
Deep Nets with Subsampling Layers Unwittingly
Discard Useful Activations at Test-Time

Chiao-An Yang1, Ziwei Liu2, and Raymond A. Yeh1

1 Department of Computer Science, Purdue University
2 S-Lab, Nanyang Technological University

Abstract. Subsampling layers play a crucial role in deep nets by discard-
ing a portion of an activation map to reduce its spatial dimensions. This
encourages the deep net to learn higher-level representations. Contrary
to this motivation, we hypothesize that the discarded activations are
useful and can be incorporated on the fly to improve models’ prediction.
To validate our hypothesis, we propose a search and aggregate method
to find useful activation maps to be used at test-time. We applied our
approach to the task of image classification and semantic segmentation.
Extensive experiments over nine different architectures on ImageNet,
CityScapes, and ADE20K show that our method consistently improves
model test-time performance. Additionally, it complements existing test-
time augmentation techniques to provide further performance gains.

1 Introduction

In computer vision, deep nets are commonly trained with the assumption that
data samples are drawn independently and identically from an unknown distri-
bution [42]. Following this assumption, it is intuitive that the same model, i.e.,
same forward pass, should be applied to all samples during both the training and
testing time. However, when the assumption is not met then changing the test
time procedure may lead to better performance. For example, test-time augmen-
tation (TTA) leverages additional prior information, i.e., knowing the suitable
augmentations, over the data distribution to improve model performance. For
vision models, TTA methods apply random augmentations, e.g., random crops,
flips, and rotation, to the test image and perform majority voting to make a
final prediction [17, 46, 54, 55, 70]. With the success of TTA, a natural question
arises: are there other choices for modifying the test-time procedure?

In this work, we present an orthogonal approach to improving the model
performance at test-time. Instead of imposing additional knowledge through
data augmentation, we re-examine the ones that are built into the deep net
architecture. We focus on the knowledge built into subsampling and pooling
layers. Our observation is that models with subsampling layers do not utilize
activations to their fullest, as some activations are discarded. A question arises,
can the discharged activations benefit the model? The main challenges are:
(a) identifying which of the discarded activations are useful; and (b) how to
incorporate these activations into a test-time procedure.

2 C.-A. Yang et al.

We formulate an activations search space for a given pre-trained deep net.
Each state in this space corresponds to an activations map that can be extracted
by choosing different selection indices (s) in the subsampling layers. Given a
computation budget, we conduct a greedy search for the set of most promis-
ing activation maps based on a confidence criterion. We then aggregate these
activation maps using a weighted average to make a final prediction.

We conduct extensive experiments on ImageNet [25] over nine different pre-
trained networks, including ConvNets and Vision Transformers, to validate the
efficacy of the proposed approach. We also evaluate our method on the task of
semantic segmentation using Cityscapes [11] and ADE20K [77] with different
segmentation networks, including FCN [36], DeepLab [7, 8], and SegFormer [66].
Overall, we find that our test-time procedure improves both classification and
segmentation performance. Additionally, our approach achieves additional gains
when it is used in conjunction with existing TTA methods, i.e., our approach
complements TTA.
Our contributions are as follows:
– We identified that deep nets with subsampling layers discard activations that

could be useful for prediction.
– We propose a framework to search over the discarded activations with a

learned criterion and aggregate useful ones, via an attention aggregation
module, to improve model performance at test-time.

– Extensive experiments on various deep nets demonstrate the effectiveness of
the proposed test-time procedure on both image classification and semantic
segmentation tasks.

2 Related work

We briefly discuss related work in test-time augmentation, adaptation, ensemble
models, and pooling layers.

Test-time augmentation. As our approach can be viewed as a form of Test-
Time Augmentation (TTA) but over the set of selection indices, hence we briefly
review TTA. At a high level, TTA aims to increase a model’s performance at
test-time by at the cost of computation increases. This is beneficial for tasks
where the risk of making a mistake significantly outweighs the computation e.g.,
medical-related tasks. We note that the computation increase may be very
significant. Let’s consider image classification on ImageNet, TTA applied to their
model includes 144 crops per-image [55], i.e., an increase 144× in compute.
More recent TTA method [52], further increases the computation to 150×.

The most common form of TTA is to augment the input image and combine
the output from each augmentation to make a final prediction for improving
task performance. Common augmentations include random cropping [4, 54, 55],
flipping [17, 46], or combinations of the augmentations [41]. See Fig. 1 for a
comparison of standard, test-time augmentation, and our test-time procedure.

Recent works [10, 16, 23, 31, 38, 41, 52] try to learn the distribution of
data augmentation for test-time impacts. Given a set of TTA augmentation, a

Subsampling Layers Unwittingly Discard Useful Activations 3

ŷ

align by
shifting

(a) Classic test-time data augmentation

I
(1)
aug

I
(2)
aug I . . .ŷ

(b) Our test-time procedure

I
(3)
aug

A
g
g
r
e
g
a
t
e

s = (0, 0, 0)

Fθ

Sec.4.2 Search

s = (0, 0, 0)

Fθ

∆(s)
fs

∆(s)

aggregate
with an

attention
module

fs

s1 s2 s3

s1

s2

s3

Ws = (0, 0, 0)

Fθ

s = (2, 0, 0)

s = (1, 0, 0)

s = (3, 0, 0)

s = (2, 2, 0)

s = (2, 3, 0)

s = (2, 1, 0)

Sec.4.1 Aggregate

Fig. 1: Comparisons on test-time procedures. (a) In classic test-time augmenta-
tion, the output ŷ is aggregated from different augmented images Iaug feeding into the
same model Fθ with default selection indices s = (0, 0, 0). (b) In our procedure, ŷ is
aggregated over one single image I feeding into Fθ but activations are extracted over a
set of selection indices s. We apply a searching algorithm to search for the top-Bours

selection indices s based on a scoring function (Sec 4.2). We then aggregate (Sec 4.1)
the resulting feature set F = {fs} by first aligning each feature according to s and
then merging them using an attention aggregation module.

common approach is to average the resulting logits to make a final prediction.
GPS [38] learns to pick the top-k augmentation transforms based on an iterative
greedy search. Shanmugam et al. [52] learn a weighted function, deciding which
augmentation transform is more important than the other. Chun et al. [10]
also studied how to effectively combine/aggregate augmentations’ output into a
single prediction via the Entropy Weight Method (EWM) [3, 32], i.e., the final
prediction is a weighted combination based on entropy. DiffTPT [14] leverages
diffusion models to generate high-quality augmented data. TeSLA [57] introduced
flipped cross-entropy loss to adapt the pre-trained model during test time. Kim
et al. [23] learn to select designated data transformation for each image by
introducing an auxiliary module on estimating losses. Unfortunately, we are not
able to reproduce their results [23] due to its heavy computation requirement.

