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A Additional Derivations

A.1 The closed-form projection operation

Recall from (7) that Proj,cs(a) indicates the projection of a constant a onto
the constraint set S. This projection operation is defined as solving the aux-
iliary minimization problem Proj,cs(a) = argmin,cgs|w — al|3, where S =
{w|w € [0,1],1Tw = m}. It is worth noting that we have relaxed the original
binary constraint into its continuous counterpart, with w € [0, 1]. The relaxed
constraint is given by the intersection of the box constraint w € [0,1] and the
hyperplane 1"w = m.

According to [15, Proposition 1], the solution of the above projection problem
yields

Proj,cs(a) = P q)[a — 1], (9)

where the variable A is given by the root of the equation lTP[Oyl] [a—A1l] =m,
and Pjg 1] is an element-wise thresholding function

0,z<0
P qyzs] = 2,z €[0,1] (10)
l,xz>1

for the ith entry of a vector x. We also remark that finding the root of the non-
linear equation with respect to A can be achieved using the bi-section method [1].

A.2 Worst-case forget set identification in class-wise and
prompt-wise forgetting

For class-wise forgetting, the data selection variables w in (2)-(3) can be reinter-
preted as class selection variables. Here, w; = 1 indicates the selection of the ith
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class for targeted worst-case unlearning. Accordingly, the upper- and lower-level
objectives of the BLO problem (3) can be modified to

f(w, 0u(w)) = Z (wiEzep, [((8u(W); 2)]) +7]|Wl[3, (11)
v (0; W) = Y (wiEuen, [:(0;2)] + (1 — wi)Epen, [6:(6;2)]),  (12)

%

where D; represents the dataset corresponding to class i, E,cp, [¢(0;2)] denotes
the training loss over D;, and recalling that ¢, = —¢; = £. With these specifica-
tions in place, the task of identifying the worst-case class-wise forget set can be
similarly addressed by resolving the BLO problem (3).

In the context of prompt-wise forgetting, we interpret the data selection vari-
ables w as prompt selection variables. Here a prompt refers to a text condition
used for text-to-image generation, and is known as a ‘concept’ within MU for
generative models [5]. Thus, the unlearned generative model, when w; = 1, cor-
responds to the scenario of removing the influence of the ith concept from the
generative modeling process. Extended from the concept erasing framework for
diffusion models [5], identifying the worst-case prompt-wise forget set can be for-
mulated under the same BLO structure (3). The upper-level objective function
can be written as

Fw,0u(w)) = (wiEye [[le(xelei, 0u(w)) — e(xiles, 0)[3]) +llwl3,  (13)

i

where x; represents the latent feature subject to standard Gaussian noise in-
jection, €, during the diffusion step ¢ through a forward diffusion process, and
€(x¢|c, 0) denotes the noise estimator for x; within a diffusion model parameter-
ized by 0 and conditioned on the text prompt c. The loss term ||e(x¢|c;, 6 (W)) —
€(x¢|ci, 0,) |3 penalizes the mean squared error of image generation using the un-
learned model 6, (w) and the original diffusion model 8, respectively. Therefore,
minimizing (13) challenges the unlearning efficacy of 6,(w) regarding the con-
cept ¢; to be erased (when w; = 1), by steering its noise estimation accuracy
towards that of the original model prior to unlearning. Furthermore, we specify
the lower-level objective function of (3) as the Erasing Stable Diffusion (ESD)
loss, ¢gsp(0;c;), developed in [5]. This loss function is designed to remove the
influence of the concept ¢; from the diffusion model 8. Consequently, this lower-
level objective function is given by lyu(0;w) = Y, (wilrsp(6;¢;)).

B Additional Implementation Details

B.1 Worst-case forget set in data-wise unlearning

For the exact unlearning method Retrain, the training process comprises 182
epochs,; utilizing the SGD optimizer with a cosine-scheduled learning rate ini-
tially set to 0.1. For FT [14], RL [7], EU-k [6], CF-k [6], and SCRUB [11],
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the unlearning process takes 10 epochs, during which the optimal learning rate
is searched within the range of [107%,107!], and k = 1 is set for EU-k and
CF-k. For /¢;-sparse [9], the unlearning-enabled model updating process also
takes 10 epochs, searching for the optimal sparse ratio in the range [1076,107%]
and exploring the most appropriate learning rate within [1073,10~!]. Regard-
ing the method BS [2], the step size of fast gradient sign method (FGSM) is
fixed at 0.1. Both BS and BE [2] undergo a 10-epoch fine-tuning process, dur-
ing which the optimal learning rate is sought within the interval [1078, 107%].
Finally, for SalUn [4], we conducted a 10-epoch fine-tuning phase, exploring
learning rates within the range [107%,1072], and investigating sparsity ratios in
the range [0.1,0.9].

