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1 Additional visual results

We show full size results of our method compared to the other methods in Fig. 1,
Fig. 2, Fig. 3, Fig. 4, Fig. 5. Please also find high resolution video stylizations
of our model on the project page.

2 Sinkhorn Iteration algorithm

We want to estimate the Wasserstein-2 distance

W2pps, pcq :“
”

inf
πPΠpps,pcq

ĳ

MˆM

dpx, yq2dπpx, yq

ı
1
2

(1)

on a distributions ps and pc given with two sets of points N and M points
respectively. We opt for optimizing entropy regularized Wasserstein-2 distance

W2
2,γpps, pcq :“

”

inf
πPΠpps,pcq

ĳ

MˆM

dpx, yq2dπpx, yq ´ γHpπq

ı

, (2)

since it has better convergence properties and leas to better results for our prob-
lem as shown in Sec. 3.

In this case we compute first a cost matrix of the transportation plan:

C “ pdpxi, yjqqij @i P t1, Nu, xi P ps

@j P t1,Mu, xj P pc
(3)

and the transport plan π P RNˆM
` . As a distance function dpx, yq :“ }x´ y}2 we

use the L2 norm.
With that computation of the Wasserstein-2 distance can be formulated as

a linear optimization problem with linear constraints:

https://compvis.github.io/wast3d/
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min xπ,Cy ´ γ
ÿ

ij

πij logpπij ´ 1q

s.t. π1M “ ps

πJ1N “ pc

πij ě 0 @i P t1, Nu, @j P t1,Mu.

(4)

The Lagrangian of the constrained optimization objective is:

Lpπ, α, βq “
ÿ

ij

pπijCij ´ γπij logpπij ´ 1qq `

` αJpπ1M ´ psq`

` βJpπJ1N ´ pcq.

(5)

To solve this we can compute the derivative of the Lagrangian with respect
to the transport plan π:

δL
δπij

“ Cij ´ γlogpπij ´ 1qγ ` πij ´
1

πij
αi ` βj . (6)

By setting this value to zero ans simplifying the expression we find the values
for the transport plan:

logpπijq “ ´
1

γ
pαi ` Cij ` βjq ùñ

πij “ exp
ˆ

´
αi

γ

˙

loooooomoooooon

ui

exp
ˆ

´
Cij

γ

˙

loooooomoooooon

Kij

exp
ˆ

´
βj

γ

˙

loooooomoooooon

vj

. (7)

Combining values ui,Kij , vj in matrix form we obtain a new formulation for
the transport plan:

π “ diagpuq K diagpvq (8)

in which we know only the kernel matrix K. Parameters u and v are unknown
and depend on the Lagrange multipliers α and β respectively. By plugging in
constraints π1M “ ps and πJ1N “ pc from the original objective formulation 4
we obtain:

π1 “ u d Kv “ ps

π1J “ v d Ku “ pc.
(9)
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Let’s express unknown u and v. By this we obtain an ultimate form of the
Sinkhorn iterations:

u “ps c Kv

v “pc c Ku
(10)

where d and c stand for element-wise multiplication and division respectively.
By alternating between computation of two terms defined in Eq. (10) it is pos-
sible to converge to some values of u and v, which are used for the computation
of the transport plan π as Eq. (8) suggests. For more details please see other
works on computational optimal transport with applications to Wasserstein-2
distance [4, 5].

3 Entropy regularization

The Wasserstein-2 loss has one essential component, denoted as γ, which controls
amount of entropy regularization. This factor plays a crucial role in smoothing
the transportation plan, thereby influencing the visual results. We observe that
low values of γ result in poor preservation of style scene details, while high
values can aid in preserving style geometry and appearance but may cause it
to deviate significantly from tightly following the content shape. By default, we
utilize γ “ 0.07 across all our experiments. In Fig. 6, we present two additional
stylizations with low entropy regularization (γ “ 0.007) and high regularization
(γ “ 0.7), showcasing the impact of different regularization levels.

4 Anisotropic representation.

We pointed out in the paper that our model relies on the clustering and warping
procedure implemented by minimizing the Sinkhorn divergence between the style
cluster and the content cluster. Since we optimize only the coordinate component
gx and the color component gc but leave out the scaling gS component this may
result in visually unsavvory results, as Fig. 7 illustrates.

Please note that this problems stams from the original 3D gaussian splatting
paper [1] which only tries to optimize for pixel similarity between the rendered
image and the target image. Typically, the original training protocol results in
needle-shaped gaussians as illustrated in Fig. 8.

5 Number of content clusters

Our approach consists of two three main components: splitting the content scenes
into individual clusters C “ Y

iPt1,..,Nu
Ci, finding best fitting cluster for each

content cluster Ci using the function Di from Eq. 10 the main script and then
minimizing each Ci The number of clusters we use in our stylization directly
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Ours                  

ARF SNeRF

Content scene

Style-RF

Style scene

Fig. 1: Comparison of WaSt-3D against three different approaches: ARF [6], SNeRF [3],
and StyleRF [2] on NeRF Synthetic scene hotdog and style scene grass.
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Fig. 2: Comparison of WaSt-3D against three different approaches: ARF [6], SNeRF [3],
and StyleRF [2] on NeRF Synthetic scene lego and style scene pebbles.
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Fig. 3: Comparison of WaSt-3D against three different approaches: ARF [6], SNeRF [3],
and StyleRF [2] on NeRF Synthetic scene chair and style scene basket.
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Does not support T&T

Fig. 4: Comparison of WaSt-3D against three different approaches: ARF [6], SNeRF [3],
and StyleRF [2] on Tank&Temples scene truck and style scene bouquet.
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Ours                  

ARF SNeRF

Content scene

Style-RF

Style scene

Fig. 5: Comparison of WaSt-3D against three different approaches: ARF [6], SNeRF [3],
and StyleRF [2] on LLFF scene horns and style scene pebbles.
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𝛾 = 0.007 𝛾 = 0.07 𝛾 = 0.7

Fig. 6: Entropy component γ has clear effect on the stylization. Small regualizeation
leads to poor style details. Large regularization can not follow the content shape.