It is to be noted that our method differs from the aforementioned works in
several ways. First, all TTA methods modify the inputs on the image space using
various data transformations. On the other hand, we use the discarded activations
in the feature space of the subsampling layers. Second, unlike these TTA methods
that learn general domain knowledge, our searching and aggregation procedure
adapts to each image and generates an instance-based augmented feature. Finally,
our learned aggregation can be generalized to different test-time budgets without
the need for retraining. In contrast, existing works [38, 52] need to retrain their
aggregation layer if they change the test-time budget.

Ensemble methods. Classical ensemble methods such as stacking [63] and
bagging [6] aggregate predictions from multiple models to create an improved
prediction. Recent works [21, 43, 61, 74] focus on how to efficiently learn a
set of diverse models. We note that ensemble models require training multiple
models and running each of them at test time. On the contrary, our approach
only requires a single pre-trained model (with subsampling layers) to make a
prediction. In other words, our approach is orthogonal to the ensemble methods.

4 C.-A. Yang et al.

If the ensembled deep nets contain subsampling layers, then we can apply our
approach on top of it.

Subsampling and pooling layers. Subsampling layers can be traced back
to the origin of convolutional neural networks [15, 27] where striding is used to
reduce the spatial dimension and increase the networks’ receptive field. Another
choice to reduce the spatial dimension is pooling layers, e.g., Average Pooling [26],
Max-Pooling [47, 69], or other generalizations [48, 51, 53, 72]. To preserve the
lost information from downsampling layers, anti-aliased CNN [73] inserts a
max-blur-pool layer to the pooling layer. In this work, we show that deep
nets with subsampling layers can improve their test-time performance by using
discarded activations. Additional relevant details and notation of subsampling
layers are reviewed in Sec. 3.

3 Preliminaries

We provide a brief review of the subsampling layer and how it is used in deep
nets. For readability, we describe these ideas on 1D “images”, in practice, they
are generalized to 2D activation maps with multiple channels.

1.1 0.3 0.2 1.2 0.8 0.9

1.1 0.2 0.8

(a) default

0.3 1.2 0.9
(b) discarded

1.1 0.3 0.2 1.2 0.8 0.9

x

x

Sub(x, s = 0)

Sub(x, s = 1)

1.1 0.3 0.8 0.9

1.1 0.8

(a) default

0.3 0.9

(b) discarded

1.1 0.3 0.8 0.9x

x

Sub(x, s = 0) Sub(x, s = 1)

x

Fig. 2: Subsampling by two.

Subsampling layers. In its simplest
form, a subsampling operation SubR :
RN 7→ R⌊N/R⌋ with a subsampling rate
R ∈ N reduces an input image I’s spatial
size from N to ⌊N/R⌋ following:

SubR(I; s)[n] = I[Rn+ s] ∀n ∈ Z, (1)

where s ∈ {0, . . . , R − 1} denotes a selection index. In most deep learning
frameworks [1, 5, 45], a subsampling layer defaults to s = 0, i.e., when subsampling
by a factor of two (R = 2) the activations on the even indices (s=0) are kept and
the odd indices (s = 1) activations are discarded; as illustrated in Fig. 2. In this
work, we show that using the discarded activation, i.e., s ≠ 0, at test-time can
lead to performance gains.

Deep nets with subsampling layers. Many deep nets in computer vision
contain subsampling layers to reduce spatial dimensions. We take a very generic
view toward subsampling layers. Consider a convolution layer with stride two, it
can be viewed as a convolution layer with stride one followed by a subsampling by
a factor of two. Similarly, any pooling operation can be decomposed into a “sliding”
operation followed by subsampling. For example, max pooling is equivalent to a
sliding max filter followed by a subsampling layer. With this perspective, many
notable deep net architectures contain subsampling layers, including early works
such as LeNet [27], the popular ResNet [18], MobileNet [19, 20, 50], and the
recent vision transformers (ViTs) [13, 33, 34].

Classification formulation. An image classification model with K classes
is trained over a dataset D = {(I,y)} by minimizing the negative log-likelihood:

L(D) = −
∑

(I,y)∈D

K∑
k=1

y[k] log(ŷ[k](I)), (2)

Subsampling Layers Unwittingly Discard Useful Activations 5

where, y denotes the class label in one-hot representation, and ŷc(I) denotes
the predicted probability of class c. The deep net making the prediction can be
defined as a composition of a feature extractor Fθ and a classifier Cϕ, i.e.,

ŷ(I) = Cϕ ◦ Fθ(I, s),with s = 0. (3)

Consider a feature extractor Fθ consisting of L subsampling layers, each with
a subsampling factor R(l). We introduce a selection vector s ∈ S to denote
indices of the activations, i.e., a tuple of s in Eq. (1) for each layer. The set
S =

∏L
l=1{0, . . . , R(l)} denotes the selection index for all the possible activations

that can be extracted from a given image. The default forward pass corresponds
to using s = (0, 0, 0, ...) = 0 and all other S\{0} activations are disgarded.

4 Our Approach

Given a trained deep net with subsampling layers, we develop a test-time pro-
cedure that improves model performance. The approach is motivated by the
observation that subsampling layers discard activations, e.g., a subsampling factor
of two on a 2D feature map leads to losing 3

4 of the spatial activations. As these
discarded activations contain information about the input image, we believe they
can be incorporated at test-time to improve model performance.

The idea is to keep a subset of the discarded activations and aggregate them
into an improved prediction. To do so, we need to answer the following:
(a) How to better aggregate the activations? Using all test-time transfor-

mations is not always a good idea [38, 52]. Similarly, simply averaging all
discarded activations leads to degraded performance.

(b) Which of the discarded activations to retain? Naively keeping all the
discarded activations leads to an exponential growth in the number of feature
maps which is impractical.

To address (a), in Sec. 4.1, we describe how we learn an aggregation function based
on the attention mechanism. To address (b), in Sec. 4.2, we discuss how the learned
attention values can be used as a search criterion for finding useful discarded
activations. An overview of the proposed aggregate and search framework is
visually illustrated in Fig. 1(b).

