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Abstract. In this paper, we introduce a model designed to improve the
prediction of image-text alignment, targeting the challenge of composi-
tional understanding in current visual-language models. Our approach fo-
cuses on generating high-quality training datasets for the alignment task
by producing mixed-type negative captions derived from positive ones.
Critically, we address the distribution imbalance between positive and
negative captions to ensure that the alignment model does not depend
solely on textual information but also considers the associated images
for predicting alignment accurately. By creating this enhanced training
data, we fine-tune an existing leading visual-language model to boost its
capability in understanding alignment. Our model significantly outper-
forms current top-performing methods across various datasets. We also
demonstrate the applicability of our model by ranking the images gen-
erated by text-to-image models based on text alignment. Project page:
https://yuheng-li.github.io/LLaVA-score/

1 Introduction

Recent years have seen rapid advances in multimodal research, encompassing
both visual generation [2, 29, 31] and visual understanding [1, 25, 27]. Training
capable multimodal models generally requires extensive datasets of image-text
pairs, e.g., LAION [32], CC12M [4], and others [11, 33], which are collected
on a web-scale and thus tend to be noisy. This noise in the data contributes
to certain challenges. For instance, vision-language models often struggle with
hallucination [20] and face difficulties in mastering compositional reasoning [36,
40]. Similarly, text-to-image models frequently fail to generate accurate images
when processing complex sentence prompts [10].

Given these challenges, the ability to automatically assess whether an image
and a caption are semantically aligned plays a crucial role. This capability is
essential not only for cleaning the data used to pre-train these models but also
for evaluating and enhancing the performance of both text-to-image and image-
to-text generation models. The most frequently employed metric for this task is
the CLIP score [13], which calculates the cosine distance between the CLIP [28]
embeddings of the paired text and image. However, it has been observed that
CLIP, along with other methods such as BLIP [19] and Flava [34], tends to
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 are under the water

Fig. 1: Left: Qualitative examples for image-text alignment prediction, where our
approach can distinguish fundamental concepts such as positioning, counting, and at-
tributes. Right: Our approach shows superior performance in image-text alignment.

operate on a bag-of-words basis. They sometimes even cannot tell the difference
between simple cases, such as horse eating grass versus grass eating horse [14,
23,40].

The conventional approach to training image-text alignment models involves
generating negative captions that are misaligned with the images, which are
paired with the original positive captions as the training data. For example,
prior works randomly shuffle words to create negative captions [40], or employ
language models to generate coherent negative sentences [39]. We follow the
latter and leverage an LLM to generate a mix of different types of negative
captions during training. Specifically, this includes the replacing type, where
one linguistic element is substituted with an arbitrary counterpart (e.g . ‘a knife
is on the table’ �! ‘a spoon is on the table’), and the swapping type, where
words within the same sentence are rearranged (e.g . ‘an apple is to the left of
a banana’ �! ‘a banana is to the left of an apple’ ). The former type can aid
in enhancing an image-text alignment model’s perceptual skills as it needs to
distinguish between the original and replaced elements, while the latter type can
help the model’s reasoning capabilities as elements in the caption remain the
same but the relationship between them changes.

However, critically, we find that this standard approach of generating nega-
tive captions, and ensuring that they have coherence (e.g., proper grammar) on a
per-instance level, is insufficient. In particular, this approach cannot ensure con-
sistency at the distribution level between positive and negative captions. Distri-
butional biases may originate from the initial dataset or from the rules or models
employed to generate negative captions. For instance, the COCO dataset [17]
contains significantly more captions including the word giraffe compared to ele-
phant. Yet, when using GPT to generate negative captions, we observe a ten-
dency for GPT to substitute giraffe with elephant, resulting in a surplus of giraffe
mentions in positive captions but more elephant in negative captions. Unfortu-
nately, this means that an image-text alignment model trained on such data can
be biased to predict sentences containing elephant to be a positive caption and
those that contain giraffe to be a negative caption, independent of the paired
image. To address this imbalance, our approach consists of fine-tuning a classifier
on text captions only (without paired image inputs) to remove biased data that
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the text classifier can correctly predict with high confidence. It’s important to
note that this bias is not unique to the GPT model or how one prompts it, but
can arise in other rule-based methods or pre-trained models as well.

