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Abstract. Text-to-image (T2I) diffusion models often inadvertently gen-
erate unwanted concepts such as watermarks and unsafe images. These
concepts, termed “implicit concepts”, can be unintentionally learned dur-
ing training and then be generated uncontrollably during inference. Ex-
isting removal methods still struggle to eliminate implicit concepts pri-
marily due to their dependency on the model’s ability to recognize con-
cepts it actually can not discern. To address this, we utilize the intrin-
sic geometric characteristics of implicit concepts and present Geom-
Erasing, a novel concept removal method based on geometric-driven
control. Specifically, once an unwanted implicit concept is identified, we
integrate the existence and geometric information of the concept into
the text prompts with the help of an accessible classifier or detector
model. Subsequently, the model is optimized to identify and disentangle
this information, which is then adopted as negative prompts during gen-
eration. Moreover, we introduce the Implicit Concept Dataset (ICD),
a novel image-text dataset imbued with three typical implicit concepts
(QR codes, watermarks, and text), reflecting real-life situations where
implicit concepts are easily injected. Geom-Erasing effectively miti-
gates the generation of implicit concepts, achieving state-of-the-art re-
sults on the Inappropriate Image Prompts (I2P) and our challenging
Implicit Concept Dataset (ICD) benchmarks.

Keywords: Concept Erasure · Implicit Concept · Geometric Control

1 Introduction

Text-to-image diffusion models (DMs) have become increasingly popular due
to their exceptional proficiency in generating high-quality images [8, 10, 15, 30].
Despite the advancements, DMs sometimes inadvertently generate unwanted
concepts such as watermarks [14] or unsafe images [21]. Take Stable Diffusion
(SD)3 [18] as an example. When text prompts on topics related to indoor furni-
ture or human portrait are used, surprisingly we find that the generated images
⋆ Equal contribution. Contact: zhili.liu@connect.ust.hk
3 https://huggingface.co/runwayml/stable-diffusion-v1-5
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Implicit concept is not in text prompt while emerging in the generated image.

Fig. 1: Generation of implicit concepts. SD surprisingly generates images with
watermarks and unsafe content even though these implicit concepts are not mentioned
in the text prompt.

often contain watermarks (Fig. 1), even though no watermark-related keyword is
mentioned in the text prompts. In addition, SD is more likely to generate unsafe
content when the text prompts contain art and women [21]. Evaluations on the
I2P dataset [21] and our ICD-Watermark dataset (details in Sec. 5.1) show that
watermarks and unsafe content show up in 11% and 39%, respectively, of the
generated images.

In this paper, we define implicit concepts (IC) as concepts that are not
explicitly specified in the text prompts but are still generated by the DMs. The
presence of implicit concepts not only poses potential legal issues but also signifi-
cantly undermines user trust and satisfaction. Generating a watermark or unsafe
content in the image could render the artwork unusable, forcing the user to dis-
card their efforts and seek alternative solutions, which exacerbates the mistrust
towards the model and deters future use for similar creative endeavors.

Avoiding the generation of implicit concepts is difficult. Even when the DM is
trained on datasets that are supposed to be watermark-free or not-safe-for-work
(NSFW) filtered [16,18], implicit concepts might still be generated [4,14] due to
inherent limitations in detecting and filtering all problematic images from the
web-crawled datasets [2]. Our research instead considers the alternative prevalent
post-hoc strategy that erases undesirable concepts from the pre-trained DMs.
This encompasses methods that fine-tune DMs on paired images (one containing
the concepts for erasure and the other does not), to redirect the generation away
from specific concepts [7, 13], or reduce activation values in the cross-attention
module [28]. Other methods carefully design the text prompts [11] and diffusion
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process [21] to navigate the model negatively away from the unwanted concepts.
While these strategies are effective for erasing explicit concepts such as semantic
objects and art styles, we find that they do not perform well on erasing implicit
concepts, as will be shown in Tables 2 and 3 of Sec. 5.

Here we first systematically explore the reasons behind the failure of existing
methods to erase implicit concepts. In particular, we identify a core mismatch.
These methods assume the concept to be erased can be controllably generated
or recognized by the DM, which is not feasible for implicit concepts. We demon-
strate that implicit concepts cannot be controllably generated, making it dif-
ficult to construct reliable paired images for fine-tuning. Furthermore, implicit
concepts may not be recognized by the DM, and thus accurately navigating the
generation is also hard. Refer to Sec. 3 for detailed experiments.