4.1 Aggregating selected activations for prediction

Given a set of indices Ŝ, an image feature fs ∈ Rd is extracted for each s ∈ Ŝ to
form a feature set

F = {fs | s ∈ Ŝ},where fs = Fθ(I; s) (4)

and Fθ(I; s) denotes the deep net’s backbone. The size of indices set |Ŝ| is equal
to a user-specified test-time budget BOurs which corresponds to the number
of forward passes needed at test time. These features are combined via an

6 C.-A. Yang et al.

aggregation function A : Rd×BOurs 7→ Rd and passed to the pre-trained classifier
Cϕ to make a prediction ŷ = Cϕ (A(F)) .

This aggregation function can be learned, e.g., following the setup of Shan-
mugam et al. [52] or it can be learning-free, e.g., following the classic TTA where
the aggregation A is simply the average of all fs, i.e., A(F) = 1

Bours

∑
s∈Ŝ fs. We

now discuss our proposed learned aggregation function based on attention, and a
learning-free aggregation based on entropy.

Learning an aggregation function. We propose a learnable multi-head
attention module to be the aggregation function for two reasons: (a) The impor-
tance of one feature fs is relative to other features. (b) An attention module
is a set operator [28] that can take an input of variable size for the feature
set F . In other words, the aggregation function can be trained on one fixed
budget and evaluated at any arbitrary testing budget. Contrarily, the learned
aggregation function proposed by Shanmugam et al. [52] is retrained for each
test-time budget.

For each fs, we learn its query qs, key ks, and value vector vs using a fully
connected layer. The attention matrix W is obtained by computing the inner
product and normalizing through a softmax among the queries and keys for all
(s, s′) pair, i.e.,

Wss′ = exp(q⊺
sks′)/

 ∑
s′′∈Ŝ

exp(q⊺
sks′′)

 . (5)

The attention module’s output is then used to learn an offset from the average
features, i.e.,

Alearned(F) =
1

Bours

∑
s∈Ŝ

fs + MLP
∑
s′∈Ŝ

Wss′vs′)

 , (6)

to obtain the aggregated feature over the set Ŝ. Here, MLP denotes an MLP
model.

Learning-free aggregation. Inspired by Chun et al. [10], we use the entropy
of the logits to quantify the confidence of the model in its prediction and weight
each activation accordingly. Lower entropy indicates the more confident the model
is for a prediction and thus it should receive a higher weight. We propose to
weight each fs

ws =
1

Zs

(
1− H(Cϕ(fs))

logK

)
, (7)

where H(·) is the entropy function, K is the number of classes, and Zs is the
normalization term such that

∑
s ws = 1. Overall, our training-free aggregation

is as follows,

Aentropy(F) =
∑
s∈Ŝ

wsfs. (8)

Subsampling Layers Unwittingly Discard Useful Activations 7

x

s = 0

s = 1
A

Align

Resize

Resize

Shift Δ

Resize

Fig. 3: Illustration of Aligns with a single subsampling layer.

Spatial alignment (Aligns). To properly aggregate feature maps fs from
different states s, we find it more beneficial to consider their shifting in feature
space before aggregation to avoid spatial mismatch and adjust Eq. (4) to

F = {fs | s ∈ Ŝ},where fs = Aligns(Fθ(I; s)). (9)

We perform an alignment based on the relative shift with respect to the input
resolution. Aligns first resizes the activation maps to the input resolution, then
shifts perform a shift ∆ relative to the default activation Fθ(I;0). In Fig. 3, we
illustrate this alignment using an input of length 4 with a single subsampling
by 2. The green activations are extracted with s = 0 and the yellow activations
(s = 1) are aligned by shifting with ∆ = 1. For a specific s, we can compute the
shift ∆ as follows:

∆ =
∑L

l=1 sl

(∏l
l′=1 R

(l′)
)

= s1 + s2R
(1) + s3R

(1)R(2) + · · · , (10)

where s = (s1, s2, . . . , sL) denotes the selection indices and R(l) denotes the
subsampling rate at the lth layer.

4.2 Searching for useful activations

Algorithm 1 Search for activations (Top-down)
1: Inputs: I, S, Criterion, Budget BOurs

2: Q← Init an empty priority queue
3: E ← Init a dictionary of empty set ∀s ∈ S
4: Ŝ = {} # Keeps track of returned states
5: Q.insert((0, 0))
6: while |Ŝ| ≤ BOurs do
7: s = Q.pop()
8: l = min({1, . . . , L}\E[s]) # Top-down
9: E[s].add(l) # Keeps track of expanded l

10: for all s′ ∈ Neighbors(s, l) do
11: # Q sorted by Criterion
12: Q.insert((s′, Criterion(s′, I)))
13: Ŝ.add(s′)

14: Return: Ŝ

We have described how we
aggregated a set of features
Ŝ. In this section, we will de-
scribe how to find this set of
indices where the correspond-
ing activations would benefit
the model performance from
the discarded set S\{0}. As
its size |S| grows exponentially
with the number of subsam-
pling layers, naively iterating
for all activations would be ex-
pensive. To address this, we
propose a greedy search to

8 C.-A. Yang et al.

gradually grow a set of selected activations within a given compute budget
BOurs. The high-level idea of the search algorithm is summarized in Alg. 1 and
visualized in Fig. 4.

Search procedure. We formulate the task of finding a set of promising
activation maps Ŝ as a search problem over the state space S =

∏L
l=1{0, . . . , R(l)−

1} where each state s = (s1, s2, . . . , sL) corresponds to a tuple of selection index
for each of the subsampling layer l in the pre-trained deep net. The Search,
in Alg. 1, returns all the states it has visited within a computation budget Bours.

0.25
0 00

0.23
02 0

0.34
01 0

0.31
03 0

0.47
02 2

0.42
02 1

0.45
02 3

0 2 0

0 3 0

1 2 01 1 0 1 3 0 3 2 03 1 0 3 3 0

Criterion
s

s1 s2 s3 Ŝ

0 01
0.35

0 00
0.25

0 03
0.31

2 02
0.43

1 02
0.42

3 02
0.45

0 02
0.23

! = 3
$ = 5
& = 4

Fig. 4: Search for activations. From the
initial state (0, 0, 0), we add its 3 neighbors
(l = 1) in a top-down fashion. Next, state
(2, 0, 0) has the lowest criterion, hence we fur-
ther add its 3 neighbors (l = 2). Finally, the
lowest-Bours states are returned in Ŝ. We keep
track of the expanded l in a dictionary E.