B.2 Worst-case forget set in prompt-wise unlearning

In the UnlearnCanvas benchmark dataset [16] for image generation, we select 10
objects and 10 styles, leading to 100 prompt combinations. The objects include
Horses, Towers, Humans, Flowers, Birds, Trees, Waterfalls, Jellyfish, Sandwiches,
and Dogs, while the styles feature Crayon, Ukiyoe, Mosaic, Sketch, Dadaism,
Winter, Van Gogh, Rust, Glowing Sunset, and Red Blue Ink. We target 10% of
these combinations for the unlearning task.

For prompt-wise worst-case forget set identification, we utilize the Erased
Stable Diffusion (ESD) method combined with SignSGD, setting a learning rate
of 107° for 1000 iterations when specifying (8). After identifying the worst-case
forget prompts, we apply ESD again, this time with a learning rate of 3 x 10~7
for 1000 iterations to unlearn these prompts. During image generation, DDIM
is specified using 100 time steps and a conditional scale of 7.5.

C Additional Experiment Results

C.1 Additional results of Table 3

As an expansion of Table 3, Table A1 details the performance of various approx-
imate unlearning methods for both random and worst-case forget sets, with data
forgetting ratios of 1%, 5%, 10%, and 20% on CIFAR-10. For worst-case forget
sets, relabeling-free unlearning methods often follow a performance trend similar
to Retrain. On the other hand, relabeling-based unlearning methods display a
significant performance discrepancy from Retrain, highlighting the impact of the
unlearning strategy on method efficacy.

C.2 Additional results on CIFAR-100 and Tiny ImageNet

In Table A2, we present the performance of various unlearning methods un-
der random and worst-case forget sets at a 10% forgetting data ratio on the
additional datasets, CIFAR-~100 [10] and Tiny ImageNet [12]. When subjected
to evaluation on worst-case forget sets, relabeling-free approximate unlearning
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Table A1l: Performance of various unlearning methods under random forget sets and
worst-case forget sets on CIFAR-10 using ResNet-18 for different forgetting ratio (in-
cluding 1%, 5%, 10% and 20%). The result format follows Table 3.

Method Random Forget Set Worst-Case Forget Set
cthods UA | MIA | RA | TA | Avg. Gap UA | MIA | RA TA | Ave. Gap
1%-Data Forgetting
Retrain 5.8510.00 12.8041.27 99.9610.00 93174015 0.00 0.000.00 0.0010.00 99.9510.02 93455017 0.00
8931274 (3.08) 14402105 (151) 94524170 (5.44) 8853119 (4.64) 3.67 0132027 (0.13) 0132015 (0.13) 90692671 (9.26) 855157 (7.94) 436
1604110 (425)  5.60s140 (7:29)  97.795074 (217) 90581076 (2.59) 1.07 0095011 (0.09) 1692104 (1.69) 97761002 (219)  90.49:0ss (296) 173
0.0040.00 (5.85) 044036 (1245)  99.98:0.00 (0.02) 94334008 (1.16) 487 0002000 (0.00)  0.00z0.00 (0.00) 99982000 (0.03) 9440007 (0.95) 024
58010 (0.04) 1233518 (056) 96525085 (3.44)  9057s006 (260) 166 0005000 (0.00)  0.09:015 (0.09) 92085544 (T.87) 8691085 (6.54) 362
7262147 (141)  43.854267 (30.96)  99.9910.00 (0.03) 9411004 (0.94) 8.33 0.0010.00 (0.00) o1 (84.37)  100.000.00 (0.05)  94.4610.00 (1.01) 21.36
0005000 (5.85)  0.98:030 (11.91) 99972001 (0.01)  94.2610.00 (1.09) 1.72 3471154 (347) (1636) 92371045 (7.58) 85555057 (7.90)  8.83
0005000 (5.85) 0982030 (1191) 99972001 (001)  9427wom1 (110) 472 3201144 (3.29) (13.69) 92341052 (7.61) 85481000 (797)  8.14
SalUn | 1261055 (459) 17332101 (144)  99.995001 (0.03) 94285007 (111) 254 0.0010,00 (0.00) (72.59) 100.0010.00 (0.05)  94.4550.14 (100) 1841

