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Abstract. Recent advances in contrastive language-image pretraining
(CLIP) have demonstrated strong capabilities in zero-shot classification
by aligning visual and textual features at an image level. However, in
dense prediction tasks, CLIP often struggles to localize visual features
within an image and fails to attain favorable pixel-level segmentation
results. In this work, we investigate in CLIP’s spatial reasoning mech-
anism and identify that its failure of dense prediction is caused by a
location misalignment issue in the self-attention process. Based on this
observation, we propose a training-free adaptation approach for CLIP’s
semantic segmentation, which only introduces a very simple modifica-
tion to CLIP but can effectively address the issue of location misalign-
ment. Specifically, we reform the self-attention mechanism with lever-
aging query-to-query and key-to-key similarity to determine attention
scores. Remarkably, this minimal modification to CLIP significantly en-
hances its capability in dense prediction, improving the original CLIP’s
14.1% average zero-shot mIoU over eight semantic segmentation bench-
marks to 38.2%, and outperforming the existing SoTA’s 33.9% by a large
margin. Code is available at https://github.com/wangf3014/SCLIP.
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1 Introduction

In the era of large foundation models, intensive pretraining followed by mini-
mal adaptations to various downstream tasks is becoming a new paradigm for
transfer learning. Nonetheless, in contrast to the significant success of foundation
models in natural language processing [4, 14, 45], most visual models have yet
to exhibit a comparable level of zero-shot transfer learning capabilities in vari-
ous downstream tasks [3,34]. By introducing language supervision and learning
on web-scale datasets, Contrastive Language-Image pretraining (CLIP) mod-
els [28, 44] are able to generalize visual representations into open-vocabulary
inference and demonstrate remarkable zero-shot classification results, yet this
capability remains very limited when it comes to more complex tasks such as
semantic segmentation.

Specifically, CLIP performs zero-shot classification by matching image-level
representations with a range of target text embeddings, by which it achieves
over 70% test accuracy on ImageNet [13] when paired with proper prompting

https://github.com/wangf3014/SCLIP
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Fig. 1: Open-vocabulary semantic segmentation examples. We evaluate on two images
from COCO [5] (the 3rd and the 5th examples) and three high-resolution images in
the wild, where our SCLIP consistently generates high quality segmentation masks
yet the original CLIP fails to correctly localize objects. We display the corresponding
text query of each segmentation mask, where “g. retriever” and “b. collie” in the first
example denote golden retriever and border collie, respectively.

strategies [44]. However, directly transferring this inference protocol to semantic
segmentation fails to achieve favorable results. For example, when equipped with
a ViT-Base/16 [17] encoder and fed with a 224×224 resolution input image, CLIP
can obtain a 14×14 dense feature map; and by simply associating such patch-
level representations with text embeddings, CLIP yields a mere 3.1% mIoU on
ADE20k [70] and 5.7% mIoU on COCO-Stuff [5]. Considering the supervised
counterparts that often produce around 40% mIoU on this two benchmarks, this
result is not really comparable. As a result, CLIP still relies on careful finetuning
and in-domain adaptations for downstream dense prediction tasks [39,64,73].

In this work, we investigate in CLIP’s potential for dense prediction and find
out whether the weak supervisions of CLIP can benefit various vision tasks with
minimal downstream adaptations. We start with a qualitative analysis. As shown
in Figure 1, we conduct simple open-vocabulary semantic segmentation exper-
iments on five sample images from COCO [5] or in the wild, where the vanilla
CLIP model often presents incorrect dense predictions and noisy segmentation
masks. However, despite its poor semantic segmentation performance, we find
that CLIP is actually able to roughly recognize what objects appear in the image
yet wrongly localizes them. For instance, in the second example, we set 10 target
categories including flamingo, water, land, with distractors such as sky, building,
and person, but although CLIP accurately obtains the correct categories such
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Fig. 2: Final layer attention maps of vanilla CLIP with a ViT-Base/16 image encoder.
We display the attention maps of four points (marked in different colors) for each
example. It shows that each local visual token attends to a wide range of positions and
the attention maps often share similar patterns, indicating that CLIP learns spatial-
invariant visual features.

as water and flamingo, it predicts the opposite localizations (i.e., predicts water
for flamingos and flamingo for water and land).