To implement this search, we uti-
lize a priority queue Q (lowest val-
ues are popped first) to determine
which of the following states is more
promising to visit next. The prior-
ity queue is sorted based on the val-
ues computed from a Criterion(fs)
function. In theory, this criterion can
be any function that maps a fea-
ture map fs to a real number. Later
in this section, we describe our pro-
posed learned and learning-free cri-
teria.

For each visited state s, we then
add its “neighboring states” for a sub-
sampling layer l. We define the neigh-
bors of state s = 0 at the 0th layer
is the set ∪i∈(1,2,...R(0)){(i, 0, 0, . . .)}.
The expanded layer l is selected in a
top-down fashion. Finally, we use a
dictionary E to keep track of the ex-
panded layers for each state to avoid
redundancies.

Learned criterion. We prioritize expanding the node with the highest
attention score from the attention W in Eq. (5) since the correspondent feature
contributes the most in the final aggregated feature. Thus, we choose

Criterionlearned(fs) = (
∑
s′∈Ŝ

Wss′)−1. (11)

Learning-free criterion. As in the aggregation, we found that entropy H
is a suitable choice for finding useful features, i.e., the search should emphasize
on high-confidence regions of the feature space, therefore we choose

Criterionentropy(fs) =

K∑
k=1

ŷs[k] log ŷs[k] = H(ŷs), (12)

where ŷs = Cϕ(fs) corresponds to the predicted probability from the classifier.

Subsampling Layers Unwittingly Discard Useful Activations 9

Table 1: Comparison to TTA methods on ImageNet with expanded [52] TTA
policies. We evaluate on ImageNet under Btotal ∈ {30, 100, 150} with various model
architectures. For each Btotal, we report the top-1 Acc. of baseline TTA methods with
and without our learned approach. Whichever is the better one is bolded. The results
of our learned procedure are highlighted.

TTA Ours ResNet18 ResNet50 MobileNetV2 InceptionV3
30 100 150 30 100 150 30 100 150 30 100 150

✗ 70.51 70.51 70.51 76.50 76.50 76.50 72.24 72.24 72.24 71.48 71.48 71.48GPS [38]
✓ 70.74 70.74 70.69 76.74 76.84 76.87 72.37 72.61 72.58 71.86 72.05 72.02

✗ 69.09 68.23 66.40 75.40 74.88 73.56 70.58 69.97 67.81 70.80 70.39 70.34ClassTTA [52]
✓ 70.37 70.36 70.37 76.58 76.61 76.65 71.44 71.68 71.63 71.93 71.99 72.00

✗ 70.55 70.66 70.28 76.54 76.59 76.47 72.33 72.42 72.46 71.65 71.88 71.98AugTTA [52]
✓ 70.75 70.79 70.74 76.76 76.84 76.89 72.41 72.62 72.58 72.09 72.24 72.24

Extension to semantic segmentation. To extend the classification formu-
lation to semantic segmentation, we view semantic segmentation as a per-pixel
classification problem. For example, the entropy will then be computed for each
pixel location. To aggregate the selected activations, we compute a per-pixel
weight map for each activation instead of a scalar weight for the entire activation
map.

5 Experiments

To validate the proposed test-time procedure, we conduct experiments on two
computer vision tasks: image classification, and semantic segmentation. In the
following, we provide the experiment setup and implementation details before
discussing the results.

5.1 Image classification

Experiment setup. Recent TTA methods on image classification focus on
learning TTA. Hence, we focus on comparison using the learned aggregation and
criterion from our approach. The results of our learning-free version are included
in the appendix.

We evaluate our learned methods on two image classification datasets, namely
ImageNet [25] and Flowers102 [44]. We provide experiments on additional
datasets [24] in the appendix. For ImageNet, we use the pre-trained weights
released by Pytorch. We randomly selected 20,000 and 5,000 images from train
of ImageNet to be used for training and validation of the aggregation function.
We report results on the val set of ImageNet. For Flowers102, we fine-tune the
pre-trained ImageNet weights from Pytorch on Flowers102 using the official train-
ing/validation/testing split for Flowers102. For both ImageNet and Flowers102,
each image is first resized to 256px and cropped to 224px.

Please note, this experiment setup differs from Shanmugam et al. [52] as
their setup is non-conventional. Shanmugam et al. [52] resplit ImageNet’s val

10 C.-A. Yang et al.

Table 2: Comparison to TTA methods on Flowers102 with expanded [52]
TTA policies. We evaluate on Flowers102 under Btotal ∈ {30, 100, 150} with various
model architectures. For each Btotal, we report the top-1 Acc. of baseline TTA methods
with and without our learned approach. Whichever is the better one is bolded. The
results of our learned procedure are highlighted.

TTA Ours ResNet18 ResNet50 MobileNetV2 InceptionV3
30 100 150 30 100 150 30 100 150 30 100 150

✗ 89.04 89.04 89.04 91.12 91.12 91.12 89.85 89.85 89.85 87.69 87.69 87.69GPS [38]
✓ 88.93 89.20 89.19 91.05 91.02 91.17 89.90 90.10 90.05 87.95 87.93 87.79

✗ 87.97 87.81 86.39 90.84 90.19 90.06 89.41 88.00 85.54 87.10 87.41 84.81ClassTTA [52]
✓ 88.97 89.15 89.06 91.04 90.97 91.02 89.49 89.58 89.67 87.43 87.43 87.46

✗ 88.73 88.86 88.55 90.91 90.84 90.81 90.10 90.00 89.82 87.35 87.43 87.43AugTTA [52]
✓ 89.02 89.55 89.55 91.14 90.93 90.97 90.08 90.13 90.11 87.62 87.62 87.79

set into train/validation/test sets. In other words, their models are trained on
a subset of ImageNet’s original val set. They also reported non-conventional
“multiple runs”. For each “run”, they evaluate the same trained model over different
test subsets splits, where each split is sampled (with replacement) from their
ImageNet’s test split3. Instead of following the unconventional setup, we conduct
experiments using their released code on standard val split for each of the
datasets. For multiple runs, each experiment is repeated 5 times with different
random seeds, where the training split is resampled, and the aggregation module
is reinitialization. Overall, we observe the standard deviations for our method to
be less than 0.05%.

Implementation details. Following Shanmugam et al. [52], we choose
ResNet18, ResNet50 [18], MobileNetV2 [50], and InceptionV3 [56] to test the
generalizability of our procedure on multiple backbones. Please refer to the
supplementary for our definition of Fθ and Cϕ and more results on additional
backbones, e.g. ResNext50 [67], ShuffleNetV2 [39], Swin [34], and SwinV2 [33].