5%-Data Forgetting

Retrain 5.92:0.44 13.000.55 100.00:0.00 94.5120.07 0.00 0.00:0.00 0.02:002 100.00:0.00 94.670.08 0.00
FT 5171073 (0.75) 11321004 (1.68)  97.0810.44 (292)  90.71i0.3s (3.80) 229 0.010,02 (0.01) 0.00)  97.3940.s (261) 91104055 (3.57) 1.55
EU-k 3 9 6.072110 (6.93)  978liose (219)  9053x0s (3.98) 422 0.160.12 (0.16) 2.09)  97.6ls07s (2.39)  90.48s0.74 (4.19) 221
CF-k 0041000 (5:85) 074001 (1226) 99994000 (001)  944Tsone (004) 455 0001000 (0.00) 0.02)  99.981000 (0.02)  94.40:00s (027)  0.08
fi-sparse | 4.634101 (129)  10.09:100 (291) 9713075 (287)  90.92+065 (359) 266 0.00-£0.00 (0.00) 0. m) 97124055 (288)  91.2T+0.50 (3.40) 157
RL 5474045 (0.45) 99.9740.01 (0.03)  93.7040.10 (0.81) 5.92 0.1540.18 (0.15) 99.9810.00 (0.02)  94.0810.02 (0.59) 24.08
BE 0.36:0.10 (5.56) 99.7320.00 (0.27)  93.0720.17 (1.44) 3.26 | 38.19.5.70 (38.19) 79.0742.41 (20.93) T 4 (2211) 4174
BS L6540.67 (4.27) 98.561005 (1.44) 91931055 (258) 3.2 | 39.6240.10 (39.62) 72.3047.03 (27.70)  66.74 1050 14.82
SalUn | 0.67+0.01 (5.25) 100.0040.00 (0.00)  94.1310.03 (0.38) 144 0.09:0.07 (0.09) 100.00+0.00 (0.00)  94.20+0.13 (047 23.44
10%-Data Forgetting

Retrain | 5281043 12.86+0.61 100.000.00 94.38.0.15 0.00 0.00£0.00 100.000.00 94.66.0.00 0.00
FT 50803 (0.20) 962035 (1.90) 97, Hliu 5 2 54)  91.02:036 (3.36)  2.00 0002000 (0.00) 97.6310.46 (2.37)  91.58:0.10 (3.08) 1.37
EU-k 2341070 (2.94) 5050 (651) 9 90174088 (4.21) 404 068036 (0.68) 97171056 (283)  90.08:070 (4.58) 3.28
CF-k 0022002 (5.26)  0.7640.02 (12.10) 9 95000 0 (0.02) 94454002 (0.07) 136 0002000 (0.00) 99.984001 (0.02) 94345005 (0.32) 008
f1-sparse | 4.3410.73 (0.94) 9825104 (3.04)  97.701072 (2.30)  91.4lioes (2.97) 2.31 0.02+0.03 (0.02) 96.931+0.73 (3.07)  90.9610.82 (3.70) 1.72
RL 3592024 (1.69) zs 024247 (15.16)  99.974001 (0.03)  93.74x0.12 (0.64)  4.38 1.9351,5 (1.93) 99.9610.01 (0.04)  93.83+024 (0.83)  24.88
BE 1.1950.40 (4.09) 62001 (9.20)  98.7T4oar (1.23) 91704032 (259) 428 | 1947421 (19.47) 81354276 (18.65) 75.41sr1rr (19.25)  34.70
BS 5724142 (0.44) Z/ 155101 (1429) 94294106 (5.71)  87.45.106 (6.93)  6.84 | 29.75.5.40 (20.75) 78.3410.05 (21.66) T ) 3722
SalUn 1485014 (380)  16.19:054 (3.33)  99.985001 (0.02)  93.955001 (0.43) 1.89 0961050 (0.96) 99.985001 (0.02)  94.03:00s (0.63) 2451

20%-Data Forgetting

Retrain 5.760.20 14.3450.40 100.00-0.00 94.0440.08 0.00 0.0040.00 100.0010.00 94.6010.05 0.00
FT 546042 (0.30) 97102042 (290)  90.32:041 (3.72) 246 0142015 (0.14) 96562112 (3.44)  90.62+1.07 (3.98) 195
Uk | 308 96.7041.51 (3.30)  89.37119 (4.67) 139 1764125 (1.76) 95754120 (4.25)  88.96s105 (5.61) 475
CF-k 0.03+0.01 (5.73, 99.99:0.00 (0.01)  94.45:0.05 (0.41) 4.95 0.000.00 (0.00) 99.97+0.01 (0.03)  94.29:0.03 (0.31) 0.09
f1-sparse | 3831050 (1 ‘)x) 97.991055 (201) 91301041 (274)  3.06 0.0720.07 (0.07) 97254003 (275) 91224076 (3.38) 158
RL 2.4440.01 (3.32) 99-970.00 (003) 93441004 (0.60) 2.95 3.841201 (3.84) 99.92:0.01 (0. ux) ) 25.7
BE 88202145 (11.80) 1161 | 25.0542,80 (25.05) 7 12) 38.48
BS 20691150 (14.93) T8.87110 (21.13) 19.12 | 40.61:2.26 (40.61) 72174116 (27.83) 43.38
SalUn | 1.31i00s (4.45) 99.9810.01 (0.02)  93.671047 (037) 191 2821142 (2.82) 99.950.01 (0.05 ) 0533600 (124)  25.29

methods consistently display a performance trend akin to that of Retrain. How-
ever, in sharp contrast to their relabeling-free counterparts, relabeling-based
approximate unlearning methods manifest a discernible performance gap when
compared to Retrain.

