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Abstract. Distributed deep neural networks (DNNs) have emerged as
a key technique to reduce communication overhead without sacrificing
performance in edge computing systems. Recently, entropy coding has
been introduced to further reduce the communication overhead. The key
idea is to train the distributed DNN jointly with an entropy model,
which is used as side information during inference time to adaptively
encode latent representations into bit streams with variable length. To
the best of our knowledge, the resilience of entropy models is yet to be
investigated. As such, in this paper we formulate and investigate the
resilience of entropy models to intentional interference (e.g ., adversar-
ial attacks) and unintentional interference (e.g ., weather changes and
motion blur). Through an extensive experimental campaign with 3 dif-
ferent DNN architectures, 2 entropy models and 4 rate-distortion trade-
off factors, we demonstrate that the entropy attacks can increase the
communication overhead by up to 95%. By separating compression fea-
tures in frequency and spatial domain, we propose a new defense mech-
anism that can reduce the transmission overhead of the attacked input
by about 9% compared to unperturbed data, with only about 2% accu-
racy loss. Importantly, the proposed defense mechanism is a standalone
approach which can be applied in conjunction with approaches such as
adversarial training to further improve robustness. Code is available at
https://github.com/Restuccia-Group/EntropyR.

Keywords: Trustworthy Machine Learning · Data Compression

1 Introduction

Distributed deep neural network (DNN) were recently introduced to divide the
computation of DNNs across various devices based on their available compu-
tation and communication resources. They have been shown to be extremely
effective to implement deep learning applications on resource-constrained mo-
bile devices [18,39,54]. As depicted in Fig. 1, the common strategy is to divide a
large DNN into a small head network deployed on the mobile device to extract
and compress features, and a tail network on the server to perform the task
inference. Compared to conventional lightweight DNNs specifically designed for
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Fig. 1: The key concept of distributed DNN. Left: Lightweight DNNs suffer from per-
formance loss due to the limited computational resources; Middle: Edge computing
often results in intolerable latency due to communication overhead; Right: Distributed
DNNs deploy a small head model on the resource-limited device to achieve task-oriented
compression and a large tail model on the server to decode compressed features and
execute the rest of model.

mobile devices [28, 29, 31, 52, 57], distributed DNNs can leverage the computa-
tion power of the edge/cloud and hence attain better performance. In addition,
distributed DNNs leverage compression techniques to reduce the data size of in-
termediate representations. By only transmitting compact representations, dis-
tributed DNNs can reduce the transmission overhead significantly compared to
traditional edge computing [34,48,60].

Interestingly, recent work has proposed to further minimize the data size of
transmitted latent representations with entropy coding [42]. The key idea is to
train the distributed DNN jointly with an auxiliary entropy model, which esti-
mates the distribution of latent representations. The output of the entropy model
is then used as side information during inference time to facilitate the adaptive
encoding of latent representations into bit streams with variable lengths. The
proposed approach achieves better compression rate compared to quantization-
based [38] and codec-based [2] approaches by minimizing the entropy of latent
representations. Despite its excellent compression performance, the resilience of
entropy coding to intentional interference ( e.g., specifically crafted adversarial
attacks) and unintentional interference ( e.g., sudden events such as weather
changes and motion blur) remains unexplored. We remark that in entropy-coding-
based distributed DNNs, the bit rate of encoded representations relies com-
pletely on its estimated entropy. However, it is well known that DNNs trained
on standard datasets are vulnerable to distribution shifts [24,25] and adversarial
actions [20, 56]. As the entropy model is learned without considering any cor-
ruptions and adversarial perturbations, a small change in the input space might
lead to a large estimate of entropy, and hence result in a bit rate that can ex-
ceed the transmission bandwidth. As depicted in Tab. 3 in our experiments, the
transmission overhead can be increased by about 2x in the worst case.

