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S1 Implementation details

S1.1 Proposed Method

The proposed method builds on NerfAcc’s [4] Instant-NGP implementation using
an occupancy grid. We use a batch size of 217 samples for the simulated dataset
and 216 samples for the captured dataset, where each batch aggregates samples
along all rendered rays. For the occupancy grid we use a threshold of 10−2 for
binarization. We preprocess the data by dividing by the factor given in Table S1
and Table S2, where these parameters are roughly the 90th percentile value of
the transient video rendered or captured for a centered view of the scene. We
then tonemap the data by clipping the transient video between the values of 0
and 1 and applying a gamma correction with γ = 5 for simulated data and γ = 2
for captured data. Overall, these parameters are selected to balance contrast and
detail in the rendered transient videos.

S1.2 Transient NeRF

We implement Transient NeRF using the NerfAcc framework based on the de-
scription provided by the Malik et al. [5], and the training procedure follows that
of the proposed method, including using 500k iterations for optimization on sim-
ulated data and 1M iterations for optimization on captured data. Following the
authors’ description of the method, no proprocessing (i.e., gamma correction) of
the data is applied. Following Malik et al. [5] we use the Mitsuba-based temporal
filter for the simulated dataset.

We also modify the rendering procedure to account for the non-coaxial illu-
mination and imaging setup used in our simulations. Specifically, during the ray
marching procedure we (1) calculate the path length to each sample along the
camera ray, (2) calculate the distance from that point to the point light source
(ignoring occlusions), and (3) assign the corresponding time-resolved radiance
to a transient bin that accounts for the round trip distance from the light source
to the sample and to the camera.
⋆ anagh@cs.toronto.edu
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S1.3 K-Planes

We follow the original K-Planes [2] implementation, training each scene with a
ray batch size of 4096. Each scene is trained for a total of 300,000 iterations;
this number is obtained by scaling the training hyper-parameters from the orig-
inal K-Planes implementation based on number of views and sequence length
of our data. Due to the limited expressivity of the K-Planes architecture, we
crop simulated and captured datasets in the time dimension. This prevents the
architecture from allocating capacity to fit parts of the transient where nearly no
photons are detected. For the simulated results, we crop the transients by iden-
tifying, across all viewpoints, the shortest contiguous time sequence in which
a photon is detected in every transient video frame. We follow the original K-
Planes implementation and set the spatial resolution of the feature grid to 64
and the temporal resolution to 25. For captured results, we train on the first 3000
time bins of each transient video. Since captured scenes are typically longer in
time than simulated scenes, we increase the temporal resolution of the feature
grid to 100.

S1.4 Direct–Global Separation

Our method can be used for 3D visualization of direct and global components
of light transport. To separate light into direct and global components, we use
the following procedure. First, we pre-process the captured transient data to
separate direct and global components by fitting a Gaussian mixture model (with
5 components) to the 1D temporal waveform of each transient video pixel for all
viewpoints. We use the implementation of scikit-learn [7] to fit the mixture.
To identify the direct component, we perform a normalized cross-correlation
between the fitted Gaussian mixture and the calibrated response of picosecond
laser and SPAD to a direct reflection from a diffuse target. We identify if the
maximum value of the normalized cross-correlation exceeds a threshold and,
if so, the direct component is taken to be all Gaussians whose mean is less
than the argmax of the normalized cross-correlation. Then, we set the indirect
component to the remaining Gaussians. Alternatively, if no direct component is
detected (i.e., the normalized cross-correlation does not exceed the threshold),
the indirect component is taken to be the entire mixture of Gaussians. We set
the threshold to 0.5 and find that this provides adequate selectivity for the direct
component. Finally, we train separate instances of our model on the direct and
global components, enabling synthesis of direct and global transient videos from
novel viewpoints (see supplemental video).

S2 Evaluation metrics

S2.1 Transient IoU

We introduce the transient intersection-over-union (IoU) metric. This metric
calculates the overlap between two time-resolved waveforms (i.e., transients) and



Supplementary Material: Flying with Photons 3

hence provides a measure of their similarity. Here, the intersection corresponds
to the overlapping area of the two transients, and the union is the area when
the greater of the transients at each time bin is considered. We assume that
both transients are non-negative. The IoU is then calculated as the ratio of the
intersection to the union of the histograms. Mathematically, it can be expressed
as:

IoU(τ 1, τ 2) =

∑
n min (τ 1[n], τ 2[n])∑
n max (τ 1[n], τ 2[n])

, (S1)

where τ1, τ2 are the transients being compared. The IoU metric ranges from 0 to
1, with a value of 1 indicating perfect overlap and complete similarity between the
two histograms, while a value of 0 indicates no overlap and complete dissimilarity.

