
20 C.-A. Yang et al.

Appendix:
The appendix is organized as follows:
– In Sec. A1, we provide additional details and comparisons to learned and

non-learned TTA in other setups, e.g., additional TTA policy or architectures.
– In Sec. A2, we provide additional image classification results of our approach

on CIFAR10 and CIFAR100 datasets [24]. We also provide more detailed
results on ImageNet for image classification, Cityscapes, and ADE20k for
semantic segmentation.

– In Sec. A3, we provide additional implementation details of our method,
including how to implement subsampling layers for each of the corresponding
backbones.

A1 Additional details and comparison to TTA

A1.1 Details for integrating Ours with existing TTA methods.

Existing TTA methods take an input image and form an augmented image pool
{I(a)

aug}Btta
a=1 to make a prediction by

ŷ = T

✓n
ŷ(a)

oBtta

a=1

◆
, where ŷ(a) = C�(F✓(I

(a)
aug;0)), (A13)

where T is an aggregation function (different from ours) merging all logits
resulting from Btta augmented images with default s = 0. To integrate Ours
with existing TTA methods, we perform our search and aggregation method for
each augmented image to make the prediction ŷ(a) in Eq. (A13), i.e.,

ŷ(a) = C�

⇣
A(F (a))

⌘
, where F (a) = {F (I(a)

aug; s) | s 2 Ŝ} (A14)

following a simple aggregation A as described in the main paper. We use this
described approach in our experiments when incorporating our approach with
existing TTA methods.

A1.2 Learned TTA methods

A different TTA policy. We conduct additional experiments following another
TTA policy setting proposed by Shanmugam et al. [52], i.e., the standard TTA
policy. The standard TTA consists of the following data transformations: Flip,
Scale, and FiveCrop. The original standard policy fixes Btta at 30. We increase
the possible range of Btta for standard policy to cover up to 190. Please refer
to Sec. A3.2 for the details.

We report the comparison between the baseline TTA methods with and with-
out our learned approach in Tab. A1 and Tab. A2 on ImageNet and Flowers102
respectively. We observe that, unlike our approach, the performance of TTA
baselines is highly dependent on the TTA policy. Although the standard policy



Subsampling Layers Unwittingly Discard Useful Activations 21

Table A1: Comparison to TTA methods on ImageNet with standard [52]
TTA policies. We evaluate on ImageNet under Btotal 2 {30, 100, 150} with various
model architectures. For each Btotal, we report the top-1 Acc. of baseline TTA methods
with and without our learned approach. Whichever is the better one is bolded. The
results of our learned procedure are highlighted.

TTA Ours ResNet18 ResNet50 MobileNetV2 InceptionV3
30 100 150 30 100 150 30 100 150 30 100 150

7 70.38 70.38 70.38 76.37 76.37 76.37 72.27 72.27 72.27 71.74 71.74 71.74GPS [38]
3 70.60 70.72 70.69 76.67 76.81 76.84 72.38 72.64 72.59 72.13 72.29 72.30

7 70.06 67.77 65.46 76.26 74.55 72.65 71.79 69.19 66.74 71.77 70.54 70.07ClassTTA [52]
3 70.70 70.73 70.69 76.76 76.83 76.85 72.32 72.34 72.29 72.26 72.43 72.41

7 70.78 70.83 70.82 76.68 76.67 76.66 72.59 72.59 72.61 72.22 72.99 73.02AugTTA [52]
3 70.89 70.85 70.86 76.74 76.82 76.86 72.60 72.69 72.58 72.42 72.51 72.46

Table A2: Comparison to TTA methods on Flowers102 with standard [52]
TTA policies. We evaluate on Flowers102 under Btotal 2 {30, 100, 150} with various
model architectures. For each Btotal, we report the top-1 Acc. of baseline TTA methods
with and without our learned approach. Whichever is the better one is bolded. The
results of our learned procedure are highlighted.

