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Abstract. Developing gaze estimation models that generalize well to
unseen domains and in-the-wild conditions remains a challenge with no
known best solution. This is mostly due to the difficulty of acquiring
ground truth data that cover the distribution of faces, head poses, and
environments that exist in the real world. Most recent methods attempt
to close the gap between specific source and target domains using domain
adaptation. In this work, we propose to train general gaze estimation
models which can be directly employed in novel environments without
adaptation. To do so, we leverage the observation that head, body, and
hand pose estimation benefit from revising them as dense 3D coordinate
prediction, and similarly express gaze estimation as regression of dense
3D eye meshes. To close the gap between image domains, we create a
large-scale dataset of diverse faces with gaze pseudo-annotations, which
we extract based on the 3D geometry of the face, and design a multi-view
supervision framework to balance their effect during training. We test
our method in the task of gaze generalization, in which we demonstrate
improvement of up to 23% compared to state-of-the-art when no ground
truth data are available, and up to 10% when they are.
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1 Introduction

Eye gaze serves as a cue for understanding human behavior and intents, including
attention, communication, and mental state. As a result, gaze information has
been exploited by a lot of applications of various fields of interest, ranging from
medical and psychological analysis [9,37,64] to human-computer interaction [4],
efficient rendering in VR/AR headset systems [6, 10, 39], virtual character ani-
mation [57, 61, 62, 77] and driver state monitoring [34, 50]. When high accuracy
is important, data collection under the particular capturing set up is crucial,
e.g. specific VR headsets, static screen-camera setups. However, in numerous
real-world applications robustness is equally important to high accuracy, e.g.
face-unlocking in mobile devices, best frame capturing/selection in group pho-
tos and automatic gaze annotation of large datasets for face reenactment.

https://eververas.github.io/3DGazeNet/
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Fig. 1: Overview of our method 3DGazeNet. a) We approach 3D gaze estimation as
dense 3D eye mesh regression, which is robust against sparse prediction errors. b)
Domain generalization is one of the hardest challenges in gaze estimation. Training
with common gaze datasets often results in poor cross-dataset performance. c) Our
multi-view supervision method employs pseudo-labels from in-the-wild face images to
close the gap between controlled and in-the-wild datasets.

Typically, 3D gaze estimation is expressed as a direct mapping between input
images and a few pose parameters [12, 42, 52, 70, 82], or sparse representations
of the eyes [54, 55, 66]. Nevertheless, it has been shown that unconstrained face
and body pose estimation from single images benefits from replacing predicting
few pose or shape parameters by directly predicting dense 3D geometry [3, 16,
26,43,58]. In this work, we leverage this observation and revise the formulation
of gaze estimation as end-to-end dense 3D eye mesh regression, which combined
with standard vector regression induces multiple benefits. Existing datasets with
ground truth 3D eyes include only images in the IR domain [21], however, IR
images cannot be directly employed for RGB-based methods. As 3D eye meshes
are not available for most gaze datasets, we define a unified eye representation,
i.e. a rigid 3D eyeball template (Fig. 3(a)), which we fit on images based on
sparse landmarks and the available gaze labels.

Several gaze datasets have become available in the last decade [20,22,35,42,
52,59,60,79,81], which have contributed to the recent progress in automatic 3D
gaze estimation from monocular RGB images. However, collecting gaze datasets
is a costly and challenging process which often restricts them being captured in
controlled environments and consisting of limited unique identities, thus lacking
variation compared to data from the real world. This causes the most common
challenge in gaze estimation, which is cross-domain and in-the-wild generaliza-
tion. In this work, we propose a method to exploit arbitrary, unlabeled face im-
ages to largely increase the diversity of our training data as well as our model’s
generalization capabilities. To that end, we design a simple pipeline to extract ro-
bust 3D gaze pseudo-labels based on the 3D shape of the face and eyes, without
having any prior gaze information. Based on recent advancements on weakly-
supervised head, body and hand pose estimation [8, 17, 31, 44, 65], we regularize
inconsistencies of pseudo-labels, by a geometric constraint which encourages our
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model to maintain prediction consistency between multiple synthetic views of
the same subject.