S2.2 PSNR, LPIPS and SSIM

To calculate the image metrics, we need a 2D representation of our transient.
To arrive at this representation, we take the integrated transient output for each
method (over the time dimension), this gives a raw image, which is then scaled
and clipped between 0 and 1. After that the images are gamma corrected with
γ = 2.2. These images are then compared for PSNR, LPIPS and SSIM. The
scales are shared between all methods and are fixed per dataset.
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S3 Dataset

The exact details of all the simulated and captured datasets can be found in
Table S1 and Table S2 respectively.

Illumination and detector configuration. While both datasets use a static illu-
mination source, future work could investigate scanning both the illumination
source and the detector. However, capturing this type of data would require a
more sophisticated gantry and longer acquisition times. Alternatively, our cap-
ture system supports using a static camera and scanned light source, which could
enable applications in transient relighting.

Table S1: Descriptions of simulated scenes. All scenes have a test set of 60 test images.

scene description training
views

azimuth
span

elevation
span

bin
width

normalization
scale

Cornell
box

A light source from
the top illuminates
two boxes, highlight-
ing interreflections.

93 180° 45° 0.1 43

Peppers A point light source
from the top illu-
minates a glass ball
and two peppers,
red and green. The
scene highlights
refractions.

93 45° 30° 0.02 5

Pots A point light source
from the top illu-
minates a ficus and
stacked pots, which
are in front of a glass
pillar. This scene
highlights interreflec-
tions, refractions and
shows more compli-
cated geometry.

93 90° 30° 0.02 500

Caustics A volume filled with
smoke contains a
point light source
and a glass ball. The
glass ball focuses the
light which leaves
the point source.

45 45° 15° 0.05 20



Supplementary Material: Flying with Photons 5

Table S2: Descriptions of the captured scenes. All scenes have a calibrated bin width
of 0.0105 m and span 15 degrees in elevation angle.

scene description training
views

test
views

azimuth
span

normalization
scale

exposure
time (s)

Coke bot-
tle

A collimated beam
enters a coke bottle,
it gets focused at the
cap.

36 9 360° 1000 2000

Kennedy A points source
illuminates a brass
Kennedy statue,
we also witness in-
terreflections in a
mirror in the scene.

60 15 150° 400 1000

David A point source illu-
minates a statue of
David and two can-
dles from the side.

60 15 150° 6000 1000

Mirror A fish tank filled with
water and a bit of
milk. A collimated
beam enters the tank
and gets reflected on
to a diffuser by a mir-
ror.

36 9 90° 1500 2000

Diffraction A fish tank filled with
water and milk. A
collimated beam en-
ters the tank and gets
diffracted by a grat-
ing.

39 9 90° 500 2000
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S4 Additional Results

S4.1 Simulated Results

We provide additional results on the simulated dataset (see Fig. S1) and re-
port metrics for each scene (Tables S3, S4, S5, S6). We observe similar trends
as in the main text; the proposed method without propagation delay modeling
and K-Planes [2] fail to reconstruct transients with correct timing. In scenes with
more inter-reflections, these methods fail entirely. T-NeRF [5] fails to reconstruct
global illumination components. While the proposed method without propaga-
tion delay yields strong results across the image quality metrics, we note that
it is only the integrated images that appear correct; the transient has incorrect
time shifts, which results in a lower transient IoU score for that method.

Table S3: PSNR (dB) results on the simulated scenes.

Cornell box peppers pots smoke mean ↑

T-NeRF 21.471 27.119 28.916 27.892 26.349
K-Planes 13.768 18.391 18.728 31.317 20.551
w/o prop. delay 13.271 28.080 29.448 40.367 27.791

proposed 33.746 28.634 32.695 36.783 32.965

Table S4: LPIPS results on the simulated scenes.

Cornell box peppers pots smoke mean ↓

T-NeRF 0.361 0.334 0.320 0.337 0.338
K-Planes 0.525 0.298 0.707 0.192 0.431
w/o prop. delay 0.495 0.321 0.345 0.175 0.334

proposed 0.211 0.247 0.292 0.239 0.247

Table S5: SSIM results on the simulated scenes.

Cornell box peppers pots smoke mean ↑

T-NeRF 0.871 0.890 0.926 0.861 0.887
K-Planes 0.629 0.738 0.341 0.954 0.666
w/o prop. delay 0.703 0.933 0.947 0.994 0.894

proposed 0.974 0.946 0.959 0.982 0.965
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Fig. S1: Additional simulated results, transient frames and peak-time visualizations.
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Table S6: Transient IoU results on the simulated scenes.