In this work, we thoroughly assess for the first time the resilience of entropy
models to intentional and unintentional interference as applied to distributed
DNNs. Intriguingly, our findings unveil that the auxiliary entropy model learns
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a different set of input-related features than what learned by the backbone DNN.
Ultimately, this enables us to design effective defense strategy to maintain the bit
rate with an unnoticeable loss in the task performance. Our approach successfully
reduces the communication overhead of perturbed data by about 9% compared
to unperturbed inputs, with only about 2% accuracy loss.

Summary of Novel Contributions

(1) We investigate for the first time the effect of intentional and unintentional
interference to entropy coding in distributed DNNs. We show that interference
increases the end-to-end latency of distributed DNNs and poses a threat to
other users by saturating the transmission bandwidth. Through comprehensive
experiments involving 3 distinct DNN architectures [23, 47], 2 entropy models
[5,43], and 4 rate-distortion trade-off factors, we illustrate that attacks to entropy
coding may increase the transmitted data size by up to about 95%;
(2) We design two visualization approaches to interpret the compression learned
by entropy models. By disentangling features relevant to compression and clas-
sification across both frequency and spatial domains, we reveal that the en-
tropy model learns specific features that are distinct from those beneficial for
the end task. This finding enables us to devise an effective defense strategy that
safeguards the vulnerable compression features while minimally impacting task
performance;
(3) We propose a defense approach to attacks targeting entropy coding based
on our findings discussed above. The proposed method effectively reduces the
transmission overhead of attacked inputs by about 9% in comparison to the
unperturbed case, with only about 2% decrease in accuracy. We remark that
our approach is general in nature and can be combined with approaches such as
adversarial training to further improve the resilience of entropy models.

The paper is organized as follows. Sec. 2 provides background of entropy
coding in distributed DNNs. In Sec. 3, we formally describe the threat model
for entropy coding in distributed DNNs. Sec. 4 presents benchmarking results
on both intentional and unintentional interference. Sec. 5 details the proposed
defense approach and comprehensively evaluates it against adaptive attacks.
Related work is summarized in Sec. 6. Finally, we draw conclusions and discuss
future work in Sec. 7.

2 Entropy Coding in Distributed DNNs

Entropy coding techniques such as arithmetic coding [50] and asymmetric nu-
meral systems [17] can encode a message with the optimal coding rate by lever-
aging the probabilistic information of the message. Based on the source coding
theorem [53], the entropy of a message z with distribution PZ(z) defines the
lower bound of expected coding rate Rc(z) without any loss of information, i.e.,

E{Rc(z)} ≥ HPZ
(z) = E{− log2 PZ(z)} (1)
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Fig. 2: A general framework for entropy coding in neural data compression. It consists
of an encoder-decoder structure to extract a compact latent representation z and a
prior model to estimate the distribution PZ(z). Left: During training, the prior model
is jointly optimized with the encoder-decoder backbone. Right: During inference, the
learned prior PZ(z) is used as side information for arithmetic encoding/decoding.

where HPZ
(z) is the entropy of z. In recent data compression literature [1, 5, 6,

14, 43, 44], the entropy coding is integrated with lossy DNN-based compression
to attain an effective compression rate with less information loss compared to
traditional approaches. As depicted in Fig. 2, the common strategy is to jointly
train an encoder-decoder backbone for extracting compact latent representations
z with an auxiliary prior model PZ(z). During training, a random noise source is
introduced to simulate the effect of quantization on z, allowing the backpropa-
gation of gradients. In the inference phase, z is initially quantized to integers for
entropy coding. Next, the output of the prior model is used as side information
to encode the quantized z into bit streams adaptively with variable length.

DNN-based data compression can achieve the near-optimal compression rate
by minimizing the entropy of latent representations during training. Specifically,
the objective is to minimize the rate-distortion function

L(x, (x̂, z)) = ||x− x̂||22︸ ︷︷ ︸
distortion

−β · log2 PZ(z)︸ ︷︷ ︸
rate

, (2)

where x̂ is the reconstructed data, ||x− x̂||22 is the loss function of the encoder-
decoder backbone and − log2 PZ(z) is the loss function of the prior model. Con-
stant β denotes the trade-off between the rate and distortion.