TTA Ours ResNet18 ResNet50 MobileNetV2 InceptionV3
30 100 150 30 100 150 30 100 150 30 100 150

7 89.07 89.07 89.07 91.07 91.07 91.07 89.80 89.80 89.80 87.64 87.64 87.64GPS [38]
3 89.01 89.22 89.19 91.17 91.28 91.28 89.90 90.06 90.11 87.66 87.71 87.75

7 88.62 87.40 83.28 90.78 89.09 86.29 89.30 87.49 84.35 87.77 86.63 83.75ClassTTA [52]
3 89.07 89.22 89.15 91.19 91.28 91.36 89.77 89.89 90.00 87.53 87.66 87.53

7 88.88 88.97 87.40 91.20 90.80 89.41 90.05 89.93 88.19 87.74 87.10 86.91AugTTA [52]
3 89.10 89.23 89.15 91.13 91.28 91.28 89.92 90.10 90.11 87.61 87.75 87.79

improves the performance of TTA baselines, our approach shows a consistent
gain over them, except for InceptionV3 with AugTTA. As shown in Tab. A1, on
average, we improve the top-1 Acc. of TTA baselines by 0.9% on ImageNet. Our
approach improves GPS on average by 0.4%, ClassTTA by 2.5%, and AugTTA
by 0.1%. As shown in Tab. A2, on average, we improve the top-1 Acc. of TTA
baselines by 0.6% on Flowers102. Specifically, Our approach improves GPS on
average by 0.1%, ClassTTA by 1.3%, and AugTTA by 0.2%.

More architectures. In Tab. A3, we report the comparison of our learned ap-
proach to baseline TTA methods on more architectures, including ResNext50 [67],
ShuffleNetV2 [39], Swin [34], and SwinV2 [33]. Specifically, we use these variants
from torchvision [45]: resnext50_32x4d for ResNext50, shufflenet_v2_x1_0
for ShuffleNetV2, swin_t for Swin, and swin_v2_t for SwinV2. We observe
consistent gain across all the models on ImageNet.

Computation budget. We compare the computation budget (MACs, and
latency) on an image of resolution 224px by 224px between ours and baseline
methods. We measure the latency (ms/img) from end-to-end over 10 runs on
an Nvidia A6000 GPU. We report the results of ResNet18 in Tab. A4 and
MobileNetV2 in Tab. A5. While GPS [38] has less budget and latency, it does not
achieve the best performance and does not scale with a higher budget as shown



22 C.-A. Yang et al.

Table A3: Comparison to TTA methods on ImageNet with expanded [52]
TTA policies. We evaluate on ImageNet under Btotal 2 {30, 100, 150} with various
model architectures. For each Btotal, we report the top-1 Acc. of baseline TTA methods
with and without our learned approach. Whichever is the better one is bolded. The
results of our learned procedure are highlighted.

TTA Ours ResNext50 ShuffleNetV2 Swin SwinV2
30 100 150 30 100 150 30 100 150 30 100 150

7 78.01 78.01 78.01 70.17 70.17 70.17 81.35 81.35 81.35 81.31 81.31 81.31GPS [38]
3 78.18 78.32 78.30 70.44 70.35 70.14 81.42 81.41 81.42 81.35 81.44 81.46

7 77.03 76.70 75.45 69.01 69.02 68.57 80.63 80.65 80.80 80.56 80.54 80.57ClassTTA [52]
3 78.10 78.15 78.20 70.36 70.15 70.07 81.52 81.50 81.54 81.39 81.39 81.38

7 78.09 78.13 78.08 70.37 70.49 70.40 81.42 81.50 81.38 81.28 81.41 81.25AugTTA [52]
3 78.14 78.23 78.28 70.51 70.35 70.25 81.49 81.51 81.52 81.40 81.42 81.42

in the previous experiments. In terms of MACs, our approach requires more
operations than ClassTTA [52] and AugTTA [52] on a lower budget. However,
since our approach operates on downsampling layers only and shares most
computation on non-downsampling layers, the overall latency is more or less
similar to theirs.

A1.3 Non-learned TTA methods

For non-learned TTA methods, we follow Shanmugam et al. [52] and compared
the MeanTTA and MaxTTA aggregation methods. MeanTTA computes the average
over all the augmented logits, while MaxTTA picks the highest logit value for each
class over all the augmented logits. We report the comparison of our non-learned
approach to non-learned TTA methods, i.e., we use Eq. (7) and Eq. (8) for
Aggregation and Eq. (12) for Criterion. As shown in Tab. A6, we do not find it
beneficial to use non-learned TTA methods with the expanded policy. We directly
compare our non-learned approach without integrating TTA, i.e., Btta = 1, to
non-learned TTA methods. Our non-learned approach outperforms MeanTTA and
MaxTTA without needing to increase the computation budget.