(a) Non-anisotropic cluster.
(b) Non-anisotropic cluster warped by
minimizing the Sinkhorn divergence.

Fig. 7: This figure highlights the importance of regularizing the Gaussian splattings
representation. The left image displays a single cluster extracted from the "lego" scene
of the Blender dataset. The scene is fitted using the original training pipeline outlined
in the 3D Gaussian splattings paper [1]. On the right, we demonstrate that altering this
representation by minimizing the Sinkhorn divergence leads to needle-shaped artifacts,
which occur due to non-uniform scaling gS of the gaussians.

(a) Cluster with non-anisotropic representation.
(b) Our anisotropic regualarized
representation.

Fig. 8: Default Gaussian splattings representation is non-anisotropic. We regualarzie
to get better results.
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affects how detailed our stylization will be. Better clustering allows for splitting
the target shape into simpler shapes that are easier to fit using function Di. We
visualize the effect the the number of clusters have on the stylization in Fig. 9,
which represents how fine do we want to represent the content scene. We conduct
the experiments for three different style scenes and for the number of clusters
N P t200, 400, 600u. We opt for the sweetspot of 400 cluster as our default
value since it delivers visually pleasing results while not being computationally
prohibitive.

6 Content scene Surface sampling

When dividing the content scene into clusters, we encounter the unexpected
effect of optimizing the inner parts of the content scene as well. Consequently,
during the stylization of the content scene, the inner areas are also stylized. To
prevent this, we explicitly sample points on the surface of the content shape.
To achieve this, we render content Gaussians G using the rendering function R
from random viewpoints. Subsequently, we aim to extract the positions of these
Gaussians using the rendered image. To accomplish this, we replace the color
values gc with the coordinate value gx. Thus, the rendered color now represents
the position of the Gaussian in space. By simply sampling non-black points
from the rendered image, we can determine the positions of the Gaussians. This
process for a single viewpoint is illustrated in Fig. 10.

7 Sinkhorn divergence alternative

Our approach comprises three main components: first, splitting the content
scenes into individual clusters C “ Y

iP1,..,N
Ci; second, finding the best-fitting

cluster for each content cluster Ci using the function Di as described in equa-
tion Eq. 10 the main script; and finally, minimizing Sinkhorn divergence for
each Ci and corresponding style cluster DipCiq. The number of clusters directly
affects the level of detail in our stylization. Better clustering enables the decom-
position of the target shape into simpler shapes, making them easier to fit using
function Di. We visualize the effect of the number of clusters on the stylization
in Fig. 9, representing the granularity of the content scene representation. We
conduct experiments for three different style scenes and for the number of clus-
ters N P 200, 400, 600. We choose 400 clusters as our default value, as it produces
visually pleasing results without imposing excessive computational demands.

8 User study background

In user study each respondent was presented with a style image, an image of
a content scene, and four stylizations (ours, ARF, SNeRF, StyleRF) listed in
random order. The users were asked to pick the best stylization. In total, we
had eight participants in the study, some of whom had a background in different



WaSt-3D 11

200 clusters 400 clusters 600 clusters
Zoom-in 

200, 400, 600

Fig. 9: we visualize performance of our model for different number of clusters: 200, 400
and 600. On the left we visualize crop from the same area from different stylizations.
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Original scene Coordinate as color 
representation

Surface Points

Fig. 10: We sample points on the surface of the content scene(left) by encoding coor-
dinates in color(center) and then sampling non-black points(right).

fields of visual studies. Each participant evaluated 25 trial rounds. In each trial
round, users had six seconds to make a choice.

9 Image-to-scene stylization

One of the main features of our approach is to preserve the 3D geometry of
style scene. While our style examples mainly focus on complex 3D geometry, our
method can also work with flat style images.

To showcase the ability of our method to extract style from the abstract
artwork, we compare our model with the conventional image-to-scene stylization
approach on two paintings. We turn each artwork into a plane with the painting
on top, render these scenes from multiple viewpoints and represent them as
3DGS. Finally, we apply our stylization approach to these style scenes. Fig. 12
shows that in this limited scenario, our approach captures more faithfully the
color distribution and artistic style of the style image resulting in more visually
appealing stylized scenes.

10 Examples from style dataset

Renders from style scenes are presented in Fig. 13.
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Content scene ARAP loss Sinkhorn divergence

Fig. 11: In comparison with ARAP loss Sinkhorn divergence gives results more corre-
lated with the original shape of the content scene. The effect of poor shape preservation
using the ARAP loss can be easily seen on roof of lego scene, compared to the Sinkhorn
divergence.

OurStyleContent StyleRF

Fig. 12: Comparison of WaSt-3D against StyleRF on NeRF Synthetic content scenes
chair and hotdog in limited style scenario.



14 D. Kotovenko et al.

grass
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roof tile
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bouquet

Fig. 13: Examples of style scenes used for evaluating WaSt-3D.
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