Cornell box peppers pots smoke mean ↑

T-NeRF 0.781 0.712 0.798 0.626 0.729
K-Planes 0.335 0.346 0.295 0.455 0.358
w/o prop. delay 0.185 0.360 0.456 0.472 0.368

proposed 0.915 0.722 0.858 0.824 0.830

S4.2 Captured Results

We provide additional results on the captured dataset (see Figs. S2 and S3) and
report metrics for each scene (Tables S7, S9, S8, S10). Again, we observe similar
trends to the main text.

Table S7: PSNR (dB) results on the captured scenes.

Coke bottle Kennedy David mirror diffraction mean ↑

K-Planes 20.979 20.690 29.810 27.060 22.035 24.635
w/o prop. delay 17.050 14.002 18.882 19.614 16.043 17.118

proposed 22.429 21.607 30.388 27.598 22.722 24.949

Table S8: SSIM results on the captured scenes.

Coke bottle Kennedy David mirror diffraction mean ↓

K-Planes 0.519 0.561 0.433 0.511 0.559 0.506
w/o prop. delay 0.504 0.526 0.506 0.531 0.580 0.529

proposed 0.414 0.410 0.364 0.461 0.506 0.431
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Fig. S2: Additional captured results, transient frames, and peak-time visualizations.
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Fig. S3: Additional captured results, transient frames, and peak-time visualizations.

Table S9: LPIPS results on the captured scenes.

Coke bottle Kennedy David mirror diffraction mean ↑

K-Planes 0.430 0.654 0.764 0.598 0.525 0.612
w/o prop. delay 0.200 0.438 0.438 0.403 0.251 0.346

proposed 0.351 0.774 0.876 0.717 0.611 0.666

Table S10: Transient IoU results on the captured scenes.

Coke bottle Kennedy David mirror diffraction mean ↑

K-Planes 0.118 0.492 0.580 0.435 0.351 0.406
w/o prop. delay 0.002 0.359 0.336 0.052 0.119 0.174

proposed 0.298 0.574 0.607 0.460 0.399 0.468
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Fig. S4: Integrated transient videos rendered from novel views trained using transients
with different light levels on the David scene. The method is trained on different subsets
of the photon counts collected within the indicated exposure times per each view; at
low photon count settings, the method struggles to reconstruct darker regions due to
the low signal-to-noise ratio.

Table S11: Reconstruction quality vs. exposure time for the David scene. We report
image quality metrics and Transient IoU for the proposed method trained on transient
videos captured with varying exposure times.

PSNR ↑ LPIPS ↓ SSIM ↑ Transient IoU ↑

100s 24.030 0.391 0.683 0.512
250s 26.173 0.372 0.779 0.564
500s 27.971 0.355 0.848 0.578
1000s 30.388 0.364 0.876 0.607

S4.3 Noise Analysis

We conduct an experiment involving variations in the exposure time, specifi-
cally, we train the proposed method using the photons captured within one-half,
one-tenth, and one-quarter of the original exposure time. This translates to an
exposure time of 500s, 250s, 100s respectively, per each transient video. As ex-
pected, the reconstruction quality degrades somewhat with decreasing photon
counts for all metrics (see Tab. S11). While the method performs worse in darker
regions (which have lower signal-to-noise ratio) as the exposure time decreases,
the main scene details are still accurately reconstructed even at the lowest ex-
posure setting.

S4.4 Ablation Studies

Effect of tonemapping. In Table S12, we compare tonemapping the ground truth
using a gamma function vs. tonemapping the ground truth and the rendered data
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Table S12: Evaluation of transient rendering from novel views.

method param. PSNR (dB) ↑ LPIPS ↓ T-IOU ↑
si

m
K-Planes γ = 1 37M 17.519 0.564 0.245
K-Planes γ = 5 57M 20.038 0.433 0.352
K-Planes γ = 5 37M 20.551 0.431 0.358

si
m

Ours, γ = 1 15M 28.224 0.414 0.695
Ours, γ = 5 15M 32.965 0.247 0.830
Ours, RAWNeRF (γ = 5) 15M 34.692 0.212 0.861

ca
p Ours, γ = 2 15M 24.949 0.431 0.468

Ours, RAWNeRF (γ = 2) 15M 24.835 0.534 0.302

in the loss function (as in RAWNeRF [6]) vs. using a linear mapping (γ = 1),
and we report average performance for the simulated (“sim”) and captured scenes
(“cap”). We observe that (1) tonemapping improves performance over a linear
mapping for both our method and K-Planes (all rows); (2) tonemapping both
the renders and the measurements improves performance in simulation but not
for captured data, where the model seems more sensitive to fitting noise (rows
5–6, 7–8).

