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A Supplementary

A.1 Further Technical Deatails

Motivation of contextual feature R. Most prior works use a heuristic-based
scoring function borrowed from the short video-text retrieval methods and ap-
ply them directly to longer videos. This often leads to poor performance in
fine-grained event retrieval within very long videos. Instead, we use a learnable
retrieval token R, facilitating more effective fine-grained event understanding in
long videos. Our introduced retrieval token unifies the retrieval and grounding
objectives since it is used as input into the grounding decoder. This enables
our model to maximize the synergy between retrieval and grounding stages, sig-
nificantly improving both clip retrieval (+12.6% R1) and grounding (+4.2%
R1@.3) on Ego4D (Tab. 4). For both training and inference, we randomly ini-
tialize R and then replicate it for all clips. Thus, the initial features Ri and Rj

of clips i and j are replicated copies of a randomly initialized feature R.

Method Grounding Retrieval

R1@.3 (↑) R5@.3 (↑) R1 (↑) R5 (↑)
Heuristic 14.15 30.33 12.41 24.50
Learned 18.28 34.02 25.01 50.02

Table 4: Performance Comparison on Ego4D (ref. Tab 2, 3)

Runtime Analysis. We divide a video of length L into clips of length C. The
number of text tokens is T , and the hidden dimension is D. The time complexity
of self-attention is O(LCD), cross-attention is O(LTD), and the full model is
O(L(C + T )D). The runtime of our model scales linearly with video length. We
compared our runtime with the CONE baseline on a GTX A100 and reported the
total time for the Ego4D validation set. CONE achieves a 14.15% R1@0.3 score
with a 39.9-second inference time. In contrast, RGNet scores 20.63% R1@0.3
in just 24.2 seconds, making it 1.7x faster than CONE. Our retrieval module
achieves superior performance with fewer retrieved clips, substantially reducing
the runtime, as shown in the leftmost subfigure below.
Convergence. RGNet converges in 35 and 200 epochs on MAD and Ego4D.
The rightmost figure above shows that on MAD our model converges earlier due
to a larger dataset.
Number of the Negative Samples. We trained Ego4D with a batch size of
32, resulting in 1024 clip-text pairs (32 positives and 992 negatives). We use 8
positive and 56 negative samples for MAD to fit its longer clips in a GPU.

A.2 Further Ablation Studies

This section provides an in-depth analysis of various components of RGNet, such
as the sparsifier and transformer decoder. Furthermore, we conduct ablation
studies on pre-training data and frame rate. All experiments are carried out on
the Ego4D-NLQ dataset.
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Fig. 7: (left) Runtime comparison w.r.t. baseline model CONE. (right) Training con-
vergence curve for both MAD and Ego4D datasets.

Sparsifier: We use a differentiable softmax function to enable end-to-end train-
ing of the sparsifier. Let’s denote pj as the linear projection of f j from Eq. 2.

pj = linear(f j) (11)

To derive a categorical variable Gj characterized by probabilities π1
j = σ(pj)

and π0
j = 1 − σ(pj), where σ is the sigmoid operation, we can reframe the

sampling procedure for Gj through the utilization of the Gumbel-Max trick,
outlined as follows:

Gj = argmaxk

{
log

(
πj
k

)
+ gk : k = 0, 1

}
(12)

Here, the set {gk}k=0,1 consists of independently and identically distributed
(i.i.d.) random variables sampled from the Gumbel(0, 1) distribution. Consider-
ing the non-differentiable characteristic of the argmax operation, we employ an
approximation for Gj using a differentiable, soft version Ĝj , derived from the
Gumbel-Softmax relaxation [17,33].
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To ensure differentiability with respect to the discrete samples Gj , we employ
the straight-through trick [17] and utilize the gradients of Ĝj as an approximation
for the gradients of Gj in the backward pass.

The Gumbel-Softmax distribution serves as an interpolation between discrete
one-hot-encoded categorical distributions and continuous categorical densities.
For low temperatures (τ = 0.3), the expected value of a Gumbel-Softmax random
variable approaches the expected value of a categorical random variable with the
same logits. As the temperature increases (τ = 0.9), the expected value converges
to a uniform distribution over the categories. Fig. 8a shows that we achieve the
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best performance with τ to be 0.3, which means the differentiation between the
relevant and irrelevant frames is beneficial during the retrieval.

temparature (𝜏)

5.00

8.75

12.50

16.25

20.00

0.1 0.3 0.5 0.677 0.9

R1@.3              Ego-4d

(a) Low temperature enables
our sparsifier to approximate
a categorical distribution over
the relevancy of frames and
achieves better performance.