Recent work [42] has incorporated entropy coding into distributed DNNs to
increase communication efficiency between mobile and edge devices. The pro-
posed method, referred to as the entropic student, aims at achieving a balance
between the coding rate and task-specific performance metrics (e.g ., cross en-
tropy in classification tasks). One distinction between the entropic student and
other entropy-coding-based feature compression work [55, 59] lies in the signif-
icantly smaller encoder size of the former due to constraints on computational
resources in mobile devices. As a result, the entropic student splits the DNN
at an early layer and use knowledge distillation [26] for training the head to
preserve accuracy. However, existing work does not address the issue
of resilience of entropy models, which is the key goal of this paper.
A relevant work [4] investigated the robustness of density estimation aiming to
maximize PZ(z) while we are interested in perturbations that minimize PZ(z).



Resilience of Entropy Model in Distributed Neural Networks 5

3 Modeling Interference to Entropy Coding

While the resilience of DNNs to distribution shifts [7,19,24,25,58] and adversar-
ial actions [3, 11, 12, 30, 35, 56] has been extensively investigated, we investigate
types of interference that can alter the length of the encoded bit stream, which
ultimately leads to increased bandwidth utilization. In this section, we formulate
the resilience of compression in entropy-coding-driven distributed DNNs.

Threat Model for Accuracy. Let D = {x, y} denotes a dataset for classifica-
tion problem where x ∈ X and y ∈ Y are specific input and corresponding label
samples respectively, while X , Y are input and output space, respectively. There
exists a prior yet unknown distribution P (y|x) such that

P (y|x) ≥ P (ŷ|x) ∀ŷ ∈ Y (3)

where ŷ denotes incorrect labels. The DNN classifier, is trained to approximate
the distribution P̃ (y|x) ≈ P (y|x) with empirical risk minimization approaches
based on an assumption that in-sample data and out-of-sample data shared a
similar distribution P (y|x). However, the unintentional interference denoted by
δ, which can be modeled as an additive noise to x, creates a new dataset D′ =
{x+ δ, y}. It introduces a covariate shift that P (x+ δ) ̸= P (x) but P (y|x+ δ) =
P (y|x), resulting in classification errors such that

P̃ (ŷ|x+ δ) ≥ P̃ (y|x+ δ) ∃ŷ ∈ Y (4)

In the intentional interference scenario, algorithms attempt to find the min-
imum covariate shift that leads to Eq. (4). In this setting, a small perturbation
in lp distance ||δ||p ≤ ϵ is intentionally crafted to mislead the DNN classifier
where ϵ denotes the constraint. Attackers formulate Eq. (4) as an optimization
problem over the input space X , and hence can apply the gradient information
of the loss function w.r.t. x to find the δ. Projected Gradient Descent (PGD) [35]
provided a unified view on iterative gradient attacks under lp constraint:

xi+1 = xi + α · ϵ · ▽xL
||▽xL||p

(5)

where xi is the adversarial sample at i step, α is the learning rate, and ▽xL
||▽xL||p is

the normalized gradient of a loss function L (e.g ., a sign function in l∞ space).
L can be cross entropy or other more advanced loss functions [11].

Threat Model for Data Rate. Let H(x) = z denotes the head network
where z ∈ Z is the output of the head and Z is the latent space. The goal is
to achieve a minimum compression rate − log2 PZ(z). As z is dependent on x,
the distribution shift introduced by unintentional interference can result in a
difference in coding rate:

− log2 PZ(H(x+ δ)) ̸= − log2 PZ(H(x)) (6)
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Table 1: DNNs, entropy models and datasets utilized in experiments.