In Tab. A7, we report the non-learned TTA methods with or without our
non-learned approach using the standard policy. We observe that although Mean
and MaxTTA work on a smaller budget, they do not scale with higher budgets. Our
non-learned approach outperforms MeanTTA under most budget settings while
MaxTTA is an ineffective non-learned TTA method.

A1.4 Budget configuration

With the integration approach described in Sec. A1.1, the total budget Btotal =
Btta timesBours is a product of the budget for existing TTA methods Btta and
ours Bours. We have the flexibility of balancing between the two to achieve the
same total budget. Here, we document the choices used in our experiments.

– For Tab. 1, Tab. 2, Tab. A1, Tab. A2, Tab. A3, Tab. A4, and Tab. A5, we
use the following settings. When Btotal = 30, we use (Btta, Bours) = (10, 3)



Subsampling Layers Unwittingly Discard Useful Activations 23

Table A4: Comparison of computation budget of ResNet18 on ImageNet.
We report the comparison of top-1 Acc. , MACs (G), and the latency (ms/img) between
baseline TTA methods w/ and w/o our learned approach.

Btotal TTA Ours Acc " MACs # Latency #

1 7 7 69.76 1.8 (1.0⇥) 1.6 (1.0⇥)

30

7 70.51 5.5 (3.0⇥) 4.2 (2.7⇥)GPS
3 70.74 20.8 (11.4⇥) 8.9 (5.7⇥)

7 69.09 54.7 (30.0⇥) 43.3 (27.9⇥)ClassTTA
3 70.37 69.3 (38.0⇥) 25.2 (16.2⇥)

7 70.55 54.7 (30.0⇥) 54.0 (34.8⇥)AugTTA
3 70.75 69.3 (38.0⇥) 31.7 (20.4⇥)

100

7 70.51 5.5 (3.0⇥) 4.0 (2.6⇥)GPS
3 70.74 50.3 (27.6⇥) 24.3 (15.6⇥)

7 68.23 182.4 (100.0⇥) 155.8 (100.3⇥)ClassTTA
3 70.36 167.7 (91.9⇥) 118.8 (76.5⇥)

7 70.66 182.4 (100.0⇥) 141.4 (91.0⇥)AugTTA
3 70.79 167.7 (91.9⇥) 86.2 (55.5⇥)

150

7 70.51 5.5 (3.0⇥) 3.9 (2.5⇥)GPS
3 70.69 76.1 (41.7⇥) 39.7 (25.6⇥)

7 66.40 273.6 (150.0⇥) 236.4 (152.1⇥)ClassTTA
3 70.37 253.6 (139.0⇥) 159.1 (102.4⇥)

7 70.28 273.6 (150.0⇥) 244.0 (157.0⇥)AugTTA
3 70.74 253.6 (139.0⇥) 131.6 (84.7⇥)

with ours and (Btta, Bours) = (30, 1) without ours. When Btotal = 100, we
use (Btta, Bours) = (10, 10) with ours and (Btta, Bours) = (100, 1) without
ours. When Btotal = 150, we use (Btta, Bours) = (10, 15) with ours and
(Btta, Bours) = (150, 1) without ours.

– For Tab. A6, we use the following settings. When Btotal = 30, we use
(Btta, Bours) = (1, 30) with ours and (Btta, Bours) = (30, 1) without ours.
When Btotal = 75, we only use (Btta, Bours) = (75, 1) without ours. When
Btotal = 150, we only use (Btta, Bours) = (150, 1) without ours.

– For Tab. A7, we use the following settings. When Btotal = 30, we use
(Btta, Bours) = (15, 2) with ours and (Btta, Bours) = (30, 1) without ours.
When Btotal = 75, we use (Btta, Bours) = (15, 5) with ours and (Btta, Bours) =
(75, 1) without ours. When Btotal = 150, we use (Btta, Bours) = (15, 10) with
ours and (Btta, Bours) = (150, 1) without ours.



24 C.-A. Yang et al.

Table A5: Comparison of computation budget of MobileNetV2 on ImageNet.
We report the comparison of top-1 Acc. , MACs (G), and the latency (ms/img) between
baseline TTA methods w/ and w/o our learned approach.