Most recent methods attempt to close the gap between diverse image domains
using domain adaptation. Commonly, they employ a few samples of the target
domain, with [29,53,73] or without [5,7,11,24,27,47,68,70] their gaze labels, to
fine-tune an initial model. Although successful, approaches following this scheme
require knowledge of the target domain and model re-training, which prohibit
their use as plug-n-play methods in real user applications. In contrast, we propose
a method to train gaze estimation models that generalize well to unseen and in-
the-wild environments without the constraints of domain adaption. Our method
can effortlessly be employed by user applications in a plug-n-play fashion.

An overview of our approach, which we name 3DGazeNet, is presented in
Fig. 1. We evaluate our method in cross-dataset gaze generalization, showcasing
improvements over the state-of-the-art, even by a large margin, and perform
ablations over the model components. To summarize, the key contributions of
our work are:

– A simple automatic method to extract robust 3D eye meshes from arbi-
trary face images and a multi-view consistency regularization which allows
to exploit them for improved gaze generalization.

– A revised formulation for gaze estimation, based on dense 3D eye mesh
regression from images. To the best of our knowledge, we are the first to
utilize an end-to-end 3D eye mesh regression approach for gaze estimation.

– Improved performance over the state-of-the-art in gaze generalization with
(10%) and without (23%) using source domain ground truth, with a sim-
ple model architecture. Based on that, we believe that 3DGazeNet is an
important step towards reliable plug-n-play gaze tracking.

2 Related Work

Numerous model designs for supervised 3D gaze estimation have been tested
recently, investigating which face region to use as input [12, 42, 82], the model
architecture [1,14,46,67] and what external stimuli to utilize to improve perfor-
mance [52]. Motivated by the difficulties in collecting diverse and large scale data
for gaze estimation, recent works have shown that valuable gaze representations
can be extracted in fully unsupervised settings, by applying gaze redirection [74]
or disentanglement constraints [63].

Gaze Adaptation and Generalization Much effort has been made to design
methods that adapt well to known target subjects and environments, by employ-
ing either few labeled samples [29, 53, 73] or completely unlabeled data of the
target domain [5,7,11,24,27,47,68,70]. Differently from the above, gaze general-
ization models aim to improve cross-domain performance without any knowledge
of the target domains. The models in [5, 11, 70], even though targeted for gaze
adaptation, are based on learning general features for gaze estimation and thus,
they perform well in target domain-agnostic settings. Moreover, [40] has shown
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that it is possible to train general gaze estimation models by employing geomet-
ric constraints in scenes depicting social interaction between people. We believe
that [40] is the closest work to ours, as it is the only method which uses 3D
geometric cues of the scene to learn gaze from arbitrary face data. Lastly, [78]
proposes to improve generalization by employing synthetic images which are,
however, limited by the gaze distribution of existing gaze datasets. Both the im-
plementation and custom dataset are not public, which hinders reproducibility
and reliable comparisons.

Model-Based Gaze Estimation Differently from the above, sparse or se-
mantic representations of the eye geometry have also been employed by some
methods to infer gaze from images [54, 55, 66, 67, 71, 72]. However, such repre-
sentations do not convey information about the 3D substance of eyes and are
prone to noisy predictions. In contrast, by predicting 3D eye meshes we learn a
much more robust representation, from which we can retrieve any other sparse
or semantic one just by indexing. Recovering dense 3D geometry of the eye re-
gion from images by fitting parametric models of the shape and texture has
been previously proposed [71]. However, restrictions posed by building large-
scale parametric models and fitting in-the-wild images have resulted in low gaze
accuracy compared to learning-based methods.

Face Reenactment and Learning from Synthetic Data Synthetic im-
age data have been previously used in training deep networks, mainly to aug-
ment the training datasets and provide pseudo-ground truth annotations. For
instance, [84] used CycleGAN [83] to create a new training corpus in order
to balance emotion classes in the task of emotion classification. More recently,
GANcraft [28] employed SPADE [56] to generate pseudo-ground truth images
that were used to supervise their neural rendering framework. In this work, we
obtain access to image pairs of the same subject in different views, by taking
advantage of HeadGAN [19], a face reenactment system. In contrast to person-
specific reenactment methods [18, 36, 41] or person-generic landmark-driven ap-
proaches [69, 75, 76], HeadGAN is able to perform free-view synthesis using a
single source image.