DNN Architectures

ResNet-50 [23] A standard baseline in distributed DNNs [38–40,42]
ResNet-101 [23] A deeper model in the ResNet family
RegNetY-6.4GF [47] An advanced design with better performance

Entropy Models

FP [5] A fully factorized prior model
MSHP [43] An effective learnable entropy model

Datasets

ImageNet [16] The standard ImageNet validation dataset
ImageNet-C [25] A synthetic dataset with 15 corruptions and 5 severities
Random Noise Noisy images as a baseline for adversarial robustness
PGD-Acc [35] PGD targeting classification
PGD-E PGD targeting entropy

Note that the unintentional distribution shift of x does not necessarily result in a
larger bit rate. However, in the adversarial setting, attackers intend to maximize
the entropy of z as follows:

min
δ

log2 PZ(H(x+ δ))

s.t. ||δ||p ≤ ϵ
(7)

Thus, to correctly assess the robustness of entropy models, we use the same PGD
algorithm in Eq. (5) yet with the entropy as its loss function L = − log2 PZ(H(x)).

4 Understanding the Resilience of Entropy Model

4.1 Experimental Setup

In this section, we outline the experimental setup for evaluating the resilience
of entropy models. We first specify the DNNs and entropy models under con-
sideration, followed by a description of the metrics and datasets used in our
experiments. A summary of our experimental setup is provided in Tab. 1.

Ablation of DNNs and Entropy Models. We consider three distinct DNNs:
ResNet-50 [23], ResNet-101 [23] and RegNetY-6.4GF [47]. ResNet-50 serves as a
common baseline in distributed DNN literature [38–40,42] while ResNet-101 is a
deeper variant with the same design as former. RegNetY-6.4GF has an advanced
design with better classification performance. The early layers are replaced by
a specific tailored head architecture as proposed in [42] and incorporated with
different entropy models. For the sake of brevity, we consider ResNet-50 as the de-
fault DNN architecture without additional specification. We employ two entropy
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Fig. 3: Resilience of accuracy and data rate to 4 common corruptions.

models: Factorized Prior (FP) [5] and Mean Scale Hyper Prior (MSHP) [43]. FP
is the earliest design of entropy model and a basic component in many other ad-
vanced designs, while MSHP provides more powerful compression performance
by injecting a hierarchical learnable block before FP to extract the entropy in-
formation. For conciseness, we consider MSHP as the default entropy model. In
addition, since models are trained with different rate-distortion trade-off β, we
also investigate the compression robustness w.r.t. different β.

Datasets and Metrics. Conversely from existing work that measures the
compression performance with bits per pixel (BPP) [5,6,14,43,44], we evaluate
the entropy model with the data size of the whole bit stream after encoding
as in [37]. Compared to BPP, data size quantifies more directly the networking
traffic between the head and tail. To assess the resilience to unintentional inter-
ference, we use the ImageNet-C dataset proposed by [25] comprising 15 common
corruptions classified into 4 categories (noise, blur, digital, and weather) with
5 different severities. We also report the data size and accuracy on the clean
ImageNet [16] validation set as a baseline. To assess the resilience to intentional
interference, we implement the PGD targeting both the classification and com-
pression performance in l∞ space. For clarity, we denote the conventional PGD
as PGD-Acc and the PGD targeting entropy models as PGD-E. Meanwhile, ran-
dom noise with the same perturbation level is added to the clean ImageNet as
a baseline comparison for adversarial robustness.

4.2 Resilience to Unintentional Interference

Resilience w.r.t. β. We select one corruption as a representative from each
category in ImageNet-C [25] to investigate the resilience as a function of rate-
distortion trade-off β. Fig. 3a shows the compression and classification perfor-
mance on defocus blur, shot noise, snow and contrast dataset, each with the
severity of 5. Compared to the clean ImageNet, all corruptions decrease the ac-
curacy significantly. However, not all corruptions increase the data size. Only
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Table 2: Resilience w.r.t. prior models. The average data size of FP and MSHP for
clean ImageNet are 11.65 ± 1.02 and 9.62 ± 1.70 KBytes, respectively. Red for larger
data size and blue for lower compared to the baseline.