Decoder Queries

17.0

17.5

18.0

18.5

19.0

1 2 3 5 10

R1@.3              Ego-4d

(b) Increasing the number
of decoder queries up to 5
enhances performance, while
further increments start to de-
teriorate the results.
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(c) While decreasing the FPS
improves retrieval accuracy,
it deteriorates the grounding
performance due to the loss of
temporal information.

Fig. 8: Ablation Studies on the sparsifier, transformer decoder, and input FPS.

Transformer Decoder: RGNet utilizes learnable decoder queries [27] to lo-
calize the moments. The number of queries equates to the number of predicted
moments from each retrieved proposal. With more queries, the decoder can de-
tect moments in different temporal locations of various widths. However, for long
videos, the decoder runs on multiple retrieved clips, and increasing the queries
beyond 5 leads to an increasing number of predicted moments, which decreases
the LVTG performance (ref. Fig. 8b). Consequently, we set the number of queries
in our decoder to 5.

Frame Rate: Manual reduction of frame rate (FPS) yields enhanced retrieval
accuracy but significantly degrades grounding performance, as shown in Fig. 8c.
Lowering the FPS serves as a heuristic sparsification strategy that aids retrieval
but results in temporal information loss, leading to diminished overall perfor-
mance. In contrast, our learned sparsifier enhances retrieval accuracy without
compromising grounding performance, presenting a superior alternative to man-
ual sparsification.

Method NaQ R1.3 R5.3 R1.5 R5.5

VSLNet ✗ 5.45 10.74 3.12 6.63
EgoVLP ✗ 10.84 18.84 6.81 13.45
ReLER ✗ 14.66 17.84 8.67 11.54
RGNet (Ours) ✗ 18.28 34.02 12.04 22.89

VSLNet ✓ 10.26 19.01 5.81 12.67
EgoVLP ✓ 15.90 26.38 9.46 17.80
ReLER ✓ 19.31 23.62 11.59 15.75
RGNet (Ours) ✓ 20.63 41.67 12.47 25.08

Table 5: Impact of NaQ. We compare RGNet on the Ego4D-NLQ dataset with and
w/o NaQ annotations. RGNet achieves the best performance in both cases.
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NaQ Pretraining: Similar to the prior state-of-the-art model [39], we employ
NaQ annotations to pre-train RGNet on the Ego4D dataset. The grounding an-
notations of NaQ are automatically generated from the ground truth narrations
of the Ego4D dataset. With this pretraining, we improve R@1.3 and R@1.5 by
1.32% and 18.05% (refer to Table 5). Importantly, without the extra NaQ
annotations, RGNet demonstrates a larger improvement of 3.62% for R@1.3.
These results highlight RGNet’s superior performance, even in scenarios with
limited data. The evaluation of the Ego4D test set is exclusively available on
their official server, which is presently closed. Therefore, in alignment with re-
cent publications [37,52] in ICCV’23, we present our performance of Ego4D-NLQ
on the validation set.

A.3 Qualitative Results

We visualize the relevance score of all the video clips and clip frames for a single
video in Fig. 10. For both the clip and frame levels, our model scores higher on
the ground truth regions than the baseline. Then, we visualize some successful
moment localization on both MAD and Ego4D datasets in Tab. 9 and 11.

Fig. 9: Qualitative results on MAD. RGNet successfully localizes moments from
hour-long movies by parallelly processing them in clip and frame level granularity.
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Fig. 10: Clip and Frame Relevancy. We visualize the relevancy score of video clips
(left) and proposal frames (right) for the query “Did I leave the car door open?” from
Ego4D-NLQ. We present the score for both RGNet and the disjoint baseline model in
green and yellow, respectively. RGNet approximates the ground truth clip and frames
better than the baseline in both stages.

Fig. 11: Qualitative results of Ego4D. RGNet can localize fine-grained events in
long videos across various scenes and scenarios.