While previous research [14] noticed distribution differences due to implau-
sible and non-fluent negative captions, our work is the first to eliminate the
dataset-level distribution differences using a language model to implicitly en-
compass all linguistic aspects, without the need for explicit identification. This
approach allows us to incorporate considerations like word frequency which is
not identified beforehand, thereby providing a more holistic optimization over
the dataset’s distribution.

For our image-text alignment model, we leverage a state-of-the-art vision-
language model, LLaVA [24, 25], and finetune it with our curated data. Our
model achieves significantly better results compared with other image-text align-
ment models, demonstrated in Figure 1. We also demonstrate that our curated
data can improve other models like BLIP2 [18]. Finally, we further show that
our image-text alignment model can help with other vision-language tasks like
ranking generated images from T2I models [15]. In summary, we have four main
contributions:

– We identify new dataset-level distribution differences between positive and
negative captions that lead to biased image-text alignment models.

– To address this, we propose a method to maintain consistency between pos-
itive and negative caption distributions, which is critical to ensure that an
image-text alignment model relies on both image and text to measure align-
ment instead of only the biases present in the text.

– We use our curated training data to finetune existing visual-language models
like LLaVA, and obtain state-of-the-art results for image-text alignment.

– In addition, we demonstrate the application of our image-text alignment
model in ranking the image generations produced by generative models.

2 Related Work

Challenges in Compositional Understanding. Image-text pairs form a cru-
cial interface between visual and linguistic modalities, thus evaluating if a given
image-text pair is aligned is important for both data curation and model per-
formance evaluation. The pioneering work of CLIP [28] demonstrated this by
leveraging an extensive corpus of such pairs for image-text contrastive training.
More recent works such as BLIP [18,19] and LLaVA [24,25] further utilize large
language models (LLMs) to achieve image-text alignment via the text generation
objective. Such models usually inherit the frozen CLIP visual encoder to produce
a set of visual tokens, and then feed such tokens and the language instructions
into the LLM.

It has been observed that vision-language models like CLIP have limited
capability in understanding compositionality [26,30,36,40,42]. Specifically, they
find it challenging to recognize the permutation of words within sentences [36].
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Moreover, these models often struggle to identify the binding of attributes to
multiple objects within a single sentence or to discern the relationships between
objects [30,40,42]. While models built on top of large language models (LLMs),
such as BLIP [19] and LLaVA [25], exhibit improved understanding capabilities,
they still face di�culties with complex compositional understanding largely due
to their lack of training on su�ciently challenging data.

Enhancing Vision-Language Compositionality. Several studies focus on
improving models' understanding of language compositionality [8,9,12,17,23,39,
40]. Some strategies [15,39] involve using language models to decompose text into
multiple succinct assertion phrases, which are then evaluated by VQA models
on an individual basis. [23] also �nds that assessing the conditional probability
of predicting text based on the input image o�ers more accurate outcomes than
traditional discriminative approaches like contrastive or classi�cation scores used
in BLIP [19]. Still, the most widely used method remains the explicit �ne-tuning
of models to di�erentiate between hard negatives and correct captions [9, 39,
40]. [40] randomly shu�es words to generate negative captions, but subsequent
analysis by [14] points out the approach's �aw: models could simply rely on
textual cues (e.g., grammar correctness) for predictions. [39] attempts to employ
LLMs to create negative captions, ensuring the negative captions are both �uent
and meaningful. Nonetheless, we observed that current �ne-tuning methods do
not generate a diverse range of negative prompts. Moreover, merely evaluating
the grammar or logical coherence of negative captions is insu�cient to eliminate
data bias in the distribution of negative captions.

3 Approach

In our approach, we assume access to images accompanied by accurately la-
beled positive captions, similar to those found in the MSCOCO [21] dataset.
Following [14], contrary to adopting rule-based techniques that often generate
illogical sentences, our method utilizes large language models (LLMs) like GPT4
to transform positive captions into negative ones. We �rst outline our strategy
for generating various types of negative captions and then present a straightfor-
ward technique to mitigate biases inherent in the distributions of positive and
negative captions. We show the entire pipeline in Figure 2.