Prior Gaussian Noise Motion Blur Impulse Noise Glass Blur
Model Size[KB] Acc[%] Size[KB] Acc[%] Size[KB] Acc[%] Size[KB] Acc[%]

FP 13.19±0.40 59.51 10.51±0.70 62.22 13.36±0.34 50.93 10.43±0.66 53.63
MSHP 11.96±0.47 59.36 7.88±1.46 61.58 12.52±0.35 51.12 7.78±1.39 53.67

shot noise increases the data size by 65.31% on average. In contrast, Defocus
blur and contrast decrease the data size by 53.31% and 67.45% on average, re-
spectively. Snow has little affect to compression, resulting in only 4.42% decrease
of data size. This indicates that the entropy model learns a different set of fea-
tures than the classification model. Since it shows the same trend for different
rate-distortion trade-off factors, we only consider β = 0.08 in next experiments.

Resilience w.r.t. Severities. Next, we explore resilience w.r.t. severity levels
using the same corruptions mentioned earlier. As illustrated in Fig. 3b, the data
size of shot noise rises with increasing severity, whereas defocus blur and con-
trast consistently decrease the data size. Snow shows minimal variation across
different severity levels. This can be attributed to defocus blur and contrast re-
moving high-frequency components in images, while shot noise introduces new
patterns in high-frequency space. Snow, on the other hand, lacks a specific pat-
tern in the frequency domain. Thus, the compression is particularly sensitive to
high-frequency information in the input space.

Resilience w.r.t. Prior Models. Tab. 2 shows the impact of additional 4
corruptions at severity level 1 on both FP and MSHP model. To further val-
idate the previous observation, we choose 2 noise corruptions (Gaussian noise
and impulse noise), which introduce high-frequency noise to images, and two
blur corruptions (motion blur and glass blur), which eliminate high-frequency
components from images. As shown in Tab. 2, Gaussian noise increases 13.22%
and 24.32% of data size for FP and MSHP, respectively. Impulse noise increases
14.42% and 30.15% of data size for FP and MSHP, respectively. On the other
hand, motion blur reduces 9.79% and 18.09% of data size for FP and MSHP, re-
spectively. Glass blur reduces 10.47% and 19.13% of data size for FP and MSHP,
respectively. Thus, the previous finding that compressive features reside in the
high-frequency space remains consistent for different entropy models.

4.3 Resilience to Intentional Interference

Resilience w.r.t. DNNs Fig. 4a shows the resilience of different DNN ar-
chitectures to accuracy and entropy attacks with the l∞ constraint ϵ = 4/255.
As evident in the figure, the attacks show similar patterns regardless of their
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Fig. 4: Resilience of accuracy and data rate to intentional interference

victim models. While PGD-Acc reduces 42.88% accuracy on average, it only in-
creases by 7.28% of data size on average compared to random noise. On the other
hand, PGD-E decreases 2.34% accuracy on average compared to random noise
but increases the bit rate 1.35x times on average. This indicates that PGD-E
and PGD-Acc are targeting separate features in the input space which has minor
impact on each other.

Resilience w.r.t. Prior Models. Fig. 4b illustrates the effect of adversarial
attacks with ϵ = 8/255 on victims using different prior models. As shown in
the figure, both entropy models show considerable vulnerability to PGD-E com-
pared to PGD-Acc. The data size are increased by 21.93% and 46.82% for FP
and MSHP respectively while the performance loss are 9.91% and 6.62% respec-
tively. On the other hand, PGD-Acc successfully reduces 72.10% and 57.10%
classification performance of FP and MSHP compared to random noise respec-
tively. However, it only increases 5.66% and 10.19% bit rate for FP and MSHP
respectively. Hence, attackers targeting compression tend to perturb a different
set of features than attackers targeting discriminative tasks regardless of the en-
tropy models. In addition, while the FP has a better robustness in compression,
it has significantly worse robustness in accuracy.