To train our aggregation module A, we fix the budget Bours = 30 during
training. To encourage the model to expand unseen nodes rather than focusing
on seen ones, during training, we randomly sampled the nodes with probability
inverse-correlated to its Criterion. We use the AdamW optimizer [37] and the
cosine-annealing scheduler. The initial learning rate on ImageNet and Flowers102
is set to 1e−6.The training batch sizes are 32 for all datasets.

Baselines. For baselines, we select several state-of-the-art TTA methods,
namely GPS [38], AugTTA [52], and ClassTTA [52]. For a fair comparison, each
method is evaluated under the same test-time budget Btotal, i.e., the number of
total forward passes required to generate the final outputs.

Both baseline TTA methods and our procedure required their test-time budget.
We denote the former one as Btta and the latter one as Bours. Since the baseline
TTA methods and ours are independent of each other, the overall budget Btotal
is the product of Btta and Bours. For example, when comparing under the budget

3Please see their code github.com/divyashan/test-time-augmentation) at
utils/evaluate.py : L58.

github.com/divyashan/test-time-augmentation

Subsampling Layers Unwittingly Discard Useful Activations 11

Table 3: Ablation on
searching method. We
report the top-1 Acc. (%)
and latency (img/s) on
ImageNet with different
choices of search space un-
der Bours = 30.
Alg. 1: line 7 Acc.↑ Latency↓

{1, · · · , L} 79.64 53.46
{1, · · · , L − 1} 79.52 25.06
{2, · · · , L} 80.06 25.84
{2, · · · , L − 1} 79.88 21.21

Table 4: Ablation
on aggregation. We
report the top-1 Acc. (%)
and latency (img/s) on
ImageNet with different
choices of A(F) under
Bours = 30.

A(F) Acc.↑ Latency↓

Avg 79.38 19.55
Entropy 79.44 19.56
Ours w/o Align 79.52 20.09
Ours (w/ Align) 79.88 21.21

Table 5: Ablation on
searching criterion. We
report the top-1 Acc. (%)
and latecny (img/sec) on
ImageNet with different
choices of Criterion(fs)
under Bours = 30.
Criterion(fs) Acc.↑ Latency↓

Random 79.80 13.53
∆ 79.72 12.65
H(ŷ) (Eq. (12)) 79.86 21.45
Ours (Eq. (11)) 79.88 21.21

Btotal = 150 in Tab. 1, (Btta, Bours) = (150, 1) is selected for the experiments
w/o Ours, while (Btta, Bours) = (10, 15) is selected for the experiments w/ Ours.
Please refer to the supplementary for more detailed configuration.

We follow the expanded TTA policy settings [52] and build a TTA pool
containing various data transformations, such as Flip, Colorization, or Blur.
The original expanded policy [52] fixes Btta at 128. We increase the possible range
of Btta for expanded policy to cover up to 1000. Please refer to supplementary
for the detailed policy.

Comparision to TTA. We report the comparison between the baseline TTA
methods with and without ours in Tab. 1 and 2 on ImageNet and Flowers102
respectively.

We report the performance under Btotal = 30, 100, and 150 in Tab. 1. We
observe that the baseline TTA methods do not scale well when increasing Btotal.
The performance of GPS remains the same since the number of budget is fixed
in their design; the gains on AugTTA are often minuscule or slightly negative;
while ClassTTA usually suffers from using more budget due to its difficulty in
converging. Our approach instead achieves consistent gain when using higher
Btotal. Moreover, ours outperforms its counterpart in all cases. On average, we
improve the top-1 Acc. of TTA baselines by 0.87%. Specifically, we improve GPS
on average by 0.32%, ClassTTA by 2.01%, and AugTTA by 0.19%.

In Tab. 2, we report the performance under the same settings on Flowers102.
The baseline TTA methods do not benefit much from using more Btotal. Our
approach outperforms its counterpart in most cases while remaining competitive
in the rest. For example, we achieved the top-1 Acc. over all baselines by 0.57%.

Ablation study. We conduct ablation studies using ResNet-18 as the base
architecture and report the performance of our method in our validation split of
ImageNet without any TTA. We use Bours=30 in these studies since the difference
between different choices can be minuscule when the budget is small and the
searching process is short.

In Tab. 3, we test other choices for searching the space S in Alg. 1: line
8. Specifically, we consider limiting the search space {1, · · · , L} by considering
fewer layers. We ablate by removing the expansion on the first layer (l = 1).
We hypothesize that the layer has a small offset and therefore should have little

12 C.-A. Yang et al.

1 5 10 20 30

70.0

70.5

ResNet18

1 5 10 20 30
76.0

76.5

ResNet50

1 5 10 20 30

72.0

72.5

MobileNetV2

1 5 10 20 30

70.0

70.5

71.0

71.5

InceptionV3

0.0 0.2 0.4 0.6 0.8 1.0
Budget Bours

0.0

0.2

0.4

0.6

0.8

1.0

To
p-

1
A

cc
 (%

)

Fig. 5: Acc. vs. budget. We observe an initial
gain in Acc. when increasing the budget Bours.
The improvement plateaus when Bours reaches
about 15.

1.0 1.2 1.4 1.6
Learning-Free Criterion (Entropy)

800

1000

1200

Le
ar

ne
d

C
rit

er
io

n

72

74

76

78

To
p-

1
A

cc
 (%

)

Fig. 6: Criterionlearned(fs) vs.
H(ŷs) vs. Accuracy. Each point
represents an experiment in which
one sole s ∈ Ŝ is used for prediction
and its associated top-1 Acc. over its
learned criterion and entropy.

impact on final outputs. On the other hand, we can omit the expansion on the
last layer (l = L) because the large alignment necessary from the aggregation
deteriorates the quality of the activations. Limiting the search space also greatly
decreases the latency of our approach due to faster spatial alignment.

Overall, we observe that it is beneficial to limit the search space for better
performance and faster speed. Overall, we find out that top-down search while
omitting the last layer has the best performance in image classification. We choose
to omit both the first and last layer as our default option because it balances
between good performance and fast latency.

In Tab. 4, we consider other aggregation methods besides our proposed one
in Eq. (6). The baseline is to simply average all activations. We report the
performance of training-free aggregation by entropy-weighting in Eq. (8). Finally,
we ablate the Align in Eq. (6) to show the importance of aligning feature maps
before aggregation. Our proposed learned aggregation yields the best performance.
Additionally, without aligning feature maps, the performance drops significantly
by 0.36% in top-1 accuracy.