3.1 Constructing Diverse Negative Captions

Suppose we have a dataset consisting of image-text pairsf I; T pg, where I repre-
sents an image andTp is its associated positive caption. Previous research [39,40]
showed that merely randomly shu�ing image-text pairs to generate negative
samples is insu�cient to learn capable vision-language models that properly un-
derstand the structure of a caption and its relationship with the image. These
studies have underscored the value of constructing hard negative captions to sig-
ni�cantly improve the model's language compositional abilities. Following this
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Fig. 2: Top: We feed the positive caption (green dots) into GPT to create two types
of negative captions (red dots): substituting one linguistic element with any plausible
alternative or swapping the positions of two components. The blue part in negative
captions highlights the modi�cations. Bottom: we remove easy negative samples using
only text data and utilize the remaining samples to �ne-tune vision-language models.

insight [39], we utilize large language models (LLMs) to generate such hard neg-
ative captions. Speci�cally, we create two types of hard negative captions.

We refer to the �rst method for creating negative captions as the replacing
strategy, which identi�es key components in a language and uses a language
model to replace it with other plausible substitutes. The replaced component can
be any linguistic part such as a noun, adjective, preposition, etc. For example,
�a photo of a broken down stop sign�could be replaced with�a photo of a brand
new stop sign�; �a cute cat looking at a bird� could be changed to�a cute dog
looking at a bird�. Conceptually, this type of negative caption aims to enhance
the model's recognition capabilities. For executing this task, we engage GPT by
providing it with speci�c instructions followed by some contextual examples, as
illustrated in Figure 3.

We refer to the second method for creating negative captions as theswapping
strategy. This approach involves generating a new sentence by utilizing the orig-
inal language components, typically resulting in the swapping of two or several
identical linguistic elements. Speci�cally, we �rst ask GPT to break down the
original positive sentence into its key components, and then request the model to
construct a new sentence with these elements. For example, if the input caption
is �an airplane is �ying in the blue sky� , GPT is tasked with identifying the key
components including �airplane� , ��ying� , �blue� , and �sky� . The newly crafted
sentence could be�a blue airplane is �ying in the sky� . Please note that for some
short captions, there may not be enough language elements to form a reasonably
di�erent sentence in meaning. Thus, we also need to judge if the new sentence
makes sense or not. Please refer to the Figure 3 for our prompt used in GPT.

3.2 Addressing Distribution Discrepancies

Previous studies [14] have demonstrated that artifact issues arising from incor-
rect construction in negative captions can lead to distribution disparities between
positive and negative captions. To mitigate this, commonsense and grammar
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Fig. 3: Prompts used in GPT for generating two types of negative captions, with in-
context examples shown in purple.

Fig. 4: Top prediction based on a text-only binary classi�er. Top left: Negative cap-
tions generated through replacement strategy. Top right: Negative captions generated
through swapping strategy. Bottom: Positive captions from the COCO dataset.

models are employed. Nonetheless, our �ndings indicate thatmerely assessing
the sensibility of sentencesis insu�cient for aligning the distributions of positive
and negative sentences because of two following two reasons.

First, each image-pair dataset inherently establishes its own unique distri-
bution. For instance, the COCO dataset [21], despite its widespread use and
diverse content, predominantly encompasses everyday scenes, objects, and ac-
tivities. Common subjects such as people and motorcycles, along with frequent
activities like skiing and sur�ng, characterize the distinct distribution of COCO.
Second, when employing rule-based methods or prompting language models to
generate negative captions, any strategy adopted will inevitably re�ect biases
from human preconceptions or pre-trained models. This leads to negative cap-
tions originating from a di�erent distribution.