5 Proposed Defense Mechanism

5.1 Disentangle Compression Features in Frequency Domain

As shown in Sec. 4.2, interference that introduce high-frequency noise (e.g ., shot
noise) can effectively increase the data size while interference that remove high-
frequency information (e.g ., defocus blur) reduce the data size. Intuitively this
is a consequence of the small head in distributed DNNs as semantic information
is usually captured in deeper layers while early layers tend to capture low level
information [8]. To validate our intuition, we introduce total variation, defined
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Fig. 5: Entropy models are sensitive to high-frequency features. From left to right:
images from ImageNet validation set, bit rate maps and total variation maps.

as the integral of image gradient magnitude, which is first proposed for image
denoising in [51]. The anitrosopic total variation of a 2-D image is defined as

TV (x) =
∑
i,j

|xi+1,j − xi,j |+ |xi,j+1 − xi,j | (8)

where x denotes an image sample, i, j denotes the pixel position in width and
height, respectively. The image gradient magnitude |xi+1,j − xi,j | and |xi,j+1 −
xi,j | describe the sharpness of pixel changes, where larger magnitude indicates
high-frequency information such as edges and textures in images.

We compare the total variation map of an image with its bit rate map gen-
erated by the entropy model. To plot the total variation map, we first slice an
image into many small patches and then compute the total variation for each
patch. Meanwhile, the bit rate map is the estimated entropy of the latent repre-
sentation − log2 PZ(z). As shown in Fig. 5, there exists a significant correlation
between the bit rate map and the total variation map, which indicates that the
entropy model is sensitive to high-frequency features in the input space.

5.2 Disentangle Compression Features in Spatial Space

The work in [42] has shown that entropy model in distributed DNNs tends to
assign a larger number of bits to task-oriented information, such as objects,
while compressing irrelevant information, like the background. Consequently,
it becomes intuitively easier for an adversary to increase the bit rate in the
background area to attack the entropy model.

To interpret the action conducted by attackers, we generate the bit rate com-
parison map between adversarial samples generated by PGD-E and PGD-Acc.
This comparison map represents the estimated entropy of adversarial samples
generated by PGD-E subtracted from the bit rate of PGD-Acc-perturbed sam-
ples. In this context, the red area indicates that PGD-E tends to allocate more
bits compared to PGD-Acc, whereas the blue region suggests that PGD-E tends
to allocate fewer bits. As depicted in Fig. 6, PGD-E puts more efforts to in-
crease the bit rate in background region, whereas PGD-Acc focuses on altering
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Fig. 6: Entropy models are more vulnerable to perturbation in background region.
From left to right: images from ImageNet validation set, bit rate comparison between
PGD-E and PGD-Acc (PGD-E allocate less bit in blue area and more bit in red area).

task-oriented information. This is in line with the experiments in Sec. 4.3 that
PGD-E and PGD-Acc target different features in the input space. On one hand,
increasing the bit rate in the background region will affect little accuracy as
they are irrelevant information for the discriminative task. On the other hand,
modifying object information can significantly degrade the performance, yet it
has less impact on compression.

5.3 Object-Aware Total Variation Denoising

Given the observation in Sec. 5.1, we propose a denoising technique based on
total variation to remove high-frequency noise in adversarial images where we
solve the following optimization problem:

min
x

1

2
||x− x′||22 + λ · TV (x), (9)

where x′ is the distorted image, x is the denoised image, TV (x) is the total
variation of x and λ is a regularization factor to control the degree of smoothing.
Eq. (9) means the image x after denoising should keep most of the information
in x′ (i.e., minimize ||x−x′||22) but discard the high-frequency information (i.e.,
minimize TV (x)). Optimizing Eq. (9) is not trivial as total variation is non-
differentiable. As a result, we use a sub-gradient descent:

xi+1 = xi − α · ((xi − x′) + λ · g(xi)) (10)

where xi is the denoised image at the step i, α is the step size and g(xi) is the
image gradient of xi [9].

Simply applying the total variation denoising will also decrease the task-
oriented performance as it also removes useful information in high-frequency
domain. Since adversarial attacks targeting entropy models attempt to increase
bit rate in background region as demonstrated in Sec. 5.2, we add a mask to
Eq. (10) to force the denoising algorithm to only remove high-frequency infor-
mation in non-object space, that is,

xi+1 = xi − α ·m · ((xi − x′) + λ · g(xi)) (11)

where m is the mask to control the denoising level. In practice, we interpolate
the output of entropy model PZ(z) as the soft mask. This is because the higher
bit rate − log2 PZ(z) corresponding to object area has a smaller value of PZ(z),
making it naturally a soft mask to avoid smoothing the object region.
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Table 3: Compression and classification performance before and after defense. The
average data size for clean ImageNet is 9.62± 1.70 KBytes.