In Tab. 5, we test other choices for Criterion, determining which s′ to
expand first in Alg. 1. The baseline is to expand purely by random. One can
suggest choosing s′ based on the offsets ∆ (see Eq. (10)). We show that expanding
the s′ with the lowest entropy (most confident prediction) is competitive when
training is not feasible. Using learned attention W from the aggregation module
as the criterion yields the best performance.

Analysis on budget Bours. In Fig. 5, we study the effect of the budget
Bours to our procedure on the selected backbones. We report the top-1 Acc. on
our ImageNet testing split w/o any TTA methods. Our method steadily gains
improvements on its own when we increase the budget Bours from 1 to roughly
10. Performance gains are mostly saturated when the budget reaches 20, i.e.,
more budgets yield limited gains.

Subsampling Layers Unwittingly Discard Useful Activations 13

Table 6: Cityscapes and ADE20K results. We consider various encoder backbones
and decoders w/ and w/o our procedure under different Bours ∈ {4, 10} and TTA
(horizontal flip). We report the mIoU score on both Cityscapes and ADE20K semantic
segmentation. The results of our non-learned procedure are highlighted. Our procedure
makes improvements on all combinations of architectures in both datasets. We also
show that ours can improve the results of horizontal flip, proofing the complementary
between our approach and standard TTA.

Dataset HFlip ResNet50-FCN ResNet50-DeepLab MobileNet-FCN MobileNet-DeepLab MiT-SegFormer
✗ 4 10 ✗ 4 10 ✗ 4 10 ✗ 4 10 ✗ 4 10

CityScape ✗ 72.35 72.50 72.56 79.60 79.72 79.73 71.19 71.27 71.83 75.32 75.58 75.60 76.54 77.01 77.05
✓ 72.71 72.88 72.97 80.08 80.15 80.09 71.69 72.03 72.10 75.56 75.75 75.76 76.84 77.11 77.12

ADE20K ✗ 35.94 36.12 36.20 42.72 42.77 42.81 19.55 19.57 19.56 33.92 34.01 34.09 37.41 37.68 37.67
✓ 36.31 36.46 36.50 43.02 43.07 43.06 19.72 19.72 19.73 34.18 34.20 34.28 38.03 38.33 38.28

We provide additional results on various pre-trained backbones [62] in the ap-
pendix, e.g. MobileNetV3 [19] Multi-scale ViT (MViTv2) [29, 29], DenseNet [22],
VGG [54], RepVGG [12], DeiT [58], CoaT [68], ConvNeXTV2 [35, 64], XCiT [2],
VOLO [71], PvTV2 [59], PvTV2 [60], Efficientformer [30], and ShuffleNet [75].

Analysis of the proposed criteria. We present a visualization in Fig. 6
demonstrating that our learned attention W in Eq. (6) is a good selection
criterion. For the set of selection indices s ∈ S over ImageNet (validation), we
plot out the accuracy of its associated top-1 Acc. verses its learned criterion
in Eq. (11) and the learning-free criterion based on entropy Eq. (12). That is,
each point represents an experiment in which one sole s ∈ Ŝ is used for prediction
and its associated top-1 Acc. Empirically, we observe that indices s with lower
Criterion(fs) tend to have better accuracy, hence it is reasonable to prioritize
them when selecting Ŝ.

5.2 Semantic segmentation

Experiment setup. As semantic segmentation has not been studied in learned
TTA baselines [38, 52], we consider the non-learned TTA setting for this section.
We conduct experiments using the non-learned version of our approach on
CityScapes and ADE20K datasets [11, 76, 77]. We test on several semantic
segmentation backbones and decoders, including ResNets [18], MobileNets [20],
FCN [36], DeepLab [7, 8], and MiT+SegFormer [66].

Implementation details. Our implementation is based on MMSeg (Open-
MMLab Segmentation) [40]. It provides pre-trained weights and benchmarks on
Cityscapes [11] and ADE20k [76, 77]. As for the searching strategy, different from
the observation in image classification, we do not find it beneficial to limit the
search space of Alg. 1. All search spaces remain unchanged as {1, 2, · · · , L}. For
evaluation metrics, we report the mIoU score on both datasets.

Results. In Tab. 6, we report the results on Cityscapes and ADE20K se-
mantic segmentation. We test with various combinations of encoder backbones
and decoders for semantic segmentation to show that our method generalizes

14 C.-A. Yang et al.

over architectures, including both conv. backbones (MobileNet, ResNet-50) and
transformer (MiT) backbones.

We observe that our approach improves the performance over baseline models
on all combinations of encoder backbones and decoders. The largest performance
gains are 0.51 on Cityscapes mIoU with MiT + SegFormer (Bours = 10) and
0.27 on ADE20K mIoU with MiT + SegFormer (Bours = 4). These experiments
show that our method can be extended to semantic segmentation with consistent
improvements.

Comparison to TTA. In Tab. 6, we also report the comparison to Hori-
zotalFlip, which is a popular choice for TTA on semantic segmentation. Our
test-time procedure further improves the performance when TTA is used. We
observe a 0.30 gain in mIoU on MiT+Segformer (Bours = 4). The results show
that our approach is orthogonal to TTA.

We provide additional results on various segmentation backbones in the
appendix, e.g. MobileNetV3+LRASPP [19], UNet [49], Swin [34], UperNet [65],
and Twins [9].

5.3 Discussion & limitation

On both image classification and semantic segmentation, our proposed test-time
procedure consistently demonstrates improvements over the baselines on a wide
range of deep net architectures. We further point out that the achieved gains
are considered significant in image classification and segmentation. However, the
improved performance does come at a cost.

The limitation common among all test-time procedures is the increase in test-
time computation. Multiple forward passes are needed to make a final prediction,
and our method is no different. The increase in test-time computation means
that the approach is not suitable for applications with real-time or low-power
constraints. On the flip side, our method will be desirable for tasks where the
accuracy is substantially more important than the compute time, e.g., medical-
related tasks. For these tasks, we believe our method is an appealing option to
further improve performance.

6 Conclusion

We propose a test-time procedure that leverages the activation maps originally
discarded by the subsampling layers. By solving a search problem to identify useful
activations and then aggregating them together, via a learned aggregation module
and criterion, the model can make more accurate predictions at test-time. On
image classification and semantic segmentation tasks, we show that our approach
is effective over nine different architectures. Additionally, it complements existing
test-time augmentation approaches. These results suggest that our approach is a
compelling method in addition to the existing testing TTA framework, especially
for tasks that do not have real-time constraints.