To illustrate this concept, we develop a blind text-only binary classi�er that
processes positive and negative captions without seeing any images. Surprisingly,
we �nd that despite the coherence and logical structure of negative captions,
the classi�er is adept at distinguishing between negative and positive captions
based solely on the text. Figure 4 shows the most con�dently correct predic-
tions for both our replace and swap data categories constructed from COCO.
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In the dataset with replaced negative data, it is observed that GPT frequently
substitutes the terms "boat" and "elephant" for the original COCO captions'
"airplane" and "gira�e" , respectively. This pattern makes it straightforward
for a text-only model to identify these captions as negative. In ourswap data,
the text-only classi�er is able to identify captions with colorful animals inter-
acting with a black object as negative. Note that these negative prompts are
logically coherent and grammatically correct, thus cannot be easily detected by
a grammar model. Conversely, the top accurately predicted positive captions
often depict common activities like sur�ng and motorcycle riding, which align
closely with the typical content style of COCO. It's important to recognize that
data bias is not solely a characteristic of our method for generating data nor the
manner in which we prompt GPT. In the experimental section, we demonstrate
that such distribution discrepancy is also present in other approaches [14] that
employ GPT for creating negative prompts.

The presence of bias in the data can obstruct a vision-language model's ability
to truly understand image structures and learn language compositions, as the
model might rely solely on textual cues for making predictions. To address this
issue, we propose a straightforward solution aimed at reducing data distribution
di�erences by selectively removing data that is predicted with high con�dence
by a text-alone model.

Figure 2 (bottom) depicts our conceptual goal of data �ltering: to eliminate
straightforward or biased positive and negative samples. This is done to ensure
that the remaining text data cannot be distinguished by any text classi�er,
based solely on the text information. Essentially, our aim is to maximize the
entropy of the text information within our dataset. In practice, we organize
our dataset into N partitions. For each iteration, one partition is designated as
the test set while the remaining N � 1 partitions serve as the training set. We
employ a pretrained Bert model [7] as our text-only classi�er, and train it on the
training set. Subsequently, this trained classi�er is applied to the designated test
set. We then rank the correctly predicted samples by the classi�er's con�dence
level, removing the top k% of these samples for both positive and negative class
predictions. The rest of the data is retained as our re�ned dataset. This procedure
is repeated for each partition, ensuring a comprehensive reduction of bias across
the dataset.

Note that while our observation and data �ltering approach is applied to
address the image-text alignment issue, it could be a more general problem
for any multimodal data scenario where bias in one modality might negatively
impact model training.

3.3 Finetuning VLMs for Image-Text Alignment Scoring

Once we have the unbiased data, we opt to �ne-tune a vision-language model
(VLM) to enhance its language compositional understanding capabilities with
respect to images. In our study, we mainly select LLaVA-1.5 [24] due to its supe-
rior performance in image and text understanding. Since LLaVA-1.5 is designed
to generate text, to adapt it for use as a image-text score calculator, we employ
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the following prompt formatting: �Does this imageI match the following caption
T. Answer Yes or No directly.� Given that LLaVA relies on a language model to
produce subsequent words, we manually extract the logits associated with the
responsesYes and No for the next word. We then de�ne the matching score as:

eP (Yes jprompt )

eP (Yes jprompt ) + eP (No jprompt )
(1)

We discover that this straightforward approach is quite e�ective and can
already outperform many existing state-of-the-art baselines. However, LLaVA-
1.5 was not speci�cally trained for this type of matching problem. Therefore,
to enhance its performance, we �netune it with the same prompt formatting
introduced above using our curated data. We assign the labelsYes and No to
positive and negative pairs, respectively.

Our curated dataset is not restricted to LLaVA-1.5. In our experiments, we
also �netune a Q-former equipped with the Image-Text Matching (ITM) head in
BLIP2 [18]. The ITM head is essentially a binary classi�cation layer, identical to
our dataset's structure. We thus �ne-tune the model using the standard cross-
entropy loss.

4 Results

We evaluate our �ne-tuned LLaVA-1.5 model against various baselines across dif-
ferent datasets. Additionally, we conduct ablation studies to evaluate the impact
and importance of our dual-strategy approach for generating diverse negative
captions and our method for addressing data distribution discrepancies. Since
our main model is built upon LLaVA-1.5, we name our score as LLaVA-score.