Original Image 3d Face Representation
(original shape)

3d Face Representation
(rotated shape) Synthetic Image

Pose Manipulation

HeadGAN

Fig. 2: We use HeadGAN [19] to generate novel views by manipulating the 3D pose of
the face. During synthesis, angle θz is transferred to all facial parts including the eyes,
thus the relative angle between the head and eyes (i.e. the gaze direction in the head
coordinate system) is maintained.
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3 Method

3.1 Problem Definition and Motivation

The aim of this work is to design a method that given a face image I, it estimates
2 × Nv 3D coordinates V = [VT

l ,V
T
r ]

T , where Vl ∈ RNv×3 are coordinates
corresponding to the left eyeball while Vr ∈ RNv×3 to the right, as well as a
3D gaze vector g = (gx, gy, gz). Then, the final gaze result is calculated by the
mean direction of the two output components. Inspired by recent work in self-
supervised 3D body pose estimation [31,44,65], we adopt multi-view constraints
to train our model based on in-the-wild faces and automatically generated gaze
pseudo-labels.

To employ multi-view losses, we assume that images of the same subject with
different head poses and the same gaze direction relatively to the head are avail-
able. For example, this condition is satisfied when a face picture is taken from
different angles at the same time. As such images are not commonly available
for in-the-wild datasets, we employ HeadGAN [19], a recent face reenactment
method, to generate novel face poses from existing images. HeadGAN is able to
synthesize face animations using dense face geometry, which covers the eyes, as
a driving signal and single source images. Using dense geometry guarantees that
the relative angle between the head and eyes is maintained when synthesizing
novel poses, as it is shown in Fig. 2.

3.2 Unified 3D Eye Representation

Learning consistent eye meshes across different images and datasets, requires
establishing a unified 3D eye representation. To that end, we define a 3D eye-
ball template as a rigid 3D triangular mesh with spherical shape, consisting of
Nv = 481 vertices and Nt = 928 triangles. We create two mirrored versions,
Ml and Mr, of the above mesh to represent a left and a right reference eyeball
respectively. This representation allows us to allocate semantic labels to specific
vertices of the eyeball, such as the iris border (Fig. 3 (a)), and calculate 3D gaze
direction as the orientation of the central axis of our 3D eyeball template. In
practice, an offset angle (the kappa coefficient) exists between the optical (cen-
tral) and visual axes of eyes, which is subject-dependent and varies between −2o

to 2o across the population [73]. Accounting for this offset is essential for person-
specific gaze estimation [29,45,53,73]. However, in our case of cross-dataset and
in-the-wild gaze generalization, in which errors are much larger than the possible
offset, data diversity is more important than anatomical precision and thus, our
spherical eyeball is a reasonable approximation.

3D Eyes Ground-Truth from Gaze Datasets For gaze estimation datasets,
exact supervision can be acquired by automatically fitting the eyeball template
on face images based on sparse iris landmarks and the available gaze labels,
as shown in Fig. 3(b). Specifically, we first rotate the eyeball template around
its center according to the gaze label. Then, we align (scale and translation) x,
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M: Nv = 481 vertices, Nt = 928 triangles
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(c) Pseudo-ground truth generation

Fig. 3: (a) The employed rigid 3D eyeball mesh template. (b) Ground truth data gen-
eration, applied on gaze estimation datasets with available ground truth. (c) Pseudo-
ground truth data generation, applied on arbitrary face images without any gaze label.

y coordinates of the rotated eye mesh to the iris landmarks of the image and
multiply z coordinates with the same scale. To extract sparse iris landmarks we
employed the method of [55] as a basis for building an iris localization model
which is robust against occlusions and low resolution. More details about the
iris localization model are provided in the supplemental material.

3D Eyes Pseudo-Ground Truth from In-The-Wild Images To extract 3D
eyes from images without gaze labels, we have developed an automatic pipeline
based on 3D face alignment and 2D iris localization. First, we recover the 3D
face with x, y in image space using an off-the-shelf method. Then, we align our
eyeball templates in the eye sockets based on the face’s eyelid landmarks and
predefined eyelid landmarks around the eyeball templates. In fact, we use the two
corner landmarks of each eye which do not move between open and closed eyes.
Next, we lift 2D iris predictions to 3D by finding the nearest vertexes from the
aligned 3D eye templates. Finally, we compute the rotation between the initially
aligned eyes and the 3D-lifted iris center and rotate the eyeballs accordingly. For
3D face alignment, we employ RetinaFace [16] and for 2D iris localization [55]
as above. The process is presented in Fig. 3(c).