K-Planes parameters. We attribute the lower performance of K-Planes relative
to our approach to its lack of propagation delay modeling. The results are rela-
tively insensitive to the parameter count—see Table S12, rows 2–3. Specifically,
we re-ran K-Planes on the simulated dataset after increasing the parameter
count from 37M to 57M (more than the K-Planes models that we used for cap-
tured data, whose transients have more time bins). We observe a small change
in performance; the slight (≈ 0.5 dB) drop in the PSNR of novel views could
be due to a tendency for increased overfitting to training viewpoints with more
parameters.

S4.5 Time Warping

Our approach can be used to visualize light transport in different ways through
time warping, which involves adding or removing time delays to the rendered
transients. Following Velten et. al [8] we perform depth-based time warping,
which removes the propagation delay from the scene point to the camera. In the
visualization with depth-based warping, points along each camera ray “light up”
as soon as they intersect a wavefront of light; in other words, each camera ray is
rendered in a different spacetime coordinate frame. To create this visualization,
we calculate the propagation delay to each scene point using the expected ray
termination distance [1], and we shift the rendered transient by the corresponding
speed-of-light time delay. We compare transients rendered with and without
depth-based warping in Fig. S5.

Our representation enables more general time warping techniques, wherein
we shift the transients based on the distance to arbitrary reference surfaces
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(e.g., defined by a sphere, cube, etc.). We explore extensions to time warping
and associated novel visualization techniques in Figure. S5, specifically, we show
sphere, cube, back-sphere and back-cube warpings for the Cornell box scene.

no warping

cube back-sphere back-cube

depth sphere time

Fig. S5: Visualization of different methods for time warp-
ing.

To perform the sphere
warping each transient
is shifted by the distance
between the camera ori-
gin and a sphere that
encapsulates the scene.
Using the sphere sur-
face as the spacetime
reference frame reduces
view-dependent changes
in the appearance of
the scene, especially as
the scene–camera dis-
tance increases. Rather
than shifting the tran-
sient by the distance be-
tween the camera origin
and the sphere, we can instead shift by the distance between the camera origin
and the second intersection with the sphere; we call this the back-sphere warping.
This method for warping accentuates the curvature of propagating wavefronts.
We can similarly visualize wavefronts using a spacetime reference frame corre-
sponding to the surface of a cube that encapsulates the scene. Then, we can shift
the transients by the distance from the camera center of projection to the near
surface of the cube (cube warping) or the far surface of the cube (back-cube
warping).

S4.6 Relativistic Rendering

To create the relativistic visualizations we reimplement the relativistic rendering
procedures of Jarabo et al. [3]. We now explain how we implement the relativistic
effects, shown in the main paper figures. Let the observer speed be given as v =
βc, where c is the speed of light and β is a factor. Then we denote γ = 1

(1−β2)1/2
.

Camera deformation. This effect is caused by the Lorentz contraction; here the
camera field of view changes based on the camera velocity. To implement the
camera deformation we augment the camera’s field of view. Specifically let fx, fy
be the focal lengths in the horizontal and vertical directions, then the new camera
focal lengths are given as f

′

x = fx
γ and f

′

y =
fy
γ .

Relativistic aberration. This operation warps the camera rays based on the cam-
era velocity. Specifically, let also v be the camera ray vector and M the velocity
vector of the observer. Then θ is the angle between them, due to relativity this
angle gets changed. In particular, the new angle is given through its cosine:
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cos(θ
′
) =

cos(θ)− β

1− βcos(θ)
. (S2)

Time dilation. This operation shifts and stretches the transients in time. The
exact equations for these warpings are provided by Jarabo et al. [3] (see their
Eq. 3, and Eq. 11).

Searchlight effect. This operation applies a spatial modulation to the intensity
of light based on the camera velocity. Let D = γ(1 + β cos(θ

′
)), where θ

′
gives

the warped rays’ angles for the image as described in the Relativistic aberration
section. Then the radiance of the ray is scaled by the factor D−5 [3]. This results
in increased brightness in the center of the image or the edges, depending on the
direction of motion.

We do not implement Doppler shift [9] because the transient videos are cap-
tured using a narrowband pulsed laser (so no relative shift between wavelengths
would be observed).
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