y., Yin, B., Chen, K., Tian, X., Gruen-
ing, P., Barth, E., Arbel, E., Remer, I., Ben-Dor, A., Sirazitdinova, E., Kohl, M.,
Braunewell, S., Li, Y., Xie, X., Shen, L., Ma, J., Baksi, K.D., Khan, M.A., Choo,
J., Colomer, A., Naranjo, V., Pei, L., Iftekharuddin, K.M., Roy, K., Bhattacharjee,
D., Pedraza, A., Bueno, M.G., Devanathan, S., Radhakrishnan, S., Koduganty, P.,
Wu, Z., Cai, G., Liu, X., Wang, Y., Sethi, A.: A multi-organ nucleus segmenta-
tion challenge. IEEE Transactions on Medical Imaging 39(5), 1380–1391 (2020).
https://doi.org/10.1109/TMI.2019.2947628

29. Kumar, N., Verma, R., Sharma, S., Bhargava, S., Vahadane, A., Sethi, A.:
A dataset and a technique for generalized nuclear segmentation for computa-
tional pathology. IEEE Transactions on Medical Imaging 36(7), 1550–1560 (2017).
https://doi.org/10.1109/TMI.2017.2677499

30. Kuppers, F., Kronenberger, J., Shantia, A., Haselhoff, A.: Multivariate confidence
calibration for object detection. In: The IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR) Workshops (2020)

31. Li, L.H., Zhang, P., Zhang*, H., Yang, J., Li, C., Zhong, Y., Wang, L., Yuan, L.,
Zhang, L., Hwang, J.N., Chang, K.W., Gao, J.: Grounded language-image pre-
training. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) (2022)

32. Li, X., Wang, W., Wu, L., Chen, S., Hu, X., Li, J., Tang, J., Yang, J.: Generalized
focal loss: Learning qualified and distributed bounding boxes for dense object de-
tection. In: Advances in Neural Information Processing Systems (NeurIPS) (2020)

33. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L.: Microsoft COCO: Common Objects in Context. In: The European
Conference on Computer Vision (ECCV) (2014)

34. Liu, B., Ayed, I.B., Galdran, A., Dolz, J.: The devil is in the margin: Margin-based
label smoothing for network calibration. In: CVPR (2022)

35. Liu, D.C., Nocedal, J.: On the limited memory bfgs method for large scale opti-
mization. Math. Program. 45(1-3), 503–528 (1989), http://dblp.uni-trier.de/
db/journals/mp/mp45.html#LiuN89

36. Liu, S., Zeng, Z., Ren, T., Li, F., Zhang, H., Yang, J., Li, C., Yang, J., Su, H., Zhu,
J., et al.: Grounding dino: Marrying dino with grounded pre-training for open-set
object detection. arXiv preprint arXiv:2303.05499 (2023)

37. Lu, Y., Lu, C., Tang, C.K.: Online video object detection using association lstm. In:
2017 IEEE International Conference on Computer Vision (ICCV). pp. 2363–2371
(2017). https://doi.org/10.1109/ICCV.2017.257

38. Ma, X., Blaschko, M.B.: Meta-cal: Well-controlled post-hoc calibration by ranking.
In: Meila, M., Zhang, T. (eds.) Proceedings of the 38th International Conference on
Machine Learning. Proceedings of Machine Learning Research, vol. 139, pp. 7235–
7245. PMLR (18–24 Jul 2021), https://proceedings.mlr.press/v139/ma21a.
html

39. Mehrtash, A., Wells, W.M., Tempany, C.M., Abolmaesumi, P., Kapur, T.: Con-
fidence calibration and predictive uncertainty estimation for deep medical image

https://doi.org/10.1109/TMI.2019.2947628
https://doi.org/10.1109/TMI.2019.2947628
https://doi.org/10.1109/TMI.2017.2677499
https://doi.org/10.1109/TMI.2017.2677499
http://dblp.uni-trier.de/db/journals/mp/mp45.html#LiuN89
http://dblp.uni-trier.de/db/journals/mp/mp45.html#LiuN89
https://doi.org/10.1109/ICCV.2017.257
https://doi.org/10.1109/ICCV.2017.257
https://proceedings.mlr.press/v139/ma21a.html
https://proceedings.mlr.press/v139/ma21a.html


18 Kuzucu et al.

segmentation. IEEE Transactions on Medical Imaging 39(12), 3868–3878 (Dec
2020). https://doi.org/10.1109/tmi.2020.3006437, http://dx.doi.org/10.
1109/TMI.2020.3006437