Subsampling Layers Unwittingly Discard Useful Activations 15

References

1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin,
M., Ghemawat, S., Irving, G., Isard, M., et al.: Tensorflow: a system for
large-scale machine learning. In: OSDI (2016)

2. Ali, A., Touvron, H., Caron, M., Bojanowski, P., Douze, M., Joulin, A.,
Laptev, I., Neverova, N., Synnaeve, G., Verbeek, J., et al.: Xcit: Cross-
covariance image transformers. In: Proc. NeurIPS (2021)

3. Amiri, V., Rezaei, M., Sohrabi, N.: Groundwater quality assessment using en-
tropy weighted water quality index (EWQI) in Lenjanat, Iran. Environmental
Earth Sciences (2014)

4. Bahat, Y., Shakhnarovich, G.: Classification confidence estimation with
test-time data-augmentation. arXiv e-prints pp. arXiv–2006 (2020)

5. Bradbury, J., Frostig, R., Hawkins, P., Johnson, M.J., Leary, C., Maclaurin,
D., Necula, G., Paszke, A., VanderPlas, J., Wanderman-Milne, S., Zhang,
Q.: JAX: composable transformations of Python+NumPy programs (2018),
URL http://github.com/google/jax

6. Breiman, L.: Bagging predictors. Machine learning (1996)
7. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous con-

volution for semantic image segmentation. arXiv preprint arXiv:1706.05587
(2017)

8. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder
with atrous separable convolution for semantic image segmentation. In: Proc.
ECCV (2018)

9. Chu, X., Tian, Z., Wang, Y., Zhang, B., Ren, H., Wei, X., Xia, H., Shen,
C.: Twins: Revisiting spatial attention design in vision transformers. arXiv
preprint arXiv:2104.13840 (2021)

10. Chun, S., Lee, J.Y., Kim, J.: Cyclic test time augmentation with entropy
weight method. In: Proc. UAI (2022)

11. Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson,
R., Franke, U., Roth, S., Schiele, B.: The Cityscapes dataset for semantic
urban scene understanding. In: Proc. CVPR (2016)

12. Ding, X., Zhang, X., Ma, N., Han, J., Ding, G., Sun, J.: RepVGG: Making
VGG-style ConvNets great again. In: Proc. CVPR (2021)

13. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Un-
terthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit,
J., Houlsby, N.: An image is worth 16x16 words: Transformers for image
recognition at scale. In: Proc. ICLR (2021)

14. Feng, C.M., Yu, K., Liu, Y., Khan, S., Zuo, W.: Diverse data augmentation
with diffusions for effective test-time prompt tuning. In: Proc. ICCV (2023)

15. Fukushima, K.: Neocognitron: A self-organizing neural network model for a
mechanism of pattern recognition unaffected by shift in position. Biological
Cybernetics (1980)

16. Gaillochet, M., Desrosiers, C., Lombaert, H.: Taal: Test-time augmentation
for active learning in medical image segmentation. In: MICCAI Workshop
on Data Augmentation, Labelling, and Imperfections (2022)

http://github.com/google/jax

16 C.-A. Yang et al.

17. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proc. ICCV
(2017)

18. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recogni-
tion. In: Proc. CVPR (2016)

19. Howard, A., Sandler, M., Chu, G., Chen, L.C., Chen, B., Tan, M., Wang,
W., Zhu, Y., Pang, R., Vasudevan, V., et al.: Searching for MobileNetV3. In:
Proc. ICCV (2019)

20. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand,
T., Andreetto, M., Adam, H.: MobileNets: Efficient convolutional neural
networks for mobile vision applications. arXiv preprint arXiv:1704.04861
(2017)

21. Huang, G., Li, Y., Pleiss, G., Liu, Z., Hopcroft, J.E., Weinberger, K.Q.:
Snapshot ensembles: Train 1, get m for free. In: Proc. ICLR (2017)

22. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected
convolutional networks. In: Proc. CVPR (2017)

23. Kim, I., Kim, Y., Kim, S.: Learning loss for test-time augmentation. In: Proc.
NeurIPS (2020)

24. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from
tiny images (2009)

25. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep
convolutional neural networks. In: Proc. NeurIPS (2012)

26. LeCun, Y., Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard, W.,
Jackel, L.: Handwritten digit recognition with a back-propagation network.
In: Proc. NeurIPS (1989)

27. LeCun, Y., Haffner, P., Bottou, L., Bengio, Y.: Object recognition with
gradient-based learning. In: Shape, contour and grouping in computer vision
(1999)

28. Lee, J., Lee, Y., Kim, J., Kosiorek, A., Choi, S., Teh, Y.W.: Set transformer:
A framework for attention-based permutation-invariant neural networks. In:
Proc. ICML (2019)

29. Li, Y., Wu, C.Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., Feichtenhofer,
C.: MViTv2: Improved multiscale vision transformers for classification and
detection. In: Proc. CVPR (2022)

30. Li, Y., Yuan, G., Wen, Y., Hu, J., Evangelidis, G., Tulyakov, S., Wang, Y.,
Ren, J.: Efficientformer: Vision transformers at mobilenet speed. In: Proc.
NeurIPS (2022)

31. Li, Z., Kamnitsas, K., Dou, Q., Qin, C., Glocker, B.: Joint optimization
of class-specific training-and test-time data augmentation in segmentation.
IEEE Transactions on Medical Imaging (2023)

32. Liu, L., Zhou, J., An, X., Zhang, Y., Yang, L.: Using fuzzy theory and
information entropy for water quality assessment in Three Gorges region,
China. Expert Systems with Applications (2010)

33. Liu, Z., Hu, H., Lin, Y., Yao, Z., Xie, Z., Wei, Y., Ning, J., Cao, Y., Zhang,
Z., Dong, L., et al.: Swin transformer v2: Scaling up capacity and resolution.
In: Proc. CVPR (2022)

Subsampling Layers Unwittingly Discard Useful Activations 17

34. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin
transformer: Hierarchical vision transformer using shifted windows. In: Proc.
ICCV (2021)

35. Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C., Darrell, T., Xie, S.: A convnet
for the 2020s. In: Proc. CVPR (2022)

36. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic
segmentation. In: Proc. CVPR (2015)

37. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: Proc.
ICLR (2019)

38. Lyzhov, A., Molchanova, Y., Ashukha, A., Molchanov, D., Vetrov, D.: Greedy
policy search: A simple baseline for learnable test-time augmentation. In:
Proc. UAI (2020)