This qualitative study suggests that the poor segmentation performance of
CLIP is caused by a spatial misalignment of the patch representations, instead of
a failure in extracting dense visual features. This observation makes us suspect
that the problem lies in CLIP’s self-attention modules because they are responsi-
ble for arranging spatial information. In Figure 2, we illustrate several examples
of CLIP self-attention patterns, where each map represents the attention scores
for a specific point in the image (marked in different colors). As is shown, CLIP
attention maps can reflect the shape of major objects, but appears to be very
similar across many different source points in the image. This suggests that CLIP
learns spatial-invariant visual features, implying that the local features tend
to be invariant to their spatial positions in the image, and the model focuses on
a holistic visual representation.

However, in dense prediction tasks like semantic segmentation, we actu-
ally desire spatial-covariant features, which implies the local representations
should change accordingly to their spatial positions in an image. To this end, we
rethink the purpose of self-attention and introduce Correlative Self-Attention
(CSA), a novel self-attention mechanism that facilitates covariant visual fea-
tures. Specifically, in contrast to the original self-attention that employs two
projection matrices (i.e., the query and key) to determine attention scores, our
CSA module only projects the input once to find pairwise correlations of visual
tokens, which encourages each local token to attend to itself and to the positions
sharing similar information with it.
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Surprisingly, we find that after making this change, our CSA mechanism is
very effective to adapt CLIP into dense prediction tasks. In detail, we develop
our new approach SCLIP (Segmentation-adapted CLIP model) by employing a
CSA module in place of the original self-attention block in CLIP vision encoder1.
It is noteworthy that the CSA module is not sensitive to its projection weights so
we can simply reuse the pretrained parameters of original self-attention in CLIP,
which makes SCLIP a tuning-free approach for semantic segmentation using a
stand-alone CLIP model.

Empirical study on our SCLIP model showcases its notable effectiveness,
with yielding both impressive qualitative and quantitative outcomes: we obtain
an average mIoU of 38.2% over eight semantic segmentation benchmarks such as
PASCAL Context [40] and COCO-Stuff [5], substantially outperforming the ex-
isting state-of-the-art methods such as MaskCLIP [71] (30.3%), GroupViT [61]
(30.7%), and TCL [8] (33.9%) that support zero-shot and open-vocabulary se-
mantic segmentation. In Figure 1, we also show the qualitative results obtained
by SCLIP for images in the COCO [5] dataset and in the wild, where our
model yields very clear and accurate segmentation masks, especially for the high-
resolution inputs (e.g ., the case of two dogs sitting on the boat). The primary
contributions of this work can be summarized as follows:

– First, We identify the reasons of CLIP’s failure in semantic segmentation,
and address them by introducing a novel Correlative Self-Attention (CSA)
mechanism, while extensive experiments demonstrate significant results.

– Next, our SCLIP approach outperforms the existing methods [8, 49, 61, 71]
with neither fine-tuning nor any additional parameters given a pretrained
CLIP model, which validates the good transferability of vision-language
models in dense prediction tasks.

– Further, in this work, a minimal modification to CLIP yields very significant
improvements in semantic segmentation, which provides with an important
data point that the weakly-supervised pretraining paradigm with language
guidance has very good potentials to function as a visual foundation model
that supports a wide range of downstream tasks.

2 Related Work

Transferable Visual Foundation Models. Self-supervised pretraining has
recently demonstrated good potentials in learning transferable visual represen-
tations. The models pretrained with re-constructive objectives such as masked
image modeling [2,23,58] or discriminative objectives such as contrastive learn-
ing [7,9,21,24,26,54] exhibit strong capabilities in adapting various visual tasks
when sufficient downstream training data is available. Similarly, denoising diffu-
sion models [15, 27, 50] that allow high-resolution conditional image generation
1 Here we focus on transformer-based image encoders for CLIP. Compared with

ResNet [25] encoders, the vision transformers [17] are more suitable for zero-shot
transfer into semantic segmentation, since they have 1) a global receptive field, and
2) lower down-sampling ratios (e.g ., 16× for ViT-Base/16 vs. 32× for ResNet-50)
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and Segment Anything models [30, 76] that facilitate semantic-agnostic image
segmentation can also serve as foundation models with transferable visual fea-
tures.