3.3 Joint 3D Eye Mesh and Vector Regression

Given an input face image I, we utilize 5 face detection landmarks to crop
patches around each one of the two eyes. We resize the patches to shape 128×
128 × 3 and stack them channel-wise along with a cropped image of the face.
We employ a simple model architecture consisting of a ResNet-18 [30] to extract
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features, followed by two fully connected layers to map them to two separate eye
modalities, which are a) dense 3D eye coordinates and b) a 3D gaze vector. As
the final gaze output, we consider the mean direction calculated from the two
modalities.

To train the above network for mesh regression, similarly to [16], we enforce a
vertex loss and an edge length loss between the model outputs and the respective
ground truth or pseudo-ground truth, which can be expressed as:

Lvert =
1

Nv

∑
j={l,r}

Nv∑
i=1

∥Vj,i −V∗
j,i∥1, (1)

where Vj ∈ RNv×3 and V∗
j ∈ RNv×3 for j = {l, r} are the output and the

(pseudo-)ground truth coordinates, while the edge length loss (based on the
fixed mesh triangulation of our template meshes) can be written as:

Ledge =
1

3Nt

∑
j={l,r}

3Nt∑
i=1

∥Ej,i −E∗
j,i∥2, (2)

where Ej ∈ R3Nt and E∗
j ∈ R3Nt for j = {l, r} are the edge lengths of the

predicted and the (pseudo-)ground truth eyes. As edge length we define the
Euclidean distance between two vertices of the same triangle. In addition to the
mesh regression losses, we enforce a gaze loss to the gaze output of our model,
expressed as:

Lgaze = (180/π) arccos(gTg∗), (3)

where g and g∗ are the normalized model output and the gaze (pseudo-)ground
truth respectively. We combine losses of Eqs. (1) to (3) in a single loss function
to train our models with supervision from (pseudo-)ground truth 3D eye meshes
and gaze vectors. The combined loss is written as:

L(P )GT = λvLvert + λeLedge + λgLgaze, (4)

where λv, λe, and λg are parameters which regularize the contribution of the
loss terms in the overall loss. From our experiments we have selected their values
to be λv = 0.1, λe = 0.01 and λg = 1.

3.4 Multi-View Consistency Supervision

Extending our training dataset with in-the-wild images and training using pseudo-
ground truth, usually improves the ability of our models to generalize to unseen
domains, as can be seen by our experiments in Sec. 4.3. However, automatically
generated 3D eyes and gaze include inconsistencies which are hard to identify
and filter out. To balance the feedback of direct supervision from pseudo-ground
truth, we design a multi-view supervision framework, based on pairs of real and
synthetic images with different head poses, generated by HeadGAN as described
in Sec. 3.1.

Recovering dense 3D face coordinates and pose from images has recently
been quite reliable [2, 16, 16, 23]. Having a pair of images I1 and I2 of the same
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Fig. 4: Overview of the proposed method 3DGazeNet. a) During training we employ
single images with ground-truth supervision or pairs of synthetic views of the same
subject with pseudo-annotations and different head poses. Different sets of losses are
employed depending on the type of supervision. b) Detailed demonstration of LMV .
3D transformation P which maps view 1 to view 2, is employed to transform points
Vl,1 and Vr,1, before calculating an L1 distance loss against Vl,2 and Vr,2. c) The
base network (3DEyeNet) of our model consists of a ResNet-18 backbone and two fully
connected layers leading to the 3D eye mesh and gaze vector outputs.

subject and their reconstructed 3D faces, we can compute a transformation ma-
trix P ∈ R3×4 which aligns the two faces in image space. Assuming that gaze
direction in both images remains still relative to the face, as is the case with
images created by HeadGAN, we are able to supervise 3D regression of eyes
by restricting our model’s predictions to be consistent over an image pair, as
output vertices should coincide when transformation P is applied to one of the
pair’s outputs. A similar approach has been employed successfully for weakly-
supervised body pose estimation [31,44,65]. Particularly, we form the vertex loss
of a pair as:

LMV,vertex =
1

Nv

∑
j={l,r}

Nv∑
i=1

∥V1,j,iP
T −V2,j,i∥1, (5)

where V1,j ,V2,j ∈ RNv×4 for j = {l, r} are the output matrices for left and
right eyes, which correspond to input images I1 and I2. V1,j,i,V2,j,i ∈ R4 are
the specific homogeneous 3D coordinates indexed by i in the above matrices. To
enforce consistency constraints to the gaze head of our model, we analyse matrix
P to scale s, rotation R and translation t components and employ R in a gaze
consistency loss within a pair:

LMV,gaze = (180/π) arccos((gT
1 R

T )g2), (6)

where g1 and g2 are the normalized model outputs for input images I1 and
I2 respectively. We combine losses of Eqs. (5) and (6) in a single loss function
to enforce multi-view consistency in mesh and gaze vector regression, between
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model outputs coming from pairs of input images. This loss is written as:

LMV = λMV,vLMV,vertex + λMV,gLMV,gaze, (7)

where λMV,v and λMV,g are parameters which regularize the contribution of the
loss terms in the overall loss. In our experiments, we have selected their values to
be λMV,v = 0.1 and λMV,g = 1. To train models with all supervision signals, i.e.
ground truth (LGT ), pseudo-ground truth (LPGT ) and multi-view supervision
(LMV ), we utilize the following overall loss function:

L = λGTLGT + λPGTLPGT + λMV LMV , (8)

with parameters λGT = λPGT = λMV = 1. Implementation details are included
in the supplemental material. An overview of 3DGazeNet is presented in Fig. 4.

4 Experiments

4.1 Datasets

Gaze Datasets Captured in a lab environment, ETH-XGaze (EXG) [79] con-
sists of 756K frames of 80 subjects and includes large head pose and gaze vari-
ation. Collected in uncontrolled indoor environments with mobile devices, MPI-
IFaceGaze (MPII) [81] includes smaller head pose and gaze variation and consists
of 45K images of 15 subjects, while GazeCapture (GC) [42] contains almost 2M
frontal face images of 1474 subjects. In contrast to the above datasets, Gaze360
(G360) [35] is the only gaze dataset captured both indoors and outdoors and con-
sists of 127K training sequences from 365 subjects. The large variation in head
pose, gaze, and environmental conditions of Gaze360 makes it the most chal-
lenging yet appropriate benchmark for in-the-wild gaze estimation, available in
literature. For our experiments, we normalized the above datasets based on [80],
except for Gaze360 which we process to get normalized face crops. Additionally,
we employ the predefined training-test splits, while for Gaze360 we only use the
frontal facing images with head pose yaw angle up to 90o. The head pose and
gaze distributions of the above datasets are presented in Fig. 5.
In-The-Wild Face Datasets In-the-wild face datasets consist of significantly
more unique subjects and capturing environments. For our experiments, we em-
ployed four publicly-available datasets FFHQ [33] (70K images), AFLW [38]
(25K images), AVA [25, 48, 49] and CMU-Panoptic [32]. FFHQ and AFLW are
in-the-wild face datasets commonly used for face analysis, AVA is a large-scale
in-the-wild human activity dataset annotated under the Looking-At-Each-Other
condition and CMU-Panoptic is collected in lab conditions and captures interac-
tions of multiple people in the same scene. FFHQ and AFLW include one face per
image and thus are only processed to get normalized face crops. AVA and CMU-
Panoptic include frames with multiple faces, from which we randomly select 80K
faces from each dataset with a maximum head pose of 90o. Similarly to [40],
for CMU we employed only frames captured with cameras in eye height. We
name this collection of 255K images as the “In-The-Wild Gaze” dataset (ITWG).
Lastly, to enforce multi-view supervision as described in Sec. 3.4, we synthesized
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Fig. 5: Distributions of the head pose (top row) and gaze (bottom row) of the gaze
datasets (red) and the face datasets (blue). Wide distribution datasets CMU, AVA,
FFHQ, and AFLW are exploited to close the gap between diverse image domains.

novel views from images of ITWG using HeadGAN, sampling the pitch and yaw
angles from Gaussians N (0, 20), relatively to the original head pose. We name
this collection of images as “Multi-View In-The-Wild Gaze” dataset (ITWG-MV)
and employ it to improve the generalization of gaze estimation. The head pose
and gaze distributions of the above datasets are presented in Fig. 5.