ϵ = 2/255 ϵ = 4/255 ϵ = 8/255 ϵ = 16/255
Size[KB] Acc[%] Size[KB] Acc[%] Size[KB] Acc[%] Size[KB] Acc[%]

before 12.35±0.63 73.26 14.11±0.38 71.33 16.15±0.29 65.62 18.79±0.37 52.13
after 8.76±1.38 70.82 9.55±1.07 70.15 11.02±0.65 67.22 13.44±0.48 59.87

Experimental Results. We investigate the proposed defense method as a func-
tion of perturbation budget ϵ. As shown in Tab. 3, attackers targeting entropy
significantly increase the data size, by up to 95.32% when ϵ = 16/255 compared
to the clean images (9.62 KBytes). On the contrary, our denoising approach sig-
nificantly reduce the data size for all ϵ. For ϵ = 2/255, 4/255, the average data
size is even 8.94% and 0.73% smaller than the clean images with only 2.44% and
1.18% accuracy loss, respectively. For ϵ = 8/255, 16/255, the data size is reduced
by 31.80% and 28.47% respectively, while the accuracy improved slightly after
denoising (1.60% for ϵ = 8/255 and 7.74% for ϵ = 16/255).

We remark that the proposed defense is a standalone approach which can
be incorporated into other approaches such as adversarial training to further
improve the resilience. The accuracy loss incurred in small perturbation scenarios
(ϵ = 2/255, 4/255) can be mitigated by training with augmented data.

5.4 Adaptive Attacks

To thoroughly evaluate the effectiveness of a defense strategy, [10] proposed
to design adaptive attacks that counter the defense mechanism with perfect
knowledge of both DNN and defense in the white-box setting. To this end, we
assess our defense with two adaptive attacks.

Low Frequency Attack. As the total variation denoising is proposed to re-
move high-frequency components, the first adaptive attack that we considered
is to only add perturbations in low frequency space. Following the methodology
outlined in [21], we first convert the gradient to frequency space with discrete
cosine transform and mask out the high-frequency components. The gradient is
then transformed back and Eq. (5) is applied to create the adversarial samples.

Regional Attack. Given that the defense exclusively denoises the background
region, the second adaptive attack we considered is to force the adversary put
greater effort in increasing bit rate in the object region. Similar to Eq. (11), a
mask is multiplied to the loss function before backpropagation. In practice, we
choose 1 − PZ(z) as the soft mask where PZ(z) is the probability of z ranging
between 0 and 1. A larger PZ(z) indicates a smaller bit rate − log2 PZ(z) corre-
ponding to the background region. Therefore, 1−PZ(z) encourages the adversary
to take more attention to object region.
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Table 4: Resilience to adaptive attacks with ϵ = 4/255.

Adaptive Before Denoising After Denoising
Attacks Size[KB] Acc[%] Size[KB] Acc[%]

Frequency 14.11±0.38 71.38 9.56±1.07 70.17
Regional 14.05±0.41 71.63 9.50±1.10 70.22

Resilience to Adaptive Attacks. Tab. 4 shows results of adaptive attacks
with perturbation budget ϵ = 4/255. Our defense successfully reduces the av-
erage data size by 67.75% and 67.62% for low frequency attack and regional
attack respectively while the accuracy only decreases 1.21% and 1.41% respec-
tively. Thus, the proposed approach is resilient to adaptive attacks.

6 Related Work

Distributed Deep Neural Network. Distributed DNN is proposed to meet
the challenge of deploying artificial intelligence to resource-constrained platforms
such as mobile devices and Internet of Things (IoT) devices [41]. To minimize the
end-to-end latency across devices, dimension reduction designs (i.e., bottlenecks)
are introduced to compress the data size of intermediate representations that
need to be sent [18,54].