Btotal TTA Ours Acc " MACs # Latency #

1 7 7 71.88 0.3 (1.0⇥) 2.4 (1.0⇥)

30

7 72.24 1.0 (3.0⇥) 7.6 (3.1⇥)GPS
3 72.37 3.5 (10.7⇥) 11.8 (4.9⇥)

7 70.58 9.8 (30.0⇥) 87.0 (36.0⇥)ClassTTA
3 71.44 11.6 (35.6⇥) 40.9 (16.9⇥)

7 72.33 9.8 (30.0⇥) 86.2 (35.7⇥)AugTTA
3 72.41 11.7 (35.6⇥) 46.0 (19.1⇥)

100

7 72.24 1.0 (3.0⇥) 7.4 (3.1⇥)GPS
3 72.61 9.2 (28.1⇥) 38.9 (16.1⇥)

7 69.97 32.8 (100.0⇥) 260.6 (108.0⇥)ClassTTA
3 71.68 30.7 (93.6⇥) 140.4 (58.2⇥)

7 72.42 32.8 (100.0⇥) 270.9 (112.3⇥)AugTTA
3 72.62 30.7 (93.6⇥) 120.9 (50.1⇥)

150

7 72.24 1.0 (3.0⇥) 8.5 (3.5⇥)GPS
3 72.58 14.6 (44.5⇥) 69.5 (28.8⇥)

7 67.81 49.1 (150.0⇥) 481.8 (199.7⇥)ClassTTA
3 71.63 48.6 (148.4⇥) 235.5 (97.6⇥)

7 72.46 49.1 (150.0⇥) 435.9 (180.6⇥)AugTTA
3 72.58 48.6 (148.4⇥) 246.9 (102.3⇥)

Table A6: Comparison to non-learned TTA methods on ImageNet with
expanded [52] TTA policies. We evaluate on ImageNet under Btotal 2 {30, 100, 150}
with various model architectures. For each Btotal, we report the top-1 Acc. of non-
learned TTA methods with and without our non-learned approach. Whichever is the
better one is bolded. The results of our non-learned procedure are highlighted.

Method ResNet18 ResNet50 MobileNetV2 InceptionV3
30 75 150 30 75 150 30 75 150 30 75 150

MeanTTA 67.23 68.37 67.81 73.88 74.77 74.30 68.72 69.98 69.44 70.46 70.71 70.51
MaxTTA 66.31 66.07 65.60 71.79 71.52 71.12 68.20 67.92 67.32 64.95 65.21 64.98

Ours 70.27 – – 76.54 – – 72.35 – – 71.45 – –

A2 Additional results

A2.1 CIFAR10 & CIFAR100

We use the publicly available implementation from PyTorch CIFAR Models
(https://github.com/chenyaofo/pytorch-cifar-models), which supports a
variety of pre-trained models on CIFAR10 and CIFAR100. Specifically, there are

https://github.com/chenyaofo/pytorch-cifar-models


Subsampling Layers Unwittingly Discard Useful Activations 25

Table A7: Comparison to non-learned TTA methods on ImageNet with
standard [52] TTA policies. We evaluate on ImageNet under Btotal 2 {30, 100, 150}
with various model architectures. For each Btotal, we report the top-1 Acc. of non-
learned TTA methods with and without our non-learned approach. Whichever is the
better one is bolded. The results of our non-learned procedure are highlighted.

TTA Ours ResNet18 ResNet50 MobileNetV2 InceptionV3
30 75 150 30 75 150 30 75 150 30 75 150

7 70.90 70.38 68.06 76.65 75.99 73.57 72.65 72.00 68.98 71.99 71.61 70.44MeanTTA
3 70.70 70.84 70.81 76.71 76.76 76.83 72.61 72.57 72.71 71.44 71.58 71.98

7 70.02 69.70 68.39 76.24 75.62 72.86 72.13 71.79 70.10 71.42 69.93 67.27MaxTTA
3 70.24 70.45 70.46 76.49 76.51 76.66 72.33 72.43 72.54 71.10 71.33 71.76

19 models in total, including ResNet [18], VGG [54], RepVGG [12], MobileNet [50],
and ShuffleNet [75] architectures. We report the experiments on all of them.

As in the main paper, we report the top-1 classification accuracy vs. the
budget Bours in Fig. A1 and Fig. A2 for CIFAR10 and CIFAR100 respectively.
On both CIFAR10 and CIFAR100 datasets, we observe significant improvement
in almost all scenarios except for VGG models. The performances of VGG models
initially improves in low-budget setting and start to deteriorate quickly when
given more budget. We suspect it is due to the fact that all subsampling layers in
vanilla VGG are comprised of max-pooling layers. The local maximum remains
very similar in discarded activation thus different state provides little additional
information.