When incorporated with language guidance, such foundation models can be
really powerful to allow open-vocabulary and zero-shot transfer learning for
downstream visual tasks [35, 42, 44, 47]. A representative model is CLIP [44],
which pioneers to align visual and textual features by contrastive pretraining.
Based on this, a series of follow-up works extend its scale [28, 43, 66, 68], appli-
cations [22,48,61,71], and downstream inference protocols [19,53,72].
Open-Vocabulary Segmentation. To fully utilize the advancements of vision-
language models in zero-shot and open-vocabulary visual inference, extensive
follow-up work has been initiated to investigate their applications in dense pre-
diction tasks. For example, GroupViT [61] introduces group tokens into its vision
encoder and pretrains with language guidance, leading to an open-vocabulary
model that well applies to semantic segmentation tasks. Also, MaskCLIP [71] and
CLIP Surgery [33] make simple modification to vision transformers and enables
CLIP’s coarse feature localization. The study of language-guided segmentation
is continuously explored [8, 20,32,36,39,41,46,49,59,62–65,69,73].
Self-Attention for Dense Visual Features. A series of related research has
demonstrated that the potential of vision transformers in extracting dense visual
features can be augmented by employing varied self-attention mechanisms. For
example, in contrast to the vanilla self attention used in CLIP and conventional
vision transformers [17, 44], the Local Attention mechanism constrains the spa-
tial feature aggregation within a local window so that to encourage fine-grained
features [37,38,52,57,74]. Localized visual features can also be encouraged with
modified self-attention mechanisms such as MaskCLIP [71] which discards the
processing of query and key vectors in its last transformer layer (equivalent
to local attention with window being one) and MSSA [67] that reduces the
attention projections into a single matrix. In addition, some segmentation or
detection-oriented transformer models leverage cross attention to map local vi-
sual features into semantic tokens [6, 10, 11, 51, 61]. Also, the models equipped
with Axial Attention [16, 55, 56] or Deformable Attention [60, 75] demonstrate
strong capabilities in dense prediction.

3 Method

The central concept of our method is transforming the spatial-invariant visual
features learned from the CLIP paradigm into covariant representations by ar-
chitectural modifications, so that the CLIP models can generalize to dense pre-
diction tasks. As we discussed in Section 1, the spatial-invariant features
indicate that the model produces similar representations for different locations
within an image and they tend to share holistic information (see Figure 2), which
is favorable in image-level tasks such as classification. In contrast, the spatial-
covariant features encourage each local token to effectively represent the visual
information of its corresponding position, which is conductive to pixel-level dense



6 F. Wang et al.

prediction tasks such as semantic segmentation. We develop our approach SCLIP
(Segmentation-adapted CLIP model) by introducing a new self-attention mech-
anism as it can re-organize the spatial information. The details can be found
below.
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Fig. 3: An architectural comparison between the original self-attention and our cor-
relative self-attention mechanism. Our method determines attention scores by pairwise
correlations between the local tokens.

3.1 Re-Visiting the Original Self-Attention

In conventional vision transformers [17], each input image of size 3 × w × h
is initially divided into a number of non-overlapping patches, with each patch
subsequently being projected into a vectorized feature xi ∈ Rd, where d denotes
the dimension of the model’s feature space. Each layer of the vision transformer
receives a collection of visual tokens X = {xcls,x1,x2, . . . ,xl} ∈ R(l+1)×d as
input, with xcls ∈ Rd denoting the class token, l = wh/p2 denoting the total
number of image patches (p×p size for each), and each local visual token xi ∈ Rd

(i = 1, 2, . . . , n) associated with a distinct position within the input image.
We illustrate the pipeline of the traditional self-attention block in Figure 3

(left). Formally, the attention map Attn ∈ R(l+1)×(l+1) is computed by

Attn = Softmax
(
XWqW

T
k XT /

√
d
)
, (1)

where Wq,Wk ∈ Rd×d are projection parameters learned from pretraining. Note
that here we only consider the single-head self-attention for easy description. In
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Original image:
Correlative attn:Vanilla attn: Correlative attn: Vanilla attn: 

Fig. 4: Comparison of attention maps. We show the attention maps of the last trans-
former layer in CLIP vision encoder equipped with the original self-attention (right)
and our correlative self-attention (left). Our correlative self-attention exhibits spatially
covariant patterns as the attention maps are distinct to different source points and
show clear boundaries of semantic objects (e.g ., the chair and the cat).

