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Compared to previous works, our methodology enables controllable adver-
saries through multiple controllable factors to generate closed-loop safety-critical
simulations. This allows for the generation of a broad range of safety-critical
behaviors across diverse scenarios.

A Qualitative Results

For insights into closed-loop simulation outcomes, we invite readers to view the
supplementary videos.

We present two sets of qualitative results. The first set, illustrated in Figure
A1, displays a variety of safety-critical simulations where altering the trajectory
proposals modifies the collision types. The second set, depicted in Figure A2,
showcases simulations that demonstrate different collision scenarios achieved
by adjusting the Time-To-Collision (TTC) to influence the safety-criticality of
the situation. Unlike the STRIVE method, which tends to generate scenarios
with limited variability, our approach utilizes multiple control mechanisms (such
as varying trajectory proposals and safety-criticality levels) to create a broader
spectrum of safety-critical conditions. This flexibility is particularly beneficial for
testing and evaluating autonomous driving algorithms under various challenging
conditions.

B Details on Partial Diffusion

B.1 Methodology for Generating Trajectory Proposals

To generate trajectory proposals for the partial diffusion process, which aims to
create potential collision scenarios, we present a straightforward method based on
lane relationships. In addition to selecting different lane relationships to represent
various types of collisions, we further refine our control over these scenarios by
introducing two primary variations: 1) the relative distance to the conflict point
and 2) the normal offsets of the lane, as illustrated in Figure A3:

1. Relative Distance to the Conflict Point: This adjustment allows for the
precise management of how vehicles navigate interactions, such as passing or
yielding, by selecting specific accelerations that achieve the desired distance
to the conflict point.
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Fig. A1: Illustration of Diverse Collision Scenarios via Partial Diffusion. This
figure showcases example simulations that highlight how varying trajectory proposals can
influence the occurrence and type of collisions. The black line represents the trajectory
proposals for the adversarial vehicle.
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Fig. A2: Impact of Time-To-Collision (TTC) Control on Collision Scenarios.
This figure demonstrates example simulations where adjusting the TTC parameter
influences the dynamics and outcomes of collision scenarios, showcasing the method’s
versatility in testing autonomous driving algorithms under different conditions.

2. Lane’s Normal Offsets: Modifying these offsets enables the generation of
trajectories that accurately reflect the spatial dynamics of vehicle positioning
within lanes.
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Fig.A3: Methods for generating different trajectory proposals.

In addition, we can also generate proposals based on different lanes to have
different relationships.

Note that is essential to generate trajectory proposals within a closed-loop
simulation, updated at every planning cycle. Since the diffusion model outputs ac-
tion sequences, after generating the initial proposals, we employ inverse dynamics
to calculate the corresponding turning rates.

B.2 Ablation study of Partial Diffusion

We measure the Mean Squared Error (MSE) to quantify the difference between
initial trajectory proposals and the outcomes from the partial diffusion model,
focusing on the first second of the trajectory in each planning iteration. Table
A1 reveals that the trajectory MSE varies with the diffusion ratio. This ratio is
adjustable, enabling the calibration of the model to align with user needs and
maintain a balance between the original proposals and the diffusion model’s
output. A partial diffusion ratio of γ = 0.0 corresponds to the highest collision
rate, suggesting that our initial trajectory proposals effectively signal potential
collisions. After the diffusion model’s denoising step, the lateral acceleration
diminishes significantly, leading to more realistic trajectory generations. This
underscores the importance of our proposed partial diffusion process, highlighting
its effectiveness in balancing the alignment between trajectory proposals and the
model’s output, which represents the underlying data distribution.

C Metrics Definitions

This section outlines the definitions of the metrics used in our evaluations,
averaged across all scenarios, except for the realism metric.
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Partial Diffusion
ratio γ

Coll Rate Adv Offroad Traj MSE Adv max
lateral acc

(%) ↑ (%) ↓ (m2) ↓ (m/s3) ↓

0.0 26.8 7.5 3.09 17.5
0.2 14.6 12.5 20.2 2.3
0.4 17.1 10.0 19.2 2.3
0.6 9.8 12.5 16.6 2.0
0.8 12.2 10.0 22.2 2.44
1.0 14.6 7.5 35.6 1.75

w/o Partial Diffusion 7.4 10.0 33.4 2.22

Table A1: Ablation study on the Partial Diffusion ratio.

C.1 Traffic Simulation Metrics

Off-road. This metric measures the percentage of agents that go off-road in
a given scenario. An agent is considered off-road if its centroid moves into a
non-drivable area.

Collision. This metric represents the percentage of agents involved in collisions
with other agents during the simulation.

Realism. Adopting the approach from [39], realism is quantified using the Wasser-
stein distance. This metric compares the normalized histograms of the driving
profiles, focusing on the mean values of three key properties: longitudinal acceler-
ation, lateral acceleration, and jerk. A lower value indicates a higher degree of
realism.

C.2 Adversarial Behavior and Collision Metrics

Collision Relative Speed. Collision Relative Speed is defined as the ego planner’s
speed minus the adversarial vehicle’s speed at the collision timestep.