C.3 Additional results on different model architectures

In Table A3, we comprehensively assess the performance of diverse unlearning
techniques under both random and worst-case forget sets scenarios, employing a
10% forgetting data ratio on CIFAR-10. This evaluation encompasses a broad-
ened range of model architectures, including ResNet-50 [8] and VGG-16 [13].
When evaluating the methods on worst-case forget set, the relabeling-free ap-
proximate unlearning methods consistently exhibit a performance trend that
closely resembles that of Retrain. Conversely, relabeling-based approximate un-
learning methods demonstrate a notable performance discrepancy when com-
pared to Retrain.

C.4 Transferability of worst-case forget sets between different
models and methods
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Table A2: Performance of various unlearning methods under random forget sets and
worst-case forget sets on CIFAR-100 and Tiny ImageNet using ResNet-18 for forgetting
ratio 10%. The result format follows Table 3.

Methods Random Forget Set Worst-Case Forget Set
UA | MIA | RA | TA | Avg. Gap UA MIA | RA TA | Avg. Gap
CIFAR-100
Retrain 25.0640.25 49.98 0.1 99.9810.00 T4.5410.07 0.00 0.1350.04 111509 99.9740.00 75364031 0.00

2105007 (L96) 30 41tu 87 (w u) 9044110 (9.54) 1028 | 0.6610.25 (0.53)
12.5550.65 (12.51) 3 87.6140.05 (12.37) 18.90 1234145 (4.10)
0.02:0.02 (25.04) 99052000 (000) 75342010 (080) 1836 | 0001000 (0.13)
27304140 (2.24) 87174203 (12.81) 63.124140 (11.42)  10.84 1534075 (1.40) 52 87.1940.61 (12.78)  64.45.0.45 (10.91) 6.40

(
(0-
7.1840.00 (22.12)  91.71x0.00 (41.73)  99.88:0.00 (0.10)  67.31:0.00 (7. 25 17.79 62.6410.00 (62.51) 97.1820.00 (96.07)  99.6710.00 (0.30)  66.22:0.00 (9.14) 42.00
oy e
(2
(¢

1082031 (0.03)  90.74x054 (9:23)  65.77:0.51 (9.59) 4.85
164 (3.83)  86.8Ti01s (13.10) 58.651010 (16.71)  9.44
99.9840.00 (0.01) 75222006 (0.14) 0.32

)

2639125 (1.33) 76.0412.25 (23.94) 2076 | 32104110 (31.97) 31181072 (30.07) 78424200 (21.55) 47.03£1.46 (2 27.98
8.4410.65 (16.62) 93174050 (6.81)  62.7540.27 ( 16.49 20.6410.57 (20.51) 27.1011.45 (25.99) 80.8110.31 (19.16) 52.69:0.24 (22.67) 22.08

SalUn | 24221000 (0.81) 77.765000 (27.78) 99845000 (0.14)  67.645000 (6 00) 892 | 44761000 (44.63) 89401000 (88.20) 99521000 (0.45) 67201000 (8.16)  35.38

)
%5)
)
)

Tiny ImageNet

Retrain 36.40-0.25 63.77+0.02 99.98-0.00 63.6740.31 0.00 0.78+0.06 4.80+0.25 99.980.00 64.87+0.19
FT 14414024 (21.99) 25481051 (38.29)  98.7210.03 (1.26)  62.0110.20 (1.66) 15.80 0.0540.00 (0.73) 0.140.00 (4 m.y 98.364+0.00 (1.62)  61.8710.00 (3.00)
EU-k | 16772008 (19.63) 23.6622.70 (40.11) (1 57704042 (5.97) 2030 | 0201002 (0.58) 0.2 (4.57)  83.59+0.27 (16.39)  58.51x0.31 (6.36)
CF-k 13.4840.30 (22.92)  22.49:1.50 (41.28) 6029031 (3.38) 19.90 0.10:0.03 (0.68) (4 vm 86.8540.21 (13.13)  60.370.11 (4.50)
fi-sparse | 15194024 (21.21)  26.39+0.54 (37.38)  98.61004 (1.37) 61782021 (1.89) 1546 | 0.11x003 (0.67) (4.63)  98.1540.01 (1.83)  61.35x0.12 (3.52)
RL 2913100 (7.27) 42624180 (21 1') 96.2540.00 (3.73) 58994021 (4.68) 921 | 37.041051 (36.26) 13.04)  95.39.0.0s (4 6‘)) m 640,20 (8.23)
BE 4741041 (11.01)  29.65+023 (34.12) 53.141.00 (46.84) 36.0740.41 (27.60)  29.89 | 29.9410.77 (29.16) (34.87)  34.66.00.26 (65.32) 4)
BS 30324001 (6.08)  25.4541.02 (38.32)  70.4810.50 (29.50) 47.004053 (16.67)  22.64 | 24324043 (23.54) (9.60)  54.3910.55 (45.59)
SalUn | 26.1840.50 (10.22) 38.0241.42 (25.75) 95904007 (4.08) 59204016 (447) 1113 | 25.84x0.10 (25.06) (32.23)  95.940.06 (4.04)