CLIP, the vision encoders are pretrained to represent each input image by a sin-
gle feature vector, which encourages the self-attention blocks to extract holistic
visual representations and consequently facilitates spatial-invariant features. As
mentioned above, these invariant features prevent CLIP from performing dense
prediction tasks, so necessary modifications should be made for its self-attention
modules to allow semantic segmentation.

A very straightforward way to this end is forcing each visual token xi only
attending to itself, i.e., setting the attention map Attn to an identical matrix
I(l+1)×(l+1) regardless of the input. In this way, each local visual token only
receives information from its corresponding position so that visual features are
well localized. In practice, MaskCLIP [71] uses this attention map in CLIP vision
encoder’s last layer and obtains a non-trivial improvement in semantic segmen-
tation. For example, it increases CLIP’s mIoU on COCO-Stuff [5] from 5.7% to
16.7%. However, as this approach strictly constrains the receptive field of local
tokens, the model may easily over-focus on low-level features and thus produces
noisy dense predictions [8, 71].

3.2 Correlative Self-Attention

To facilitate spatial-covariant features, we introduce Correlative Self-Attention
(CSA) mechanism which computes attention scores by pairwise correlations
across local tokens, with an overall pipeline illustrated in Figure 3. Formally,
we have

Attn = Softmax
(
XWrW

T
r XT /τ

)
, (2)

where X ∈ R(l+1)×d denotes the input and Wr ∈ Rd×d is the newly introduced
projection matrix. The temperature coefficient τ is by default set to

√
d follow-

ing traditional self-attention. This change makes self-attention depend on the
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distance between the feature vectors at different positions, with an underlying
idea that the tokens xi and xj assign high attention scores to each other if they
have high cosine similarity after a projection. Compared with the conventional
mechanism, this correlative self-attention is more suitable for dense prediction
tasks for the following reasons.

First, in vision transformers, the feature localization can be intuitively re-
flected by the magnitude of the diagonal elements of the matrix Attn ∈ R(l+1)×(l+1).
Specifically, each element aij ∈ [0, 1] of Attn measures the attention score of xi

to xj , so high diagonal values indicate that each local token mainly attends to
its own position and the visual information of each position is consequently well
localized. This explains why MaskCLIP [71] works, where it forces aij = 0, i ̸= j
and aij = 1, i = j. In the CSA module, the diagonal attention scores are also
enhanced since the correlation between xiWr and xjWr always reaches its max-
imum when i = j (supposing both vectors are normalized).

In addition to its notable feature localization abilities, the CSA module also
thoroughly accounts for the semantic correlations across local tokens, so that it
produces robust and smooth dense prediction results. Intuitively, for each local
token xi, CSA imparts high attention scores not only to xi itself but also to
tokens that share similar semantic content. We visualize this effect in Figure 4,
where for each source point, only the positions with high semantic similarity to it
are assigned with noticeable attentions, and therefore the corresponding object
(e.g ., the chair and the cat) of each source point can be clearly recognized in the
attention maps.

Further, the matrix Wr in CSA functions as a distance measure between the
features in different positions, so our model is not sensitive to the parameters
of this projection layer since changing Wr only alters the form of the distance
measure. In the experiments, we find that it is unnecessary to specifically train
this projection matrix, but instead manually assigning it or even employing an
ensemble of randomly initialized matrices can consistently obtain very competi-
tive results (see Section 4.3 and Table 2 for details). Notably, CSA’s insensitivity
to model parameters provides with good potentials of zero-shot adaptation into
dense prediction tasks when given a pretrained CLIP model. With this merit,
we can develop our segmentation model using CSA without introducing any
additional parameters nor any downstream fine-tuning.