A2.2 TIMM pretrained-weights on ImageNet

In Fig. A3, we provide additional results on TIMM [62] backbones. These ad-
ditional backbones include MobileNetV3 [19], Multi-scale ViT (MViTv2) [29],
DenseNet [22], VGG [54], RepVGG [12], DeiT [58], CoaT [68], ConvNeXTV2 [35,
64], XCiT [2], VOLO [71], PvTV2 [59, 60], Efficientformer [30]. Specifically,
we use these variants from TIMM: mobilenetv3_small_100 for MobileNetV3,
mvitv2_tiny for MViTV2, densenet121 for DenseNet, vgg11_bn for VGG,
repvgg_a2 for RepVGG, deit_tiny_patch16_224 for DeiT, volo_d1_224 for
VOLO, pvt_v2_b0 for PvTV2, coat_tiny for CoaT, convnextv2_tiny for CoaT,
and efficientformer_l1 for Efficientformer.

We observe that our approach consistently leads to better performance in most
architectures. Our procedure excels in ViT-like architectures where subsampling
layers with large subsampling rates R are used.

A2.3 Cityscapes and ADE20K

In Fig. A4 and Fig. A5, we report additional results on Cityscapes and ADE20K
semantic segmentation respectively. We plot out the performances on aAcc (mean
accuracy of all pixel accuracy) and the mAcc (mean accuracy of each class
accuracy) besides the mIoU score. We also provide additional results on more



26 C.-A. Yang et al.

MMSeg [40] backbones and decoders. These additional architectures include
MobileNetV3+LRASPP [19], UNet [49], Swin [34], UperNet [65], and Twins [9].
Specifically, we use these variants from MMSeg: M-V3-D8 for MobileNetV3,
MiT-B0 for MiT, Twins-PCPVT-S for Twins, and Swin-T for Swin.

As can be seen, our approach consistently leads to better performance, espe-
cially on mIoU and aAcc, in all architectures. Additionally, we show that our test-
time procedure can further improve the performance when TTA (horizontal-flip)
is used.

A2.4 Additional comparison to anti-aliasing downsampling

To preserve the lost information from downsampling layers, a line of work, anti-
aliased CNN [73] inserts a max-blur-pool layer to the pooling layer. Here, we
demonstrate that our approach is orthogonal to the anti-aliasing method.

We report the performance of our approach on anti-aliased CNNs in Tab. A8.
We conduct experiments using their pre-trained model and observe that applying
our approach to anti-aliased CNNs also leads to consistent performance gain.

Finally, max-blur-pool replaces max-pooling layers in CNN and requires
training the whole model parameters; it is unclear how to apply it to ViTs which
use patch merging instead of max-pooling. Our approach is generic and can be
applied to both CNN and ViTs at test time while only training our additional
attention module.

Table A8: Performance on the pre-trained weights of anti-aliased CNN [73].
We consider various antialiased CNN backbones with and without our procedure under
different Bours 2 {4, 10}. The 7 indicates the experiments without ours by setting
Bours = 1. We report the top-1 Acc. on ImageNet. The results w/ our non-learned
procedure are highlighted. Our procedure makes improvements on all antialiased CNN
backbones.

ResNet18 ResNet34 ResNet50 WideResNet50 MobileNetV2-050
7 4 10 7 4 10 7 4 10 7 4 10 7 4 10

71.67 71.74 71.88 74.60 74.75 74.90 77.41 77.43 77.53 78.70 78.76 78.91 72.72 72.98 73.14

A3 Additional implementation details

A3.1 Attention module

Recall Eq. (5) and Eq. (6), our attention module contains several trainable
modules. Let fs = F✓(I; s) 2 Rh⇥w⇥c, then the query, key, and value features
are defined as

8
><

>:

qs = wq(fs)

ks = wk(fs)

vs = fs

, (A15)



Subsampling Layers Unwittingly Discard Useful Activations 27

where wq and wk are both linear layers Linear(in=c, out=1). Finally, the MLP
in Eq. (6) can be represented by a trainable tensor wo 2 Rc so that given a input
x 2 Rc,

MLP(x) = wo � x, (A16)

where � is the elementwise multiplication. Overall, our attention module intro-
duces three learnable parameters, i.e. wq, wk, and wo,

A3.2 TTA policy

Standard policy. The standard [52] TTA policy is composed of the following
data transformations, Flip, Scale, and FiveCrop. The original standard policy
fixes Btta at 30. We increase the possible range of Btta for expanded policy to
cover up to 190. We detail the setting in Tab. A9. For any budget Btta < 190,
we sorted the data augmentations based on the intensity and sample the first
Btta transformations.