4.1 Baselines

We evaluate our model against a range of leading multimodal models:
CLIP-ViT-L/14 , the largest variant of OpenAI CLIP models [28].
BLIP-2 [18], which incorporates both image-text matching and image-text con-
trastive learning approaches.
NegCLIP , as introduced in [40], �ne-tuned on challenging negative captions
generated by randomly shu�ing words within sentences.
VisualGPTScore [22] proposes utilizing the probability of generating speci�c
text given an image (i.e., P(T jI )) as an e�ective metric for calculating image-
text alignment scores. For this, we utilize LLaVA-1.5 [24], the state-of-the-art
vision-language model, to calculate their proposed VisualGPTScore, employing
a reweighting technique as suggested by [22].
Image-Reward [38]: A reward model, trained on human preferences of image-
text pairs produced by Text-to-Image (T2I) models in Di�usionDB [37].
VQ2 [39] �rst extracts a set of candidate QA pairs from the text, then uses a
VQA model to score each pair. For this baseline, we report results using both
the PaLI model [6]�directly citing their paper as the model is not publicly
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available�and BLIP-T5 [18] which is accessible via their o�cial GitHub repos-
itory [3]. Note that while TIFA [15] similarly utilizes a QA pairs approach, we
exclude it from our results due to VQ2 demonstrating superior performance,
aiming for simplicity in our comparison.
PaLI �ne-tuned on the SeeTrue dataset [39]: A version of PaLI speci�cally �ne-
tuned for the alignment task, using a curated dataset. Performance metrics are
cited directly from the original paper [39].
LLaVA-1.5 [24], Originally a text generation model, we employ a speci�c prompt
as introduced in Sec. 3.3. By using Equation 1, we convert it into a scoring func-
tion. Through empirical testing, this prompt is found to be the most e�ective,
and it is utilized to �netune our model.

4.2 Datasets and Metrics

We evaluate on the following datasets and metrics:
Winoground [36]: This dataset uniquely comprises quartets, each including two
images and two texts, necessitating a nuanced interpretation of both linguistic
and visual elements for accurate matching. The metrics reported for this dataset
encompass an image score, a text score, and a group score.
SeeTRUE [39]: A benchmark designed for assessing vision-language models,
featuring a test set combining multiple sources. Current sources include Draw-
bench, EditBench, and COCO-t2i, pairing real texts with synthetic images. Fol-
lowing [39], we utilize ROC-AUC as the evaluation metric.
SugarCrepe [14]: A recently introduced benchmark focuses on generating cre-
ative negative captions using a language model and employs grammar and common-
sense models for data cleaning, marking a novel approach in benchmark design.
MagicBrush [41]: This benchmark facilitates human-driven image editing, con-
structed using Dall-E 2, and includes captions for both the original and edited im-
ages. Featuring quartets similar to Winoground [36], we adopt the same method-
ology for calculating the group score with modi�cation due to nature of data.
Refer supp for details.

4.3 Implementation Details

For our dataset curation, we select COCO, which provides positive image-text
pairs. To diversify our image dataset and enhance our model's robustness to syn-
thetic images, we incorporate a subset of the training images from SeeTRUE [39],
speci�cally the coco_train_t2i set. To construct negative data, we use GPT to
generate two types of negative captions (swap and replace), and we perform
random sampling to maintain an equal amount of positive and negative data. In
the process of curating our dataset, we ensure that neither images nor captions
included in the training dataset are present within the test dataset.

For our model development, we choose to re�ne LLaVA-1.5 [24] using our
curated data. We train the model with a batch size of 64 on 8 NVIDIA A100
GPUs for a single epoch, setting the learning rate at 2e-6. For our data �ltering,
we usek to be 30% andN to be 5. Find more details in the supp.
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Table 1: We evaluate our model alongside baselines across multiple datasets. The
best results are shown in bold. For three subsets of the SeeTRUE dataset, we present
the ROC AUC scores following the original paper [39]. For the SugarCrepe dataset,
accuracy is employed as the performance metric. For the MagicBrush [41] dataset, we
report the group score. We use LLaVA-1.5 to calculate the VisualGPT score [23].