3.3 Segmentation-Adapted CLIP Model

To develop our SCLIP approach, we employ a pretrained CLIP model with a
ViT-Base/16 [17] image encoder as backbone. Generally, when it comes to adapt-
ing CLIP into a downstream task without introducing additional parameters, we
actually regard its last or last several layers as a task-specific decoder head. Based
on our observation of the self-attention patterns in different layers, we regard
the last transformer block of CLIP’s image encoder as the decoding layer to
implement the adaptations while leaving the remaining components unchanged.

In this decoding layer, we replace the original self-attention block by our
CSA module and reuse its parameters of Wq and Wk as our projection matrices.
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Formally, we have

Attn = Softmax
(
XWqW

T
q XT /τ

)
+ Softmax

(
XWkW

T
k XT /τ

)
,

(3)

which makes a training-free adaptation since the matrices Wq and Wk can be
directly loaded from CLIP.

Post-processing of dense visual features. In dense prediction tasks, we
generally have a simple but very essential pre-hypothesis of spatial continuity,
which suggests that in an image, the adjacent pixels or patches tend to share
similar visual features. This prior knowledge can be easily introduced in fully
supervised training as the labels of segmentation masks actually satisfy this
hypothesis. However, in CLIP-like weakly supervised pretraining, there is no
such explicit constraint to limit the spatial continuity of dense visual features,
with only positional embeddings added in the input layer. Therefore, the existing
zero-shot segmentation models often rely on specific post-processing strategies
to refine or smooth their segmentation masks (e.g ., PAMR [1] for TCL [8] and
DenseCRF [31] for ReCo [49]).

However, we argue that such post-processing approaches should not be em-
ployed by default since ensuring the spatial continuity of output is also an integral
part of the inference capability of semantic segmentation models. In our exper-
iments, we find SCLIP to be very robust in this aspect, which does not rely on
any refinement or smoothing strategies to produce good segmentation results.

4 Experiments

4.1 Experiment Settings

Datasets. We evaluate our method on six commonly used semantic segmen-
tation benchmarks, including PASCAL VOC 2012 [18], PASCAL Context [40],
Cityscapes [12], ADE20k [70], COCO-Stuff and COCO-Object [5]. Considering
the background category, we additionally evaluate on two variant datasets for
PASCAL VOC and PASCAL Context. For clear reference, we denote VOC21,
Context60 as the original datasets with a background class, and VOC20, Con-
text59 as the variant without this category. In prior works such as GroupViT [61]
and TCL [8], they evaluate with input images resized to have a shorter side of
448 and then performing slide inference with a 448×448 window and 224 stride.
However, in our experiments, we find that using a smaller input size with denser
sliding stride can lead to slightly higher results (e.g ., 0.2% mIoU on PASCAL
Context). Specifically, we resize input images with a short side of 336 and perform
slide inference with a 224×224 window and 112 stride. This protocol introduces
a similar level of computation as that of GroupViT, yet better fits the origi-
nal input size of CLIP (e.g ., 224 for ViT-Base) and is also friendly to parallel
computing. For Cityscapes [12], we resize with a 560 shorter side due to the
particular high resolution of its original images. A detailed comparison of image
pre-processing protocols can be found in Table 4.
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Table 1: Evaluation results (mIoU, %) of our method and the baseline models on eight
semantic segmentation benchmarks. The methods with an asterisk symbol * denote
using a PAMR [1] post-processing strategy which introduces heavy computation cost
so we de-emphasize these results. Our results are marked in gray . The best results on
each dataset are bolded.

Method With a background category Without background category Avg.
VOC21 Context60 Object VOC20 City. Ctx59 ADE20k Stuff.