Table A3: Performance of various unlearning methods under random forget sets and
worst-case forget sets on CIFAR-10 using ResNet-50 and VGG-16 for forgetting ratio
10%. The result format follows Table 3.

Methods Random Forget Set Worst-Case Forget Set
> UA | MIA | RA | TA | Ave. Gap UA MIA | RA | TA Avg. Gap
ResNet-50
Retrain 5.564+0.35 11.68+0.66 100.00+0.00 94.174+0.01 0.00 0.00+0.00 0.00+0.00 100.00+0.00 94.0410.30 0.00
FT 4482020 (108) 1005207 (1.63) 91472025 (2.70) 182 0012001 (0.01)  0.04x0.03 (0.04) 97552035 (245) 91382040 (2.66) 129
EU-k | 45ds0ss (102)  T94x01s (3.74) 87345008 (683)  4.02 159:007 (159)  3.68:1i6 (3.68)  95.56:0.47 (144)  ST.6lagar (6.43)  4.04
CF-k 0014001 (555)  0.531006 (11.15) 94.16.40.00 (0.01) 418 0.000.00 (0.00) 0.0L0.00 (0.01)  99.99:000 (0.01)  94.0610.04 (0.02) 0.01
fi-sparse | 2382012 (3.18)  TA49+0.0 (4.19) 92535007 (164) 253 0.00-0.00 (0.00)  0.03:0.05 (0.03) 3 (166)  92.08:002 (196) 091
RL 7241046 (168)  43.074011 (31.39) 92524008 (165) 8.7 101047 (1.01) (95.76) 24.44
BE 354405 (202) 1570407 (402)  9636s012 (364) 89754010 (442) 352 | 1924144 (19.24) (7 ] 23.41
BS 3.62+052 (1.94) 107510 (0.93)  96.27+0.27 (3.73)  89.7210.26 (4.45) 276 14.27+1.3 (14.27) 2 (; 6 19.02
SalUn | 1674015 (3.89) 19444195 (7.76) oo (0.06)  9344s007 (073) 311 034:0.13 (0.34) uz 83+0.9 (92 x;) 98.99:026 (L01)  92.08:020 (196) 2401
VGG-16

Retrain 6.7610.43 11774 99.9940.00 93.2840.15 0.00 0.0140.01 0.07+0.04 99.9940.00 93.4310.13 0.00
FT 3.91406s (285)  8.75x0.04 (3.02) 90.62+0.35 (2.66) 2.55 0.0720.07 (0.06) 0.2810.20 (0.21) (2.63) g 1.57
BU-k | 15794701 (9.03)  19.61e52 (7.84) 3. 76361600 (16.92) 12,54 2254218 (224) 3081186 (301) 83 o1 (16.48) 75 (15.86) 940
CRh | 0025000 (674) 0331000 (1144) 99995000 (000) 9359100 (031) 462 0002000 (0.01)  0.0010.00 (0.07) 99981001 (0.01) Loor (011)  0.05
fi-sparse | 4481045 (228) 976102 (201) 97681016 (231)  90.6lioas (267) 232 0042001 (003) 0071010 (0.10) 97562012 (243)  90.361015 (x 07) 141
RL 2714020 (405)  14.01s220 (2.24) ﬂ 92:000 (036) 167 3504000 (349) 95961055 (95.89)  99.89:002 (0.10)  92.6540.40 (0 78) 2500
BE | 101731440 (4.97) 263311055 (14.56) sar (12.75) 1101 | 49.2843 2 (1927) 6718152 (67.11) 11.06
BS TA6327 (0.70)  8.614114 (3.16) .2 255 (9.05) 5.01 13185 (52.38)  53.78435.44 (53.71) p 39.62
SalUn | 6.3850.40 (0.38) 18661166 (6:89) 9976104 (023) 9188y (140) 222 3.21saas (3.20)  94.61s0.26 (94.54)  99.2050.7 (0.70) 9146056 (1 J,) 25.10

In this section, we validate the trans- Table A4: Performance of various unlearn-
ferability of worst-case forget sets ing methods on CIFAR-10 using ResNet-18
across a wider range of model ar- with a 10% forgetting ratio under worst-
chitectures and methods. Concerning case forget sets obtained using RL. The
the transferability between models, result format follows Table3. (o) after
we leverage a diverse range of mod- Retra.in in Worst-Case Forget Set indicates
els for the selection process, including the difference from Random Forget Set.