To control the relative speed, we introduce the relative speed cost function:

Jv =

T∑
t=1

|v1t − vat − vdiff| · 1{d(t) < dcol}, (A1)

where vdiff is the desired speed difference between the ego and the adversarial
vehicles, influencing the relative speed at the point of collision. The function
1{d(t) < dcol} is an indicator function that applies the cost only when the distance
d(t) between the ego and adversarial vehicle is less than a specified threshold
dcol.
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Time-to-Collision Cost. The Time to Collision (TTC) cost [22] assesses collision
risk based on the relative speed and orientation between agents. For two agents
located at positions (xi, yi) and (xj , yj) with respective velocities (vxi , vyi) and
(vxj , vyj ), we define their relative position and velocity. The relative position is
given by dx = xi−xj and dy = yi−yj , representing the positional differences along
the x and y axes. Similarly, the relative velocity is calculated as dvx = vxi

− vxj

and dvy = vyi
− vyj

, which are the differences in their velocities along the x and
y axes. The TTC is computed under a constant velocity assumption, solving a
quadratic equation to find the time of collision tcol, with a collision considered
when relative distance is minimal.

The real part of the solution provides the time to the point of closest approach,
t̃col, calculated as:

t̃col =

{
−dvxdx+dvydy

d̃v
2 if t̃col ≥ 0,

0 otherwise,
(A2)

and the distance at that time, d̃col, is given by:

d̃2col =

{
(dvxdy−dvydx)

2

d̃v
2 if t̃col ≥ 0,

dx2 + dy2 otherwise.
(A3)

We define the TTC cost Jttc as:

Jttc =

T∑
t=1

− exp

(
−
t̃2col(t)

2λt
−
d̃2col(t)

2λd

)
, (A4)

where λt and λd are the time and distance bandwidth parameters. This cost
is evaluated over a time horizon T , with a higher cost for scenarios having low
time to collision and proximity. For further details on the derivation of this cost
function, we direct readers to [22].

In our evaluations, we focus on the average TTC cost of 0.5 seconds preceding
a collision. This metric effectively captures the criticality of the safety scenarios,
reflecting the potential risk of imminent collisions.

Time-to-Collision. Additionally, we compute the average Time-to-Collision (TTC)
for each timestep within the crucial 0.5-second window before collisions occur in
our scenarios. It’s important to note that this TTC is not the actual time until a
collision, but rather a theoretical estimate based on the constant velocity model
assumption for each timestep.

D Implementation Details

In this section, we discuss the implementation details of our diffusion model and
the experimental settings.
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D.1 Diffusion Model Training and Parameterization

The training objective is to minimize the expected difference between the true
initial trajectory and the one estimated by the model, formalized by the loss
function [21] [39]:

L = Eϵ,k,τ0,c

[
∥τ0 − τ̂0∥2

]
(A5)

where τ0 and c are sampled from the training dataset, k ∼ U{1, 2, . . . ,K} is the
timestep index sampled uniformly at random, and ϵ ∼ N (0, I) is Gaussian noise
used to perturb τ0 to produce the noised trajectory τk.

In each denoising step, our model predicts the mean of the next denoised
action trajectory Eq. (3). Instead of predicting the noise ϵ that is used to corrupt
the trajectory [10], we directly output the denoised clean trajectory τ̂0 [21] [39].
The predicted mean based on τ̂0 and τk:

τk−1 = µθ(τk, τ̂0) =

√
ᾱk−1βk
1− ᾱk

τ̂0 +

√
αk(1− ᾱk−1)

1− ᾱk
τk (A6)

where βk represents the variance from the noise schedule in the diffusion process,
αk is defined as αk := 1 − βk, indicating the incremental noise reduction at
each step, and ᾱk is the cumulative product of αj up to step k, mathematically
expressed as ᾱk =

∏k
j=0 αj .

D.2 Diffusion Process Details

For the diffusion process, we utilize a cosine variance schedule as described in [18],
with the number of diffusion steps set to K = 100. The variance scheduler
parameters are configured with a lower bound β1 of 0.0001 and an upper bound
βK of 0.05. The diffusion model takes in a 1-second history and is trained to
predict the next 3.2 seconds with a step time dt = 0.1. Our model was trained on
four NVIDIA RTX A6000 GPUs for 70000 iterations using the Adam optimizer,
with a learning rate set to 1 × 10−5. The diffusion model’s implementation is
based on methodologies from open-source repositories [10,18], and the simulation
framework is developed based on [17,35].