CLIP [44] 18.8 9.9 8.1 49.4 6.5 11.1 3.1 5.7 14.1

MaskCLIP [71] 43.4 23.2 20.6 74.9 24.9 26.4 11.9 16.7 30.3
GroupViT [61] 52.3 18.7 27.5 79.7 18.5 23.4 10.4 15.3 30.7
ReCo [49] 25.1 19.9 15.7 57.7 21.6 22.3 11.2 14.8 23.5
TCL [8] 51.2 24.3 30.4 77.5 23.5 30.3 14.9 19.6 33.9
CLIP-Surg [33] - - - - 31.4 29.3 - 21.9 -
OVSeg. [63] 53.8 20.4 25.1 - - - 5.6 - -
SegCLIP [39] 52.6 24.7 26.5 - - - - - -
SCLIP (ours) 59.1 30.4 30.5 80.4 32.2 34.2 16.1 22.4 38.2

Approaches with pamr post-processing:
CLIP∗ 19.8 8.7 10.4 54.2 7.0 11.7 3.6 5.9 15.2
MaskCLIP∗ 52.0 28.2 22.6 72.1 30.1 31.5 14.0 20.0 33.8
GroupViT∗ 52.7 19.5 27.9 81.5 21.7 24.4 11.8 16.9 32.1
ReCo∗ 27.2 21.9 17.3 62.4 23.2 24.7 12.4 16.3 25.7
TCL∗ 55.0 30.4 31.6 83.2 24.3 33.9 17.1 22.4 37.2
SCLIP∗ (ours) 61.7 31.5 32.1 83.5 34.1 36.1 17.8 23.9 40.1

Baselines. CLIP [44] is a direct baseline for our method to compare the
difference of dense prediction performance between the original self-attention
and our CSA mechanisms. In detail, we first extract textual embeddings of
the target class names from CLIP’s language encoder and then directly align
them with CLIP vision encoder’s dense features. We also consider the open-
vocabulary semantic segmentation models derived from CLIP or similar vision
language models as stronger baselines, which includes MaskCLIP [71], ReCo [49],
and TCL [8]. For These methods, we report the higher numbers between our
re-implementation based on their official code bases and results from the ex-
isted work [8]. We additionally compare them with recent baselines such as
SegCLIP [39] and OVSegmentor [63], for which we directly take the results in
their original papers.

Following TCL [8], we do not permit the post-processing strategies with very
heavy computation cost such as Dense CRF [31], and do not consider the base-
lines that borrow well-pretrained models other than CLIP [29,62]. We by default
discard the Pixel-Adaptive Mask Refinement (PAMR) [1] technique for post-
processing of segmentation masks as it also introduces intensive computation
and may easily obscure the inherent inference capabilities of the segmentation
models.
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4.2 Main Results

Table 1 summarizes the comparison of various zero-shot semantic segmenta-
tion models, where our SCLIP consistently achieves the best performance across
eight evaluated benchmarks, with notable leads in PASCAL Context (34.2%),
Cityscapes (32.2%), and ADE20k (16.1%). Overall, the average performance of
SCLIP stands at 38.0%, which is significantly higher than the second-best aver-
age performance by TCL at 33.9%. This suggests that SCLIP provides a robust
improvement over existing methods and testifies the significant effectiveness of
the newly introduced correlative self-attention. Aside from the competitive base-
line methods, we also report the evaluation results of the vanilla CLIP model with
its original self-attention in the image encoder. As a result, this straightforward
protocol fails to obtain a comparable performance as other baseline methods,
indicating the incompatibility of directly transferring the original self-attention
to dense prediction tasks.

In Table 1 there are also results of additionally employing a PAMR post-
processing layer, where almost all approaches can benefit from it with a similar
level of improvements. For example, our SCLIP attains a 1.9% average mIoU
increase over the eight datasets while the baselines of GroupViT and TCL get
1.4% and 3.3%, respectively. Contrary to what is reported in the TCL paper [8]
where MaskCLIP experiences a degradation in predictive performance after us-
ing the PAMR module, we find that by simply searching for suitable PAMR
hyper-parameters, it can achieve a 3.5% increase in mIoU compared with its
original version. We suggest to disable this refinement strategy in the default
settings of open-vocabulary segmentation since it is computationally intensive,
but instead turn to some lightweight smoothing methods for the predictions.