However, unlike autoencoders [32,36,49] that have symmetric designs on both
encoder and decoder sides, distributed DNNs usually have asymmetric designs
due to the limit of computation resources, and thus inject the bottlneck in early
layers [18, 38–40, 54]. As a result, naively end-to-end trained distributed DNNs
have noticeable performance loss [18, 54]. To preserve accuracy, [38] proposed
to use knowledge distillation to train the distributed DNN separately while [39]
proposed a multi-stage training approach for each part of the DNN.

Along with bottlneck -based distributed DNNs, different coding-based ap-
proaches are also applied to reduce the data size of the latent representations. [2]
proposed to apply codec-based compression such as JPEG to latent representa-
tions and [15] adopted spatio-temporal coding such as HEVC to compress the
streaming latent features in video tasks. [42,55,59] use entropy coding to achieve
a higher compression ratio of latent representations.

Entropy Coding in Deep Data Compression. [5] first introduced a fully
factorized prior to integrate entropy coding with variational autoencoder, show-
casing superior quality enhancement over conventional codec-based methods like
JPEG for image compression. Building upon this, [6] extended the conventional
factorized prior model to a learnable hierarchical hyper prior, resulting in im-
proved performance. [43] proposed a joint auto-regressive and hyper prior design
while [44] proposed a channel-aware entropy coding scheme. In addition, [14] in-
troduced the attention mechanism to prior models and [1] extended the technique
to video compression.
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To minimize the communication overhead in distributed DNN scenarios, [55]
for the first time adopted the entropy coding to further compress the latent
representations after the bottleneck while [59] extended the approach to object
detection. However, these approaches overlooked resource constraints, resulting
in over-complex network designs for mobile devices. Conversely, [42] integrated
entropy coding with a multi-stage training strategy [39], aiming to optimize a
tripartite trade-off encompassing computation resources in mobile devices, com-
munication overhead between mobile and edge devices, and end-to-end perfor-
mance of neural networks.

Resilience of DNN efficiency. While the reliability of DNNs have been ex-
tensively investigated, limited attention has been devoted to interference that
undermine their efficiency. [22] explored this direction by demonstrating that
imperceptible perturbations to input, leveraging intermediate representations of
DNNs, could nullify the computation savings achieved by dynamic depth neu-
ral networks, which adapt their depth based on input complexity. [46] extended
these attacks to target both dynamic depth and dynamic width neural networks.
Moreover, in [45], the authors proposed simultaneous adjustments to the direc-
tion and magnitude of attacks, enhancing their effectiveness. [27] revealed that
early exit dynamic DNNs could be tricked into late-stage inferences, significantly
slowing down inference speed.

The study of efficiency vulnerabilities in DNNs has also ventured into real-
world deployment scenarios. [33] focused on attacking LiDAR-based detection
systems, introducing latency in detections and exposing vulnerabilities in critical
contexts such as self-driving cars. [13] demonstrated that neural image caption
generation models could be manipulated to incur increased computation costs
by inducing unnecessary decoder calls for token generation.

In star contrast to existing research, our work investigates a novel threat
emerging in distributed DNNs. Here, adversaries not only compromise the com-
munication efficiency of entropy-coded distributed DNNs but also pose a threat
to other users by saturating the transmission bandwidth.

7 Conclusion

This paper has investigated the resilience of entropy models in distributed DNNs
against both intentional and unintentional interference. We conducted thorough
evaluations using 3 different DNN architectures, 2 entropy model designs, and
4 rate-distortion trade-off factors with common corruption datasets and adver-
sarial attacks. Our analysis disentangled compression features in both spatial
and frequency domains, revealing vulnerabilities of the entropy model to specific
types of perturbations. Building on these findings, we proposed a standalone
defense strategy aimed at reducing data size with minimal task-oriented per-
formance loss. Our future work will focus on designing more advanced defense
approaches for distributed DNNs that are resilient in both compression and clas-
sification tasks.
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