ResNet-18, ResNet-50 [8], VGG-16, Siws| va | Mia | nma | 7™ [Asow
and VGG-19 [13]. Conversely, for the pondon Torge o . —

Retrain | 5.28 12.86 100.00 94.38
evaluation process, we employ various VGGheD izt G
. Retrain | 0.02 (5:26) 016 (12.70v) 100.00 (0.00—) 94.67 (0.29a) 0
models and adopt Retraln as the Cor- FT 044 (0.42) 044 (029)  92.94 (7.06)  87.93 (6.74) 3.63
EU-k 36 (1.33) 1193 (1L78)  97.99 (201)  90.75 (3.92) 176

(

responding unlearning method. The SCRUB | 504 (5.02) 20.71 (20.56) 89.92 (10.08) 85 mE 5.97) 11.16

. £1-sparse | 0.04 (0.02) 0.13 (0.02) 97.59 (2.41) 91.62 (3.05) 1.38

UA (unlearmng a,CCuI‘a,Cy) I‘esults are RL 4.62 (.m)) 98.36 (98.20)  99.96 (0.04)  93.59 (1.08) 25.98

o . N 38.38 (38.36) 96.64 (96.49) 77.00 (23.00) 7L42 (23.25) 4527

BS | 3102 (3 96.82 (96.67) SL8S (18.12) 75.62 (19.05) 4121

exhibited in Flg' Al. NOtably? when 97.40 tm.u; 9938((0 02)> o1 00((0 @7)) 25.00

the worst-case forget set is selected us-

ing one model and subsequently undergoes unlearning with another model, the

UA shows significantly lower than that of random forget set. This observation
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Fig. A1: UA of Retrain on CIFAR-10 us- Fig. A2: UA of unlearning methods on
ing various models with 10% forgetting ra- CIFAR-10 using ResNet-18 with a 10% for-
tio. The rightmost column represents UA getting ratio. The rightmost column shows
on random forget set, while other columns UA on random forget set; others show UA
depict UA on worst-case forget set. on worst-case forget set.

clearly demonstrates the transferability of worst-case forget set across diverse
models.

Regarding the transferability between methods, we employ various approx-
imate unlearning objectives in the selection process to specify the lower-level
optimization problem (8), while utilizing different unlearning methods during
evaluation. The UA results are illustrated in Fig. A2. As evident from the figure,
the columns corresponding to the four methods, FT, ¢;-sparse, RL, and SalUn,
exhibit deeper shades than the column for random, indicating lower UA values.
Consequently, FT, ¢;-sparse, RL, and SalUn are more suitable for addressing
the lower-level problem. In Table A4, we further test the unlearning methods
under the worst-case forget set obtained using RL to perform the lower-level
unlearning process in BLO. The results are consistent with Fig. A2.

C.5 From worst-case unlearning to easiest-case unlearning

By considering the opposite objective function of the upper-level optimization in
(3), we can obtain the problem of selecting the easiest-case forget sets through
BLO:

min —[wil(8.(W); z:)] + v||w]|3; subject to @,(w) = argmin fyu(6;w),
we 6
z;, €D

(14)

Table A5 presents the performance of identified easiest-case forget sets. We draw
two observations. First, for Retrain, UA and MIA on easiest-case forget sets are
significantly higher than those on random forget set. Second, for approximate
unlearning methods, Avg. Gap on easiest-case forget set is much higher than
that on the random forget set. This is due to the significantly lower UA of
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Table A5: Performance of approximate unlearning methods under random forget set
and easiest-case forget set on CIFAR-10 using ResNet-18 with forgetting ratio 10%.
The result format follows Table 3.