4.3 Ablation Study

Projection matrices in correlative self-attention. We want to find out the
effect of choosing different types of projection matrices in our correlative self-
attention block. As previously discussed, the CSA module theoretically accepts
any non-zero projections as its Wr, and we by default ensemble the Wq and
Wk in CLIP’s original self-attention for that (shown in Equation 3). Here we
compare four more variants to testify its robustness.

1. Identity Projection: we directly measure the pairwise correlations by inputs
X, leading to a very simple protocol of Attn = Softmax(XXT /τ). Note
that this is not equivalent to MaskCLIP which directly forces the Attn to
be an identity matrix.

2. Ensemble of Random Initializations: we randomly initialize several projec-
tion matrices as Wr and then average their corresponding attention scores.
Formally, we have Attn = 1

n

∑n
i=1 softmax(XWiW

T
i XT /τ).

3. Projection with Single Wq or Wk: We load single Wq or Wk as our Wr to
ablate the effect of combining both.
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4. Learned Projection: To fully exploit the potential of CSA, we specifically
learn a projection matrix from the training split of each dataset. The model
is able to converge well with few training samples (we use 64 for each dataset)
due to the few learnable parameters.

Table 2: Ablation results (mIoU, %) of projection matrices in correlative self-attention.
n denotes the number of random projection matrices used in this experiment. Our
default setting is marked in gray . The best result on each dataset is bolded.

Mode PASCAL VOC PASCAL Context COCO-Stuff

Single projection matrix for CSA:
Identity projection 57.5 33.0 21.5
Wq projection 58.2 33.5 21.7
Wk projection 58.4 33.1 21.8
Learned projection 60.4 34.7 22.6

Random projection matrices (average of 5 trials):
n = 1 57.1 32.4 20.6
n = 4 58.0 32.7 20.9
n = 16 58.1 32.7 21.2

Default 59.1 34.2 22.4

The results are summarized in Table 2. Overall, the performance differences
among the various modes on the three datasets are minimal, showcasing the
robustness of the proposed CSA mechanism. This is particularly notable in sce-
narios where only a single matrix is randomly initialized, which still yields re-
spectable results, such as an mIoU of 57.1% on the PASCAL VOC dataset. Also,
while the learned projection mode achieves the highest performance, the mar-
gin of improvement over the default training-free structure is not substantial.
Given this modest gain, investing significant effort into in-domain training for
learned projections may not be recommended. Excluding the learned projection,
our default method consistently attains the best results. This suggests that the
proposed CSA is highly compatible with the pretrained projection parameters
from CLIP. This compatibility is a testament to the efficacy of CSA when paired
with the robust features provided by CLIP’s pretrained projections.

Alternative approaches for feature localization. There also exist some
potential approaches to enable CLIP localizing visual features. For example, we
can sharpen the attention map by simply adjusting the temperature parameters
of the CLIP vision encoder, which prevents it from overly attending to global
information and instead concentrates the features on a few specific positions.
We denote this approach as Attention Sharpening and compare its effect to our
method. Similarly, by employing local attention techniques, i.e., calculating at-
tention scores only within a given window, we can facilitate the CLIP model in
anchoring visual features to their corresponding locations. However, this method
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Table 3: Ablation results of potential approaches for feature localization. Our default
setting is marked in gray . The best results are bolded.

Approach VOC21 Ctx59 Stuff

Attention sharpening
τ = 8 (CLIP default) 18.8 13.3 5.7
τ = 2 21.7 9.5 4.1
τ = 0.5 15.6 6.0 4.1
τ → 0 (hard max) 14.8 5.7 4.2

Local attention
window size = 3 42.9 25.5 16.0
window size = 5 30.5 18.3 8.2

Approach VOC21 Ctx59 Stuff

window size = 7 28.1 17.9 8.0

Attention map from early stages
from layer #1 41.5 26.2 16.8
from layer #3 43.0 26.4 16.2
from layer #5 41.7 26.8 15.4
from layer #7 21.9 17.3 10.1

SCLIP (ours) 59.1 34.2 22.4

comes at the cost of losing the global receptive field inherent in the vision trans-
former models, preventing the model from reasoning with the assistance of tokens
outside the local domain. It’s noteworthy that the MaskCLIP [71] algorithm can
be considered as a special case of local attention when the window size is set to
one. We also observe that actually the early stages of the vision transformer at-
tend to relatively small local regions. Therefore, a possible way for CLIP feature
localization is to directly borrow the attention maps in early stages in place of
those in the decoding layer.