4.2 Gaze Generalization

In this section, we evaluate 3DGazeNet in within-dataset and cross-dataset ex-
periments. We believe that [40] is the most closely related method to ours, as it
is the only method using 3D geometric cues of the scene to generalize gaze from
arbitrary face data.
Cross-dataset Evaluation We design two cross-dataset experiments to test
the generalization of our method on G360 and report the results on Tab. 1(a)
and (b). Particularly, the experiments are: a) we train our method on the CMU,
AVA, and ITWG-MV datasets utilizing only our pseudo-labels and multi-view
supervision and b) we additionally employ ground truth supervision from GC
and EXG. From the results of the above experiments, it becomes obvious that
our geometry-aware pseudo-labels employed within our multi-view supervision
training effectively generalize gaze estimation to unseen domains, even without
any available ground truth. In particular, in experiment a) our method out-
performs [40] by 23% with AVA, 22% with CMU, 12.5% with AVA+CMU and
20% with our large-scale ITWG-MV. Similarly, in experiment b) 3DGazeNet
outperforms [40] by 10% and 9% with GC and EXG respectively.
Within-dataset Evaluation Here we compare our method against state-of-
the-art within-dataset gaze estimation on G360. Similarly to [40], we employ
AVA for additional supervision, while we also examine the effect of the larger-
scale ITWG-MV. The results, presented in Tab. 1 (c), show that multi-view
supervision from AVA does not improve performance (which is in line with the
compared method), but the large-scale ITWG-MV does.
Comparison with state-of-the-art We further compare 3DGazeNet against
recent methods for gaze generalization. The works in [5,70] are developed with a
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Table 1: Weakly-supervised method evaluation in cross- and within-dataset experi-
ments. In all cases, we calculate gaze error in degrees (lower is better), on the test set
of Gaze360. CMU and AVA correspond to subsets of ITWG-MV (i.e. augmented for
multi-view supervision), providing a clearer comparison with [40]. Our method trained
with ITWG-MV outperforms the baselines in all cases. 3DGN referes to 3DGazeNet

(a) Cross-dataset (b) Cross-dataset (c) Within-dataset
Synthetic Views Ground Truth + Synthetic Views Ground Truth + Synthetic Views

Dataset [40] 3DGN

AVA 29.0 22.4
CMU 26.0 20.3
CMU+AVA 22.5 19.7
ITWG-MV - 18.1

Dataset [79] [40] 3DGN

GC 30.2 29.2 27.5
GC+AVA - 19.5 18.9
GC+AVA+CMU - - 18.4
GC+ITWG-MV - - 17.6

Dataset [79] [40] 3DGN

EXG 27.3 20.5 22.1
EXG+AVA - 16.9 17.1
EXG+AVA+CMU - - 16.7
EXG+ITWG-MV - - 15.4

Dataset [35] [40] 3DGN

G360 11.1 10.1 9.6
G360+AVA - 10.2 9.7
G360+AVA+CMU - - 9.5
G360+ITWG-MV - - 9.3

Table 2: Comparison with state-of-the-art in domain generalization for gaze estima-
tion. In all experiments our model outperforms the compared methods. Gaze error is
in degrees (lower is better).

Stage 1 (Gaze Generalization Models) + Stage 2 (Adaptation/Fine Tuning)

EXG EXG+ITWG-MV G360 G360+ITWG-MV EXG+ITWG-MV G360+ITWG-MV

Method MPII GC MPII GC MPII GC MPII GC MPII GC MPII GC

RAT/RUDA [5] 7.1 8.4 7.0 8.2 9.3 9.0 9.1 8.5 6.8 8.1 7.9 8.3
CDG/CRGA [70] 6.7 9.2 6.9 9.5 7.0 8.3 8.1 8.9 7.4 9.0 7.6 8.7
PureGaze [11] 7.9 8.7 7.7 9.3 7.6 8.3 7.4 8.6 6.6 8.0 7.2 8.3