39. Ma, N., Zhang, X., Zheng, H.T., Sun, J.: Shufflenet v2: Practical guidelines
for efficient cnn architecture design. In: Proc. ECCV (2018)

40. MMSegmentation Contributors: MMSegmentation: OpenMMLab Semantic
Segmentation Toolbox and Benchmark. https://github.com/open-mmlab/
mmsegmentation (2020)

41. Moshkov, N., Mathe, B., Kertesz-Farkas, A., Hollandi, R., Horvath, P.: Test-
time augmentation for deep learning-based cell segmentation on microscopy
images. Scientific reports (2020)

42. Murphy, K.P.: Probabilistic machine learning: an introduction. MIT press
(2022)

43. Nam, G., Yoon, J., Lee, Y., Lee, J.: Diversity matters when learning from
ensembles. In: Proc. NeurIPS (2021)

44. Nilsback, M.E., Zisserman, A.: Automated flower classification over a large
number of classes. In: Indian conference on computer vision, graphics &
image processing (2008)

45. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E.,
DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,
Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep
learning library. In: Proc. NeurIPS (2019)

46. Pavllo, D., Feichtenhofer, C., Grangier, D., Auli, M.: 3D human pose estima-
tion in video with temporal convolutions and semi-supervised training. In:
Proc. CVPR (2019)

47. Ranzato, M., Huang, F.J., Boureau, Y.L., LeCun, Y.: Unsupervised learning
of invariant feature hierarchies with applications to object recognition. In:
Proc. CVPR (2007)

48. Rojas-Gomez, R.A., Lim, T.Y., Schwing, A., Do, M., Yeh, R.A.: Learnable
polyphase sampling for shift invariant and equivariant convolutional networks.
In: Proc. NeurIPS (2022)

49. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for
biomedical image segmentation. In: Proc. MICCAI (2015)

50. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2:
Inverted residuals and linear bottlenecks. In: Proc. CVPR (2018)

https://github.com/open-mmlab/mmsegmentation
https://github.com/open-mmlab/mmsegmentation

18 C.-A. Yang et al.

51. Sermanet, P., Chintala, S., LeCun, Y.: Convolutional neural networks applied
to house numbers digit classification. In: Proc. ICPR (2012)

52. Shanmugam, D., Blalock, D., Balakrishnan, G., Guttag, J.: Better aggregation
in test-time augmentation. In: Proc. ICCV (2021)

53. Shi, Z., Ye, Y., Wu, Y.: Rank-based pooling for deep convolutional neural
networks. Neural Networks (2016)

54. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: Proc. ICLR (2015)

55. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan,
D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proc.
CVPR (2015)

56. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the
inception architecture for computer vision. In: Proc. CVPR (2016)

57. Tomar, D., Vray, G., Bozorgtabar, B., Thiran, J.P.: Tesla: Test-time self-
learning with automatic adversarial augmentation. In: Proc. CVPR (2023)

58. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.:
Training data-efficient image transformers & distillation through attention.
In: Proc. ICML (2021)

59. Wang, W., Xie, E., Li, X., Fan, D.P., Song, K., Liang, D., Lu, T., Luo,
P., Shao, L.: Pyramid vision transformer: A versatile backbone for dense
prediction without convolutions. In: Proc. ICCV (2021)

60. Wang, W., Xie, E., Li, X., Fan, D.P., Song, K., Liang, D., Lu, T., Luo,
P., Shao, L.: Pvt v2: Improved baselines with pyramid vision transformer.
Computational Visual Media (2022)

61. Wen, Y., Tran, D., Ba, J.: BatchEnsemble: an alternative approach to efficient
ensemble and lifelong learning. In: Proc. ICLR (2020)

62. Wightman, R.: Pytorch image models. https://github.com/rwightman/
pytorch- image- models (2019), https://doi.org/10.5281/zenodo.
4414861

63. Wolpert, D.H.: Stacked generalization. Neural networks (1992)
64. Woo, S., Debnath, S., Hu, R., Chen, X., Liu, Z., Kweon, I.S., Xie, S.: Convnext

v2: Co-designing and scaling convnets with masked autoencoders. arXiv
preprint arXiv:2301.00808 (2023)

65. Xiao, T., Liu, Y., Zhou, B., Jiang, Y., Sun, J.: Unified perceptual parsing for
scene understanding. In: Proc. ECCV (2018)

66. Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J.M., Luo, P.: Seg-
Former: Simple and efficient design for semantic segmentation with trans-
formers. In: Proc. NeurIPS (2021)

67. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transfor-
mations for deep neural networks. In: Proc. CVPR (2017)

68. Xu, W., Xu, Y., Chang, T., Tu, Z.: Co-scale conv-attentional image trans-
formers. In: Proc. ICCV (2021)

69. Yamaguchi, K., Sakamoto, K., Akabane, T., Fujimoto, Y.: A neural network
for speaker-independent isolated word recognition. In: ICSLP (1990)

70. Yang, X., Zeng, Z., Teo, S.G., Wang, L., Chandrasekhar, V., Hoi, S.: Deep
learning for practical image recognition: Case study on Kaggle competitions.
In: ACM SIGKDD (2018)

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
https://doi.org/10.5281/zenodo.4414861
https://doi.org/10.5281/zenodo.4414861
https://doi.org/10.5281/zenodo.4414861
https://doi.org/10.5281/zenodo.4414861

Subsampling Layers Unwittingly Discard Useful Activations 19

71. Yuan, L., Hou, Q., Jiang, Z., Feng, J., Yan, S.: Volo: Vision outlooker for
visual recognition. PAMI (2022)

72. Zeiler, M., Fergus, R.: Stochastic pooling for regularization of deep convolu-
tional neural networks. In: Proc. ICLR (2013)

73. Zhang, R.: Making convolutional networks shift-invariant again. In: Proc.
ICML (2019)

74. Zhang, S., Liu, M., Yan, J.: The diversified ensemble neural network. In:
Proc. NeurIPS (2020)

75. Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: An extremely efficient
convolutional neural network for mobile devices. In: Proc. CVPR (2018)

76. Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., Torralba, A.: Scene
parsing through ADE20K dataset. In: Proc. CVPR (2017)

77. Zhou, B., Zhao, H., Puig, X., Xiao, T., Fidler, S., Barriuso, A., Torralba,
A.: Semantic understanding of scenes through the ADE20K dataset. IJCV
(2019)

	 Deep Nets with Subsampling Layers Unwittingly Discard Useful Activations at Test-Time