Winoground SeeTRUE SugarCrepe MagicBrush
image text group DrawBench EditBench COCO-T2I replace swap add

Chance Performance 25.00 25.00 16.67 50.0 50.0 50.0 50.0 50.0 50.0 33.33

CLIP-ViT-L-14 [28] 10.50 28.50 7.75 61.4 62.1 59.2 79.4 61.4 74.8 52.89
NegCLIP [40] 11.75 30.75 8.25 63.2 66.0 62.8 85.3 75.3 87.2 61.12
BLIP2-ITM [18] 24.25 41.75 19.00 60.8 67.5 68.0 88.9 83.9 91.8 75.32
BLIP2-ITC [18] 12.00 28.50 8.50 64.9 67.9 69.9 86.7 66.9 92.3 67.85
Image-Reward [38] 15.25 43.00 12.75 70.4 70.2 77.0 88.2 81.0 95.2 70.28
VisualGPT [23] 37.00 44.25 27.50 77.0 74.2 69.1 88.2 87.1 95.5 78.31
VQ2 (PaLI) [39] 42.25 47.00 30.50 82.6 73.6 83.4 - - - -
VQ2 (BLIP-T5) [39] 34.00 33.50 23.25 74.8 67.4 74.2 83.3 81.0 90.9 70.46
PaLI (ft on SeeTRUE) [39] 38.00 46.50 28.75 86.8 77.2 83.2 - - - -
LLaVA-1.5 [24] 49.75 51.00 34.25 86.9 78.3 84.5 93.5 88.3 95.8 82.61
LLaVA-score (Ours) 68.00 53.75 47.25 88.8 77.7 84.9 95.3 94.9 97.5 87.28

4.4 Main results

Table 1 presents a comparison between our models and various strong base-
lines across di�erent datasets. It is evident that our model outperforms oth-
ers in nearly all datasets. Interestingly, utilizing Eq. 1, LLaVA-1.5 zero-shot
performance is the second-best method overall. Particularly for Winoground, a
benchmark well-known for its challenges in visual and linguistic reasoning, some
models such as CLIP, BLIP2, and Image-Reward perform at or below chance
level. Our �ne-tuned LLaVA-1.5 substantially enhancing its reasoning capabili-
ties showing the importance of our strategy for training data curation. For VQ2,
the VQA models (BLIP or PaLI) underperform our model due to their lack of
training on challenging negative examples. The �netuned PaLI model also falls
short, attributed to its training dataset's lack of diversity and absence of data �l-
tering. Our model also shows impressive results on synthetic image benchmarks
like SeeTRUE and MagicBrush.

4.5 Performance on Attribute, Counting, Spatial Reasoning

In the preceding section, we demonstrated that our model surpasses baseline
models across various datasets. This section o�ers an alternative perspective on
our model's performance, particularly in areas where both vision-language mod-
els and recent text-to-image (T2I) models encounter signi�cant challenges. These
challenges include multiple attributes binding, counting objects, and understand-
ing spatial relationships between objects. Addressing these issues is crucial for
both visual understanding and evaluating the capabilities of generative models.

To quantify the improvements our model achieves in addressing these com-
mon challenges, we construct three specialized datasets. Speci�cally, we prompt
GPT to generate scenarios involving attribute binding, object counting, and spa-
tial relationships, providing in-context examples to guide the generation process.
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Table 2: Comparison of our model against baselines across three prevalent challenges,
highlighting the highest average accuracy in bold.

Attribute Counting Spatial
avg pos neg avg pos neg avg pos neg

Chance Performance 50 50 50 50 50 50 50 50 50

Threshold-Independent Models (with oracle)
CLIP-ViT-L-14 [28] 63 52 74 58 68 48 53 18 88
NegCLIP [40] 65 78 52 59 66 52 57 48 66
BLIP2-ITC [18] 66 72 60 57 36 78 57 90 24
VisualGPT [5] 73 90 56 65 52 78 62 56 68