40. Mukhoti, J., Kulharia, V., Sanyal, A., Golodetz, S., Torr, P., Dokania, P.: Calibrat-
ing deep neural networks using focal loss. In: Larochelle, H., Ranzato, M., Hadsell,
R., Balcan, M., Lin, H. (eds.) Advances in Neural Information Processing Systems.
vol. 33, pp. 15288–15299. Curran Associates, Inc. (2020), https://proceedings.
neurips.cc/paper/2020/file/aeb7b30ef1d024a76f21a1d40e30c302-Paper.pdf

41. Munir, M.A., Khan, M.H., Khan, S., Khan, F.S.: Bridging precision and confidence:
A train-time loss for calibrating object detection. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). pp. 11474–
11483 (June 2023)

42. Munir, M.A., Khan, M.H., Sarfraz, M., Ali, M.: Towards improving calibra-
tion in object detection under domain shift. In: Koyejo, S., Mohamed, S.,
Agarwal, A., Belgrave, D., Cho, K., Oh, A. (eds.) Advances in Neural Infor-
mation Processing Systems. vol. 35, pp. 38706–38718. Curran Associates, Inc.
(2022), https://proceedings.neurips.cc/paper_files/paper/2022/file/
fcd812a51b8f8d05cfea22e3c9c4b369-Paper-Conference.pdf

43. Munir, M.A., Khan, S., Khan, M.H., Ali, M., Khan, F.: Cal-DETR: Calibrated
detection transformer. In: Thirty-seventh Conference on Neural Information Pro-
cessing Systems (2023), https://openreview.net/forum?id=4SkPTD6XNP

44. Nixon, J., Dusenberry, M.W., Zhang, L., Jerfel, G., Tran, D.: Measuring calibration
in deep learning. In: IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops (June 2019)

45. Oksuz, K., Cam, B.C., Akbas, E., Kalkan, S.: Localization recall precision (LRP):
A new performance metric for object detection. In: The European Conference on
Computer Vision (ECCV) (2018)

46. Oksuz, K., Cam, B.C., Akbas, E., Kalkan, S.: Rank & sort loss for object detection
and instance segmentation. In: The International Conference on Computer Vision
(ICCV) (2021)

47. Oksuz, K., Cam, B.C., Kalkan, S., Akbas, E.: One metric to measure them all: Lo-
calisation recall precision (lrp) for evaluating visual detection tasks. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence pp. 1–1 (2021)

48. Oksuz, K., Joy, T., Dokania, P.K.: Towards building self-aware object detectors via
reliable uncertainty quantification and calibration. In: Conference on Computer
Vision and Pattern Recognition (CVPR) (2023)

49. Oksuz, K., Kuzucu, S., Joy, T., Dokania, P.K.: Mocae: Mixture of calibrated experts
significantly improves object detection. arXiv preprint arXiv:2309.14976 (2023)

50. Otani, M., Togashi, R., Nakashima, Y., Rahtu, E., Heikkilä, J., Satoh, S.: Optimal
correction cost for object detection evaluation. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). pp. 21107–
21115 (2022)

51. Ovadia, Y., Fertig, E., Ren, J., Nado, Z., Sculley, D., Nowozin, S., Dillon, J., Lak-
shminarayanan, B., Snoek, J.: Can you trust your model's uncertainty? evaluating
predictive uncertainty under dataset shift. In: Advances in Neural Information
Processing Systems. vol. 32 (2019)

52. Pathiraja, B., Gunawardhana, M., Khan, M.H.: Multiclass confidence and local-
ization calibration for object detection. In: IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) (2023)

https://doi.org/10.1109/tmi.2020.3006437
https://doi.org/10.1109/tmi.2020.3006437
http://dx.doi.org/10.1109/TMI.2020.3006437
http://dx.doi.org/10.1109/TMI.2020.3006437
https://proceedings.neurips.cc/paper/2020/file/aeb7b30ef1d024a76f21a1d40e30c302-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/aeb7b30ef1d024a76f21a1d40e30c302-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/fcd812a51b8f8d05cfea22e3c9c4b369-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/fcd812a51b8f8d05cfea22e3c9c4b369-Paper-Conference.pdf
https://openreview.net/forum?id=4SkPTD6XNP


On Calibration of Object Detectors 19

53. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

54. Platt, J.: Probabilistic outputs for support vector machines and comparisons to
regularized likelihood methods. Adv. Large Margin Classif. 10 (06 2000)

55. Popordanoska, T., Tiulpin, A., Blaschko, M.B.: Beyond classification: Definition
and density-based estimation of calibration in object detection. In: Proceedings of
the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV).
pp. 585–594 (January 2024)

56. Rahimi, A., Mensink, T., Gupta, K., Ajanthan, T., Sminchisescu, C., Hart-
ley, R.: Post-hoc calibration of neural networks by g-layers. arXiv preprint
arXiv:2006.12807 (2020)

57. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: Towards real-time object
detection with region proposal networks. IEEE Transactions on Pattern Analysis
and Machine Intelligence (TPAMI) 39(6), 1137–1149 (2017)