Table A9: Details of our modified standard policy. We modified standard [52]
TTA policy to cover budget up to Btta = 190.

Augmentation # Aug. Range of p Description

FlipLR 2 False, True Horizontally flip the image if p = True.

Scale 19 1.00, 1.04, 1.10, 0.98, 0.92, 0.86, 0.80,
0.74, 0.68, 0.62, 0.56, 0.50, 0.44, 0.38,
0.32, 0.26, 0.20, 0.14, 0.08

Scale the image by a ratio of p.

FiveCrop 5 Center, LeftTop, LeftBottom,
RightTop, RightBottom

Crop from the p (center or
one of the corners) of the image.

Expanded policy. The expanded [52] TTA policy contains various data
transformations, such as Saturation, or Blur. The original expanded policy
fixes Btta at 128. We increase the possible range of Btta for expanded policy
up to 8778. The pool contains two groups. Each data augmentation of the first
group belongs to one of the 131 data augmentations listed in Tab. A10. Each
data augmentation of the second group is composed of two of the 131 data
augmentations. In total, our pool contains 8778 data augmentation. For any
budget Btta < 8778, we sorted the data augmentations based on the intensity
and sample the first Btta transformations.



28 C.-A. Yang et al.

Table A10: Details of the our modified expanded policy. We modified
expanded [52] TTA policy to cover budget up to Btta = 8778.

Augmentation # Aug. Range of p Description

Identity 1 – Return the original image.

FlipLR 1 – Horizontally flip the image.

FlipUD 1 – Vertically flip the image.

Invert 1 – Invert the colors of the image.

PIL_Blur 1 – Blur the image using the
PIL.ImageFilter.BLUR kernel.

PIL_Smooth 1 – Smooth the image using the
PIL.ImageFilter.Smooth kernel.

AutoContrast 1 – Maximize the contrast of the image.

Equalize 1 – Equalize the histogram of the image.

Posterize 4 1, 2, 3, 4 Posterize the image by reducing p RGB bits.

Rotate 10 linspace(-30, 30, 10) Rotate the image by p degree.

CropBilinear 10 {1, 2, · · · , 10} Crop by (224-p)px and then resize the image.

Solarize 10 linspace(0, 1, 10) Solarize the image by a threshold of p.

Contrast 10 linspace(0.1, 1.9, 10) Adjust the contrast of the image
by a contrast factor of p.

Saturation 10 linspace(0.1, 1.9, 10) Adjust the saturation of the image
by a saturation factor of p.

Brightness 10 linspace(0.1, 1.9, 10) Adjust the brightness of the image
by a brightness factor of p.

Sharpness 10 linspace(0.1, 1.9, 10) Adjust the sharpness of the image
by a sharpness factor of p.

ShearX 10 linspace(-0.3, 0.3, 10) Shear the image along the x-axis
by tan�1(p) radians.

ShearY 10 linspace(-0.3, 0.3, 10) Shear the image along the y-axis
by tan�1(p) radians.

TranslateX 10 linspace(-9, 9, 10) Translate the image along the x-axis by p px.

TranslateY 10 linspace(-9, 9, 10) Translate the image along the y-axis by p px.

Cutout 10 linspace(2, 20, 10) Randomly mask out p px by p px from the image.



Subsampling Layers Unwittingly Discard Useful Activations 29

Fig. A1: Results on CIFAR10. We report top-1 accuracy vs. budget Bours used on
CIFAR10 image classification. We use the following abbreviation in the figure legends:
“MNV2” for MobileNetV2 and “SNV2” for ShuffleNetV2.

x



30 C.-A. Yang et al.

Fig. A2: Results on CIFAR100. We report top-1 accuracy vs. budget Bours used on
CIFAR100 image classification. We use the following abbreviation in the figure legends:
“MNV2” for MobileNetV2 and “SNV2” for ShuffleNetV2.



Subsampling Layers Unwittingly Discard Useful Activations 31

Fig.A3: Additional results on ImageNet. We report top-1 accuracy vs. budget
Bours used on ImageNet image classification.



32 C.-A. Yang et al.

Fig. A4: Additional results on Cityscapes. We report mIoU/aAcc/mAcc vs. budget
Btotal used on Cityscapes semantic segmentation. We note that the Btotal of “model+flip”
is twice the Btotal of “model”.