As summarized in Table 3, the three alternative strategies may offer consid-
erable enhancements over the baseline CLIP model when specific parameters are
adjusted, yet they fall notably short when compared with our method. Specif-
ically, the attention sharpening approach fails to obtain performance improve-
ments in most cases, and only achieves a 2.9% mIoU gain on PASCAL VOC
with τ = 2. When we apply local attention with a window size of three, the eval-
uation performance is promising and almost parallels that of MaskCLIP across
three different datasets. In addition, the heuristic approach of directly borrowing
attention maps from early stages shows relatively better results, with a 26.8%
mIoU on PASCAL Context59 and a 16.8% mIoU on COCO-Stuff, which even
outperforms MaskCLIP.

This ablation study suggests that the mere focus on local visual features does
not effectively convert a weakly supervised pre-trained model such as CLIP for
semantic segmentation challenges. In contrast, our method, which incorporates
a correlative self-attention mechanism that considers the relationship between
local features and overarching semantic contexts, proves to be more adept for
visual reasoning tasks across diverse scales.

Image pre-processing. As discussed in Section 4.1, we adopts a new pre-
processing protocol that resizes each input image with the shorter side fixed to
336 instead of 448, and perform slide inference with a smaller window of 224 and
stride of 112 than previous methods [8,61]. To ablate the effect of this protocol,
we present a detailed comparison of different pre-processing strategies in Table 4.
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Table 4: Ablation results of image pre-processing on PASCAL VOC. “Img size” in this
table denotes the length of the shorter side of the resized image. Our default setting is
marked in gray . The best result is bolded.

Mode Img size Window Stride Flops VOC21 Context59 COCO-Stuff

#1 224 224 112 1× 56.5 32.0 20.5
#2 336 224 112 ∼ 4× 59.1 34.2 22.4
#3 336 336 112 ∼ 3× 58.6 34.1 21.9
#4 448 224 112 ∼ 9× 60.4 35.3 23.4
#5 448 448 224 ∼ 4× 58.9 34.3 22.1

As is shown, in general, larger image sizes combined with smaller windows
and strides lead to better performance, although they come with an increased
computational cost as indicated by the higher number of Flops. Specifically,
utilizing too small an image size results in substantial information loss and a
marked decrease in performance, as seen with mode #1, which achieves only a
56.5% mIoU. Larger image sizes can enhance prediction accuracy (as demon-
strated by mode #4), yet the improvement is not significant compared to the
default setting (mode #2).

Compared to the established default settings of existing work (mode #5),
the proposed protocol achieves better results with an equivalent amount of com-
putation. This is possibly attributed to two factors: first, CLIP inherently per-
forms better with its original input size of 224×224 pixels without fine-tuning;
and second, our setting reduces the window stride, leading to smoother outputs.
Furthermore, even when using the same pre-processing approach (mode #5), our
SCLIP outperforms the existing (SoTA) model, with a 58.9% mIoU compared
to TCL’s 51.2% on PASCAL VOC.

5 Conclusion

In this work, we propose to enhance CLIP’s potentials for dense prediction tasks
by introducing a novel correlative self-attention mechanism, which functions as a
task-specific decoder head for semantic segmentation in our approach. The adap-
tation significantly improves its performance in dense vision-language inference,
achieving a 38.2% average zero-shot mIoU across eight benchmarks evaluated in
this paper, outperforming the existing state-of-the-art models by a large mar-
gin. We demonstrate that minimal modifications to the existing CLIP model
can yield substantial improvements in its functionality. The significant increase
in zero-shot mIoU scores across various benchmarks testifies to the effectiveness
of our approach. Notably, our model outperforms the existing baseline methods
without any fine-tuning or additional parameters involved, which underscores
the robust potential of the CLIP-like weakly-supervised pretraining paradigm in
creating versatile visual foundation models.
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