3DGazeNet 7.7 10.7 6.0 7.8 9.1 12.1 6.3 8.0 - - - -

focus on domain adaptation for gaze estimation and encompass two-stage train-
ing schemes, both training feature invariant models at the first stage. That is,
in the first training stage RUDA [5] trains gaze estimation model invariant to
image rotations, while CRGA [70] uses a contrastive loss to separate image fea-
tures according to gaze. The second stage of the above methods is focused on
adapting the initially trained models to specific target domains. As our method
aims to train general gaze estimation models without knowledge of specific tar-
get domains, we implement the first-stage models of the above methods, namely
RAT [5], CDG [70] and compare them with 3DGazeNet in cross-dataset exper-
iments. Additionally, we compare against PureGaze [11] which is a gaze gener-
alization method that purifies face features to achieve higher gaze estimation
performance. To follow the evaluation protocol in the above works, we train
all methods on EXG and G360 (+ITWG-MV) and test on MPII and GC. For
completeness, we include results of the full models RUDA and CRGA after us-
ing ITWG-MV according to their domain adaptation schemes. For PureGaze,
ITWG-MV was used for fine-tuning. Tab. 2 shows that the proposed method out-
performs the baselines for gaze generalization when ITWG-MV is employed. The
compared methods do not include regularization for the noisy labels of ITWG-
MV, resulting in similar or worse performance, while our method exploits them
through LMV , benefiting from the extended variation.
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Table 3: Comparison between training targets Vector(V), Mesh(M) and
Mesh+Vector(M+V) in within-dataset experiments (using only LGT ). Target M+V
leads to lower errors than state-of-the-art. Error is in degrees (lower is better).

Dataset Compared Methods 3DGazeNet

[51] [13] [1] [15, 82] [53] [15,35] [40] [79] V M M+V

MPII 4.04 4.00 3.92 4.9 5.3 4.06 - 4.8 4.1 4.2 4.0
G360 10.7 10.6 10.4 14.9 - 11.1 10.1 - 9.8 9.8 9.6
GC - - - - 3.5 - - 3.3 3.2 3.3 3.1

EXG - - - 7.3 - - - 4.5 4.2 4.4 4.2

4.3 Ablation studies

Gaze Estimation via 3D Eye Mesh Regression Here we experimentally
evaluate our suggestion that gaze estimation benefits from replacing the train-
ing target from gaze vectors or angles to dense 3D eye coordinates. To this end,
we employ the fully supervised version of our model, utilizing data with exact
ground truth and LGT for training. We conduct within-dataset experiments on
MPII, GC, G360 and EXG for which specific training-testing subsets are pro-
vided. We compare against state-of-the-art methods [1,13,15,35,40,51,53,79,82]
and report the results in Tab. 3. In almost all cases, our model outperforms the
baselines, while combining the two modalities, i.e. dense 3D meshes and gaze
vectors (M+V), improves performance compared to training with vector targets
(V) or 3D mesh targets (M) alone. This is possibly due to the distinct nature of
the two modalities, i.e. the vectors provide exact label supervision, while meshes
provide a robust representation which limits sparse prediction errors.

The main benefit of dense coordinate regression over pose parameters or
sparse points prediction is that individual parameter errors have limited effect
on the total outcome making them more robust to prediction inaccuracies [16].
This effect is particularly useful for our multi-view training scheme in which
introducing consistency of dense correspondences between images rather than
only vector consistency, offers stronger regularization. We validate this argument
in gaze generalization experiments in G360, GC, EXG, and MPII, presented in
Tab. 4. For this experiment, we consider three versions of 3DGazeNet: one which
predicts only gaze vectors and no coordinates (Vector), one which predicts 8 3D
iris landmarks instead of dense eye meshes (Iris+Vector), to highlight the effect of
dense coordinate prediction, and the full 3DGazeNet (Mesh+Vector). The results
show that employing combined training targets always benefits performance,
while replacing dense 3D eye meshes with iris landmarks highly limits this effect.
The Effect of Gaze Pseudo-Labels and Multi-View Supervision Here
we examine the contribution of our automatic geometry-aware pseudo-labels
and the multi-view supervision loss of our approach. To this end, we consider
three training scenarios which are the following: a) training with ITWG and
its pseudo-labels as ground truth (LPGT ), b) training with ITWG-MV utilizing
only the multi-view consistency constraints and no pseudo-labels (LMV ) and c)
training with ITWG-MV while employing both pseudo-labels and the multi-view
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Table 4: Comparison between training targets Vector, Iris+Vector and Mesh+Vector
for domain generalization when employing our full model (Eq. (8)). For the target
Vector, we remove all mesh terms from the employed losses. In all experiments, the
target Mesh+Vector results in a lower error. Gaze error is in degrees (lower is better).