Subsampling Layers Unwittingly Discard Useful Activations 33

Fig. A5: Additional results on ADE20K. We report mIoU/aAcc/mAcc vs. budget
Btotal used on ADE20K semantic segmentation. We note that the Btotal of “model+flip”
is twice the Btotal of “model”.



34 C.-A. Yang et al.

A3.3 Computational settings

All experiments are conducted on a single NVIDIA A6000 GPU.

A3.4 Modified subsampling layers

In Fig. A6, we illustrate an implementation trick for faster computation in Alg. 1:
line 10. By changing the stride of the subsampling layer from their original stride
value R to 1, we can get all the R

2 neighboring states (activations) in a single
forward pass.

Fig. A6: Stride trick. Instead of performing Conv2D with stride 2 four times, we can
equivalently do a stride 1 convolution followed by a pixel unshuffle.

A3.5 Searching procedure

For TIMM implementation, some models, eg. DenseNet and ViT, have fewer
(less than 4) subsampling layers. We do not limit the searching space (Alg. 1:
line 8) for them in our experiments. Some models, eg. PvTV2, have a larger
subsampling rate R (= 4 or 16) on the first subsampling layer than the rest. We
do not exclude the first layer from the searching space (Alg. 1: line 8) for them
in our experiments.

A3.6 Spatial alignment

For TIMM transformer-based backbones, the output of F✓ has the shape of
batch_size by token_length by channel_size. In order to perform our 2-
dimensional spatial alignment, we reshape it to batch_size by sqrt(token_length)



Subsampling Layers Unwittingly Discard Useful Activations 35

Table A11: Subsampling layers of Torchvision Resnet-18.

Id Name Type R

1 conv1 Conv2d 2
2 maxpool MaxPool2d 2
3 layer2/0 BasicBlock 2
3-1 layer2/0/conv1 Conv2d 2
3-2 layer2/0/downsample/0 Conv2d 2
4 layer3/0 BasicBlock 2
4-1 layer3/0/conv1 Conv2d 2
4-2 layer3/0/downsample/0 Conv2d 2
5 layer4/0 BasicBlock 2
5-1 layer4/0/conv1 Conv2d 2
5-2 layer4/0/downsample/0 Conv2d 2

by sqrt(token_length) by channel_size if applicable. For example, the output
shape of ViT, XCiT, CoaT, and DeiT features are not composite numbers so we
do not reshape them. To aggregate the result from different states, we aggregate
on the logits instead. Next, for both the upsampling and downsampling Resize
in Fig. 3 in the spatial alignment, we use the nearest interpolation.

A3.7 Image classification

In this section, we illustrate how we modify an existing backbone using ResNet-
18 as an example. For the Torchvision implementation of ResNet-18, we have
listed the subsampling layers in Tab. A11. In our implementation, we modify
those layers to include them in the search space. To see how we select these
subsampling layers, we have included a code snippet from “poolsearch/models/
cls/torchvision/backbones/resnet.py” in Fig. A7. For other deep net archi-
tectures, please refer to our attached code.



36 C.-A. Yang et al.

def resnet_base(model, num_classes):

model.num_classes = num_classes

if model.num_classes != 1000:

model.fc = nn.Linear(model.feat_dim, model.num_classes)

member_fns = {}

def forward_features(self, x):

x = self.conv1(x)

x = self.bn1(x)

x = self.relu(x)

x = self.maxpool(x)

x = self.layer1(x)

x = self.layer2(x)

x = self.layer3(x)

x = self.layer4(x)

return x

member_fns[forward_features.__name__] = forward_features

def forward_head(self, x):

x = self.avgpool(x)

x = x.view(x.size(0), -1)

x = self.fc(x)

return x

member_fns[forward_head.__name__] = forward_head

return model, member_fns

def resnet18_base(model, num_classes):

model.feat_dim = 512

model.downsample_layers = [

['conv1', 'Conv2d'],

['maxpool', 'MaxPool2d'],

['layer2/0', 'BasicBlock'],

['layer3/0', 'BasicBlock'],

['layer4/0', 'BasicBlock'],

]

return resnet_base(model, num_classes)

Fig.A7: Code for Torchvision ResNet18 selecting the subsampling layers.


	 Deep Nets with Subsampling Layers Unwittingly Discard Useful Activations at Test-Time 