D.3 Guidance details

To simultaneously incorporate multiple guidance functions in our model, we assign
weights to balance their contributions. In our experiments, particularly with
non-adversarial agents, we implement a combination of route guidance (Jroute)
and Gaussian collision guidance (Jgc) across M = 20 examples. Notably, we apply
a filtration process exclusively to Jgc, aiming to prevent imminent collisions For
adversarial agents, we maintain the same weighting across all guidance functions,
but uniquely control the weighting for Jttc to achieve controllable behavior. In
this setting, we select the sample that yields the highest adversarial cost (Jadv),
ensuring effective and targeted adversarial scenarios.
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Collision Guidance: The collision guidance is based on different agent
interactions. Following the methodology of [39], we extend the denoising process
of all agents within a scene into the batch dimension. During inference, to generate
M samples, we proceed under the assumption that each sample corresponds
to the same m-th example of the scene. For the ego vehicle, the future state
predictions are derived from a diffusion model identical to the one used for other
agents. The collision distance for the ego vehicle is then computed considering
these predictions and their interactions with other agents within the scene.

D.4 Selecting Adversarial Agents

To effectively select adversarial agents for safety-critical simulation, we developed
two strategies: dynamically selecting adversarial agents or selecting interacting
agents. Inspired by [26], we proposed to dynamically adjusting the weighting
coefficient ρi of Jadv during the guided diffusion process, encouraging a collision
by minimizing the positional distance between controlled agents and the tested
ego car:

ρi,t =
exp(−di,1(t))∑
j exp(−dj,1(t))

(A7)

where di,1(t) represents the euclidean distance between agent i and the ego vehicle
at time t. Intuitively, the ρi,t coefficients, defined by the softmax operation, identify
a candidate agent to collide with the ego vehicle. The agent with the highest
ρi,t value is considered the most likely “adversary” based on proximity, and this
formulation prioritizes causing a collision with this adversary. This approach
weights the adversarial loss Jadv to highlight key interactions, preventing the
unrealistic of all agents acting adversarially towards the ego vehicle.

An alternate strategy selects interacting agents as adversaries based on their
lane positions relative to the ego. Agents within a certain lane proximity to the
ego are randomly chosen. In this scenario, the selected ith agent is treated as
ρi,t = 1, with all others set to zero, for the duration of the simulation.

E Experimental Settings.

We dynamically select adversarial agents as described in Eq. (A7), based on
the criteria outlined in Tab. 2. In contrast, Tables 3, 4, and 5 use preselected
and fixed adversarial agents. Additionally, Tables 3 and 4 focus on intersection
scenarios where interactions are more involved. The selected scenarios will be
available at our webpage.

F Additional Experiments

F.1 Controllability: Controlling Relative Speed.

In our safety-critical simulation framework, we examine the effects of manipulating
the desired relative speed between the ego vehicle and the adversarial agent.

https://safe-sim.github.io/
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Rel Speed Control Ego-Adv Rel Speed Coll Rate Realism
(m/s) (m/s) (%) ↑ ↓

-2.0 0.90 0.29 0.83
0.0 1.26 0.38 0.89
2.0 1.94 0.44 0.88

Table A2: Controlling relative collision speed. This table illustrates the ability
of our framework to modulate the relative speed between ego and adversarial agents,
influencing collision rates while maintaining realism.

Method Collision Other Offroad Other Collision Adv Offroad Collision Rel Speed Realism
(%) ↑ (%) ↓ (%) ↓ (%) ↓ (m/s) ↓ ↓

Ours 43.2 1.9 1.90 11.4 -0.12 0.38
Our (-Jroute) 38.6 5.6 2.91 15.9 1.07 0.29
Ours (-Jcol) 25.0 4.9 1.41 11.4 0.94 0.33

Table A3: Ablation Study for Jreg.

TTC Low TTC High

Merge Collision Head-On CollisionBack collision w/ non-adv

T-Bone Back T-Bone Center T-Bone Back

Merge Front Cut-Off Merge Back

Side collision w/ non-adv

Fig. A4: Qualitative Samples of Safe-Sim Limitation and Failure Cases. In
certain scenarios, the adversarial agent collides with non-adversarial agents before chal-
lenging the ego agent. Additionally, the adversarial agent may cause at-fault collisions.

As shown in Tab. A2, our proposed relative speed control results in a notable
impact on both the actual ego-adversary relative speed and the collision rate. For
instance, setting a lower desired relative speed target (-2.0 m/s) generally results
in a decreased ego-adversary relative speed, and vice versa for a higher target (2.0
m/s). However, these adjustments do not directly translate to matching values
in the simulations due to the nature of closed-loop interactions. The planner’s
reactive behavior to the adversarial agent’s actions contributes to this discrepancy,
as it may take evasive maneuvers or adjust its speed, potentially avoiding collisions
altogether. Moreover, the realism metric across different relative speed settings
remains relatively consistent, suggesting that the adjustments do not compromise
the realism of the driving scenarios.
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F.2 Ablation Study for Jreg.

We provide ablation study for the regularization term Jreg. Note, for Tab. 5
in the main paper, adversarial agents were selected before simulation based on
their lane proximity to the ego. For Tab. A3, adversarial agents were selected
dynamically during simulation via Eq. (A7).

F.3 Qualitative Analysis of Safe-Sim’s Limitations

In Fig. A4, we present qualitative examples highlighting areas where Safe-Sim
can be improved, including collisions with non-adv agents and at-fault collisions.
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