Vector Iris+Vector Mesh+Vector
Training Dataset G360 GC EXG MPII G360 GC EXG MPII G360 GC EXG MPII

ITWG-MV 19.1 10.1 16.7 8.5 18.8 9.9 16.7 8.2 18.1 9.0 16.7 7.6
G360+ITWG-MV 10.1 10.2 15.1 7.0 9.7 9.4 15.0 6.8 9.3 8.0 14.6 6.3
GC+ITWG-MV 18.2 3.1 16.0 6.1 18.0 3.0 15.9 6.2 17.6 3.0 15.5 6.1
EXG+ITWG-MV 16.5 10.2 4.5 6.6 16.3 9.6 4.5 6.4 15.4 7.8 4.3 6.0
MPII+ITWG-MV 17.8 8.2 15.2 4.8 17.9 7.6 15.0 4.6 17.6 6.8 14.9 4.2

Table 5: The effect of incorporating pseudo-ground truth and multi-view supervision
during training. Both components contribute towards improving results in cross-dataset
gaze estimation experiments. Gaze error is in degrees (lower is better).

Dataset LGT LPGT LMV G360 GC EXG MPII

ITWG - ✓ - 23.1 14.8 24.3 13.6
ITWG-MV - - ✓ 47.4 33.2 41.1 32.8
ITWG-MV - ✓ ✓ 18.1 9.0 16.7 7.6

GC ✓ - - 27.5 3.1 28.4 10.4
GC+ITWG ✓ ✓ - 21.4 3.2 23.7 9.1
GC+ITWG-MV ✓ - ✓ 24.7 3.5 26.2 10.1
GC+ITWG-MV ✓ ✓ ✓ 17.6 3.0 15.5 6.1

consistency loss (LPGT+LMV ). To further evaluate the effect of the pseudo-
labels and multi-view loss, we repeat the above experiments by adding ground
truth supervision from GC (+LGT ). We test our models on the test set of G360,
GC, EXG, and MPII, and report the results in Tab. 5. In all cases, combining
our pseudo-labels and multi-view loss yields the lowest error in degrees. Lastly,
utilizing only LMV on ITWG-MV leads to very high errors which is reasonable
as no supervision for the eyeball topology exists, thus, the model outputs cannot
follow the spherical shape of the eyeball template.
The Effect of Head Pose Distribution of ITWG Head pose distribution
difference between the train and test set is one of the main reasons that gaze-
estimation models fail in cross-dataset situations. To close the gap between differ-
ent training and testing scenarios, we have designed ITWG, a large-scale dataset
with widespread variation in head pose and gaze angles. To study the effect of
the head pose variation of ITWG in our experiments, we employ different subsets
of ITWG with various levels of head pose variation and conduct cross-dataset
experiments with them. In particular, we consider four subsets of ITWG, with
maximum yaw angles of 5o, 20o, 40o and 90o (all) respectively.

We train 3DGazeNet with ground truth supervision from MPII as well as
pseudo-labels and multi-view supervision from the four versions of ITWG-MV.
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Fig. 6: Gaze error of G360 across head poses when training with MPII and subsets
of ITWG-MV. Wider range of head poses in the ITWG-MV data, lead to significantly
lower errors in large poses.

The results of testing on G360 are presented in Fig. 6. The resulting curves clearly
demonstrate the effect of the available head pose variation in the training data.
Specifically, utilizing the entirety of ITWG-MV leads to the lowest errors which
are relatively consistent across the head pose range. As expected, decreasing the
available head pose variation, increasingly affects model performance with the
worst case being training with MPII alone. Based on the above finding we argue
that the gap between small and wide distribution gaze datasets (regarding head
pose) can effectively close by employing similarly large distribution unlabeled
face datasets, which is crucial for training plug-n-play gaze estimation models
that can be directly employed in applications.

5 Limitations and Conclusion

In Sec. 4, we shown that pseudo-ground truth can be effectively utilized in gaze
estimation. Nevertheless, a limitation of our method is that pseudo-annotation
accuracy is related to the accuracy of 3D face and 2D iris alignment. In addition,
our current method cannot operate on images without a visible face (when the
face is looking away from the camera).

Overall, In this work, we present a novel weakly-supervised method for gaze
generalization, based on dense 3D eye mesh regression. We demonstrate that by
utilizing both 3D eye coordinates and gaze labels during training, instead of just
gaze labels, we can achieve lower prediction errors. Moreover, we explore the pos-
sibility of exploiting the abundantly available in-the-wild face data for improving
gaze estimation generalization. To that end, we propose a novel methodology to
generate robust, 3D geometry-aware pseudo ground truth labels, as well as a
multi-view weak-supervision framework for effective training. By enforcing these
constraints, we are able to successfully utilize in-the-wild face data and achieve
improvements in cross-dataset and within-dataset experiments.
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