58. Rezatofighi, H., Nguyen, T.T.D., Vo, B., Vo, B., Savarese, S., Reid, I.D.: How
trustworthy are the existing performance evaluations for basic vision tasks? arXiv
e-prints:2008.03533 (2020)

59. Sakaridis, C., Dai, D., Van Gool, L.: Semantic foggy scene understanding with
synthetic data. International Journal of Computer Vision 126(9), 973–992 (Sep
2018), https://doi.org/10.1007/s11263-018-1072-8

60. Shao, S., Li, Z., Zhang, T., Peng, C., Yu, G., Zhang, X., Li, J., Sun, J.: Ob-
jects365: A large-scale, high-quality dataset for object detection. In: IEEE/CVF
International Conference on Computer Vision (ICCV) (2019)

61. Sun, P., Kretzschmar, H., Dotiwalla, X., Chouard, A., Patnaik, V., Tsui, P., Guo,
J., Zhou, Y., Chai, Y., Caine, B., et al.: Scalability in perception for autonomous
driving: Waymo open dataset. In: Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. pp. 2446–2454 (2020)

62. Wang, D.B., Feng, L., Zhang, M.L.: Rethinking calibration of deep neural
networks: Do not be afraid of overconfidence. In: Ranzato, M., Beygelzimer,
A., Dauphin, Y., Liang, P., Vaughan, J.W. (eds.) Advances in Neural Infor-
mation Processing Systems. vol. 34, pp. 11809–11820. Curran Associates, Inc.
(2021), https://proceedings.neurips.cc/paper_files/paper/2021/file/
61f3a6dbc9120ea78ef75544826c814e-Paper.pdf

63. Wang, D.B., Feng, L., Zhang, M.L.: Rethinking calibration of deep neural networks:
Do not be afraid of overconfidence. In: Advances in Neural Information Processing
Systems (NeurIPS) (2021)

64. Yan, K., Wang, X., Lu, L., Summers, R.M.: Deeplesion: Automated deep mining,
categorization and detection of significant radiology image findings using large-
scale clinical lesion annotations. arXiv preprint arXiv:1710.01766 (2017)

65. Yu, F., Chen, H., Wang, X., Xian, W., Chen, Y., Liu, F., Madhavan, V., Dar-
rell, T.: Bdd100k: A diverse driving dataset for heterogeneous multitask learning.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) (June 2020)

66. Zadrozny, B., Elkan, C.: Transforming classifier scores into accurate multiclass
probability estimates. In: Proceedings of the eighth ACM SIGKDD international
conference on Knowledge discovery and data mining. pp. 694–699 (2002)

67. Zhang, H., Li, F., Liu, S., Zhang, L., Su, H., Zhu, J., Ni, L.M., Shum, H.Y.: Dino:
Detr with improved denoising anchor boxes for end-to-end object detection. arXiv
preprint arXiv:2203.03605 (2022)

https://doi.org/10.1007/s11263-018-1072-8
https://proceedings.neurips.cc/paper_files/paper/2021/file/61f3a6dbc9120ea78ef75544826c814e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/61f3a6dbc9120ea78ef75544826c814e-Paper.pdf


20 Kuzucu et al.

68. Zhang, H., Wang, Y., Dayoub, F., Sünderhauf, N.: Varifocalnet: An iou-aware
dense object detector. In: IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) (2021)

69. Zhang, J., Yao, W., Chen, X., Feng, L.: Transferable post-hoc calibration on
pretrained transformers in noisy text classification. Proceedings of the AAAI
Conference on Artificial Intelligence 37(11), 13940–13948 (Jun 2023). https:
//doi.org/10.1609/aaai.v37i11.26632, https://ojs.aaai.org/index.php/
AAAI/article/view/26632

70. Zhang, S., Chi, C., Yao, Y., Lei, Z., Li, S.Z.: Bridging the gap between anchor-based
and anchor-free detection via adaptive training sample selection. In: IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

71. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable {detr}: De-
formable transformers for end-to-end object detection. In: International Conference
on Learning Representations (ICLR) (2021)

72. Zong, Z., Song, G., Liu, Y.: Detrs with collaborative hybrid assignments training.
In: IEEE/CVF International Conference on Computer Vision (ICCV) (2023)

https://doi.org/10.1609/aaai.v37i11.26632
https://doi.org/10.1609/aaai.v37i11.26632
https://doi.org/10.1609/aaai.v37i11.26632
https://doi.org/10.1609/aaai.v37i11.26632
https://ojs.aaai.org/index.php/AAAI/article/view/26632
https://ojs.aaai.org/index.php/AAAI/article/view/26632

	On Calibration of Object Detectors: Pitfalls, Evaluation and Baselines