Random Forget Set

Easiest-Case Forget Set
UA | MIA | RA | TA Avg. Gap

UA MIA | RA TA Avg. Gap
Retrain | 5282033 12.86:20.61 100.00:0,00 94.3840.15 000 | 43184106 67.7220.87 10000000 93.15.40.11 0.00

Methods

Relabeling-free

FT 5084039 (0.20)  10.96+0.35 (1.90) (254) 91022036 (336) 200 | 28862000 (14.32) 49.39:155 (18.33) 98.49:0.40 (151) 9090043 (225)  9.10
BEU-k | 2845079 (294)  6.3540.89 (6.51) (248) 90.17:oss (421) 404 | 9481475 (33.70)  19.274615 (48.45) O7.87:ior (213) 89.8liiar (3.34) 2190
CF-k | 0.021002 (5.26) 0.761002 (12.10) (0.02) 9445500 (0.07) 436 | 0.104003 (43.08)  3.09:015 (64.63) 99.991000 (0.01) 94405005 (1.25)  27.24

fi-sparse | 4345073 (0.91) 9824104 (3.04) 30) 9ldlioes (297) 231 | 262611024 (16.92) 465 98.5550.14 (1.45)  90.7540.43 (240)  10.48

Relabeling-based

RL 3501024 (1.69) 28.024247 (15.16) 99971001 93742012 (0.64) 438 | 22844076 92,5105 (24.79) 92734025 (0.42) 1140
BE 1.1940.49 (4.09)  22.0610.61 (9.20) 7 91.79:0.32 (2.59) 4.28 13214145 (2 3.9314.58 (33.79) 9 88.65:1.51 (4.50) 17.77
BS 5724142 (0.44) 27154141 (14.29) 9 ) 87451106 (6.93) 6.84 17.55:1.00 (25.63)  34.9313.03 (32.79)  96.3: 87.46+0.45 (5.69) 16.94
SalUn | 1.48:0.4 (3.80)  16.19.0.54 (3.33) 93952001 (0.43) 189 | 16.7651m 88.7140.01 (20.99) 92.8540.10 (0.30) 1194

approximate unlearning methods on easiest-case forget set compared to that of
Retrain. This suggests that the current approximate unlearning methods are
not yet effective enough, even for data in easiest-case forget set, and cannot
accurately forget them.

C.6 Uniqueness and mixture of worst-case forget set

To verify the uniqueness of worst-case forget set, we identified worst-case forget
set for different forgetting data ratios and performed unlearning using Retrain.
We found that a maximal set with zero UA can exist. As shown in Fig. A3-
(a), with appropriately defined set sizes (up to 34% of the entire dataset), our
method consistently identifies a worst-case forget set with 0 UA.

Furthermore, any subset of this set 012 I
. . . 0.10
will also exhibit the worst-case prop- o 1
erty. Fig. A3-(b) illustrates that in- =% ‘S‘g
cluding any part of the worst-case 002 2
. . 0.00 0
set complicates the unlearning process. 30313233 34 35 36 37,20 39 40 Corsacase forgeting ratoth.
When the forget set represents a 34% (a) Uniqueness (b) Mixture

ratio comprising a mix of worst-case Fig. A3: UA of Retrain on CIFAR-10 us-
forget set and random forget set and jng ResNet-18. (a) UA under worst-case
unlearning is performed using Retrain, forgetting scenarios at different forgetting
the unlearning becomes increasingly data ratios. (b) UA under a mixture of ran-
difficult as the proportion of worst-case dom and worst-case forgetting scenarios at
random forget set increases, which is different mixture ratios.

indicated by the decrease in UA. This highlights the importance and signifi-
cance of worst-case forgetting.

C.7 Identifying worst-case forget set in class-wise forgetting.

Extended from data-wise forgetting, Table A6 showcases the effectiveness of
our proposal in class-wise forgetting for image classification on the ImageNet
dataset [3]. Recall that the data selection variables are now interpreted as class
selection variables. In this experiment, our objective is to eliminate the influence
of 10% of the ImageNet classes on classification performance.
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To avoid completely eliminating Table A6: Performance of various MU
the prediction head for the forgetting methods on ImageNet, ResNet-18. The con-
class in the model (ResNet-18), we de- tent format follows Table A4.

fine a class removal as the elimina-  Meoas| va | wMia | Ra | TA [ Av Gap

. . . Random Forget Set

tion Of 90% Of its data pOlntS~ COl'l- Retrain | 72.92 98.78 65.90 66.03 N/A

sistent with our previous observations S Ao S TN —

R . . Retrain | 45.92 (27.00¥) 9856 (0.22v) 66.64 (0.744) G6.68 (0.654) 0.00

m Cla,SS-Wlse fOI‘gettlng7 we can Ob- FT 36.40 (9.52)  96.71 (1.85)  65.40 (1.24)  65.73 (0.95) 3.39
. . f-sparse | 38.50 (7.42) 9557 (2.99)  64.16 (2.48)  65.00 (1.68) 3.64

serve from Table A6 that our identi- RL 99.89 (53.97)  99.01 (0.45) 39.70 (26.94) 44.04 (22.64)  26.00

fied worst-case forget set constitutes a more challenging subset for the erasure
of data influence as compared to random forget set, evidenced by a significant
decline in UA of Retrain from 72.92% to 45.92%. A smaller reduction in MIA
performance compared to data-wise forgetting suggests that class-wise forget-
ting presents a relatively simpler challenge. In addition, by examining the per-
formance of representative approximate unlearning methods (FT, ¢;-sparse, and
RL), we observe that relabeling-free unlearning methods exhibit performances
akin to Retrain under the worst-case forget set, whereas relabeling-based meth-
ods demonstrate substantial discrepancies in UA, consistent with our observa-
tions in Table 3.