Inherent Decision Models
BLIP2-ITM [18] 58 100 16 53 96 10 51 100 2
Image-Reward [38] 70 100 40 61 100 22 57 98 16
VQ2 (BLIP-T5) [39] 66 94 38 56 82 30 54 94 14
LLaVA-1.5 [24] 71 98 44 62 96 28 57 98 16
LLaVA-score (Ours) 81 90 66 71 86 56 81 76 86

Subsequently, the T2I model [35] is employed to generate 50 images for each
prompt. From these, we manually select one positive and one negative image
based on image-text alignment. We opt for synthetic images as it o�ers greater
�exibility, as illustrated in Figure 5, it can incorporate diverse styles (e.g., paint-
ing styles for birds), create unconventional images (e.g., the examples involving
soccer and cats), and has attribute/object merging capabilities of T2I models
to enrich our dataset with varied negative cases (e.g., the negative example of
mistakenly combining clock and apple).

Table 2 presents our results. We report classi�cation accuracy as the metric,
alongside showing both positive and negative results in gray color. We categorize
the baseline models into two distinct groups for comparison purposes. 1) Upper
section of the table, consists of models that generate scores without an estab-
lished classi�cation threshold. Consequently, we calculate the accuracy by using
an oracle threshold, which involves optimizing over all predicted scores to �nd
the best cuto� (cheating on the test set). 2) Lower part of the table, operates
with an inherent decision boundary for classi�cation.

Our model demonstrates superior performance across all three challenging
cases, beating competitors that perform only marginally better than random
guessing, particularly on tasks requiring spatial understanding. It's notewor-
thy that many models exhibit a bias, often predicting the same outcome across
the test dataset. This tendency is underscored by their high accuracy on pos-
itive samples contrasted with poor performance on negative ones. Given that
our images are synthesized using text-to-image (T2I) models, essential linguis-
tic elements are likely to be present even in images labeled as negative (refer
to Figure 5). This observation suggests that baseline models operate similarly
to a bag-of-visual-words approach, predicting an image as matching the textual
description as long as it contains certain key visual concepts.
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Fig. 5: Our curated test datasets feature captions paired with one positive image and
one negative image each. All the positive images are displayed on the left side.

4.6 Ablation Studies

Importance of di�erent negative data. Table 3 begins with our baseline
model, LLaVA-1.5 [24], outlining its performance. The following two rows illus-
trate the e�ects of �netuning the LLaVA-1.5 model with only replace and swap
negative data, with �ltering processes applied. As shown in the subcategories
of the SugarCrepe dataset,replace and swapdata enhance performance in their
respective categories but do not signi�cantly impact other cases. Nevertheless,
our �nal model excels across almost all tests, indicating that combiningreplace
and swap negative data has a complementary e�ect, particularly noticeable in
the add category of the SugarCrepe dataset and other evaluated datasets.
Importance of data �ltering. The subsequent row presents outcomes from
merging two types of negative data without any �ltering. This combination has
shown to be bene�cial for speci�c datasets, like Winoground and SugarCrepe,
although the results don't match those of the �nal model with �ltering. However,
biases in the text data cause the �ne-tuned model to show no improvement on
datasets like MagicBrush and SeeTRUE. Since data �ltering reduces the amount
of data, the �fth row displays results from randomly subsampling a training set to
match the quantity of �ltered data. This comparison highlights the e�ectiveness
of our �ltering technique as without it, the model may get biased to just rely on
language distribution and ignore the image when making predictions.
E�ect of data �ltering. Fig. 6 shows the impact of removing the topk% of
biased data on the performance across four test datasets. Here,k varies from 0
to 90, representing the progression from no data removal to the exclusion of 90%
of the data. The observed trend indicates that as the biased data is progressively
removed, performance improves, peaking at approximately 30% to 40%. Beyond
this point, performance declines due to the diminishing volume of training data.

We assess the quality of our �ltered data by training a text-only model on
80% of the �ltered data and testing it on the remaining 20%. Note that this
evaluation is performed on �ltered data, and a model should reach an accuracy
close to 50% in ideal data indicating it cannot distinguish between positive and
negative caption just using text. We vary the parameter k from 0% to 90%, in
increments of 10%, resulting in corresponding �ltered data quality percentages
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