Moreover, Fig. A4 portrays the class-wise entropy for ImageNet classes with-
in worst-case forget set in comparison to other classes. This visualization eluci-
dates a predilection for selecting low-entropy classes as the worst-case scenar-
ios for unlearning, suggesting that these classes are ostensibly simpler to learn.
Furthermore, the worst-case forget class is primarily composed of animals and
insects. In Fig. A5, we use t-SNE to show the relationship between worst-case
classes and other classes. As we can see, the worst-case class primarily resides
on the periphery of the distribution.

3 I Worst-case class
Il Other class
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Fig. A4: Average entropy of worst-case forget classes vs. that of other classes on
ImageNet using ResNet-18. The number of worst-case forget classes is 100.
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Worst-case
Class

Closest Class

Ringlet White  Sulphur
Butterfly Butterfly Butterfly

2K

Crane Bird Pelican Egret Black Stork

D
S 3

Closest Class

Monarch Admiral

Band Water

Sunscreen  pjq  Lotion g,
W= [eeel™
ol ol
- L NS

Corkscrew SafF“’ Chain (Cam

Pin Opener

. Other Class
+  Worst-case Class

Fig. A5: T-SNE for all classes in the learned feature space, with an additional display
on the right side showcasing two worst-case classes and two others, along with their
four closest classes.

C.8 Additional results of Fig. 5

In Tables A7-A8, we present more examples using the original stable diffu-
sion model (w/o unlearning), the unlearned diffusion model over the worst-case
forgetting prompt set (Worst). For each diffusion model, images are generated
based on an unlearned prompt from the worst-case forget set. It is evident that
the unlearned diffusion model is still capable of generating corresponding images
for prompts from the worst-case forget set.

D Broader Impacts and Limitations

Worst-Case Forget Set represents a novel perspective in evaluating data privacy
and security. This set strikes a balance between data influence erasure and model
utility, offering a robust assessment of the effectiveness of existing unlearning
methods from an adversarial standpoint. It also provides a deeper understanding
of datasets from the perspective of machine unlearning.

However, it is crucial to acknowledge the limitations of worst-case forget
set. While worst-case forget set has demonstrated its effectiveness in various
scenarios, including data-wise, class-wise, and prompt-wise, the effectiveness of
unlearning methods for language models on worst-case forget set remains an area
worthy of further exploration.
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Table AT7: Examples of image generation using the original stable diffusion model
(w/o unlearning), the unlearned diffusion model over the worst-case forgetting prompt
set (Worst). For each diffusion model, images are generated based on an unlearned
prompt from the worst-case forget set.

Model ‘ Generation Condition
Péw): 4 painting of Dogs in Van Gogh Style.
Original
Diffusion
Model

Unlearned
Diffusion
Model
(Worst)

Original
Diffusion
Model

Unlearned
Diffusion
Model
(Worst)

Original
Diffusion
Model

Unlearned
Diffusion
Model
(Worst)

Original
Diffusion
Model

Unlearned
Diffusion
Model
(Worst)

Pu(w>: 4 painting of Horses in Van Gogh Style.

Original
Diffusion
Model

Unlearned
Diffusion
Model
(Worst)
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Table A8: Examples of image generation using the original stable diffusion model
(w/o unlearning), the unlearned diffusion model over the worst-case forgetting prompt
set (Worst). For each diffusion model, images are generated based on an unlearned
prompt from the worst-case forget set.

Model ‘ Generation Condition

P(w) 4 painting of Horses inm Rust Style.

Original
Diffusion
Model

Unlearned
Diffusion
Model
(Worst)

SR el I )
= DHRE AN A

(W)

4 painting of Human 4n Van Gogh Style.

Original
Diffusion
Model

Unlearned »

Diffusion | XS
Model e y‘ x
(Worst)

P(W) 4 painting of Human in Rust Style.

Original e
Diffusion N\ ) |
Model % e 3
Unlearned
Diffusion v
Model g
(Worst) o

P(W) 4 painting of Dogs in Winter Style.

Original L!:ﬁ#‘

| By ,m {""g

Unlearned = ' r- ’t'—-.v—-, N
iy ""'fi E .“ 0 L s & i’! ?,nq
(Worst) nﬂw_ y | i
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