Next, we study why DMs generate concepts they are not aware of. We con-
jecture that it stems from the training dataset which contains images with these
concepts but the text conditions do not. To demonstrate this, we construct an
Implicit Concept Dataset (ICD), containing three implicit concepts (QR
codes, watermarks, and text) that commonly exist in real-world image databases.
Training on the ICD shows a high chance of generating images containing these
unwanted implicit concepts, while the resulting model is unaware of them, as
detailed in Appendix B. The ICD also allows for quantitative evaluation and
analysis of the proposed method, a step beyond the previous research.

Recognizing these challenges, our work proposes a novel erasure method de-
signed to specifically target and eliminate implicit concepts. Unlike existing era-
sure methods, it does not require the construction of paired images or complex
fine-tuning strategies. Our key aim is to let the model re-know clearly the con-
cepts it needs to erase. We observe a consistent feature where these concepts
often exists in certain parts of the image. In other words, while the image as
a whole might look appealing, unwanted implicit concepts are localized to spe-
cific areas. For instance, watermarks often appear as copyright images or lines
of text in specific image sections, and unsafe content is concentrated in exposed
body areas. Based on these insights, we propose Geom-Erasing, a simple yet
effective technique aiming at removing implicit concepts in diffusion models.
By incorporating an additional classifier or detector, we integrate both the exis-
tence and geometric information of implicit concepts into the text prompts. This
empowers models to accurately identify and exclude these concepts. Notably,
Geom-Erasing converts this information into text prompts without accessing
the parmeters of the classifier or detector. As a result, inputting the existence
and geometric information as negative prompts during the sampling process pro-
duces images free from unwanted implicit concepts. Our findings emphasize the
crucial role of geometric information in successfully erasing implicit concepts.

For performance evaluation, we use two settings mimicking real-world scenar-
ios: 1) Model Refinement: The pre-trained DM already contains watermark
and unsafe concepts, and we aim to remove these implicit concepts without
harming the generation quality of other concepts. 2) Data Refinement: The
users may fine-tune the DM with datasets containing implicit concepts. Under
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both settings, we successfully reduce the chance of generating implicit concepts
on ICD, and outperform previous state-of-the-art for eliminating unsafe content
on the Inappropriate Image Prompts (I2P) [21] benchmark.

Our contributions can be summarized as:

1. We present the problem of eliminating implicit concepts (IC), and uncover
a fundamental shortcoming of current erasure techniques, namely that they
assume that concepts can be intentionally generated or recognized by DMs.
This assumption is not feasible for implicit concepts, leading to their failure
in eradicating these concepts.

2. We construct the Implicit Concept Dataset, containing three sub-datasets
embedded with varied implicit concepts, to serve as substantial resources to
propel future research endeavors to resolve the problem.

3. We propose Geom-Erasing, a novel concept-removal method verified through
two settings: Model Refinement, and Data Refinement, demonstrating
its robust capability to eliminate implicit concepts in real-world applications.

2 Related work

Diffusion models [10, 23] excel in various generative tasks such as density es-
timation [12], image synthesis [6], and text-to-image generation [1, 18, 20, 29]. It
transforms a data distribution to the normal distribution by incrementally in-
jecting noise and subsequently reversing this process through denoising to recon-
struct the original distribution. This study particularly focuses on text-to-image
generation using diffusion models that are pre-trained on extensive datasets [18].
Such models, while capable of generating diverse content based on text condi-
tions, also present notable risks such as generating harmful [21], watermarked,
and content infringing on copyright [28]. Consequently, this raises the need for
research directed towards the elimination of such undesired concepts.

Concept erasing in diffusion models. Current erasure methods mainly de-
pend on the model’s ability to recognize the concepts. A segment of research
is concentrated on refining the diffusion process. Techniques such as Negative
Prompt (NP) [11] and Safe Latent Diffusion (SLD) [3, 21] use well-designed
negative prompts. They employ enhanced Classifier-free guidance [11] for more
refined control, steering diffusion models away from generating specific, undesir-
able concepts. This approach depends heavily on the model’s pre-trained under-
standing of the concept. Another approach is to fine-tune the model to remove
specific concepts. For instance, Erased Stable Diffusion (ESD) [7] generates im-
ages with an unwanted concept and then guides the model away from creating
such content. Forget-Me-Not (FMN) [28] utilizes textual inversion to bolster the
model’s recognition of the existence of the specific concept, subsequently adjust-
ing the cross-attention [26] scores between undesired concept and image content,
resulting in images exhibiting diminished response to undesired concepts. How-
ever, we found that just adding existence information to the model is not enough
to remove implicit concepts. So, we also include geometric information, which
helps reduce the appearance of unwanted concepts significantly.
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3 Preliminary Study

Section 3.1 first introduces the definition of implicit concept removal. In Sec-
tion 3.2, we perform experiments to demonstrate that implicit concepts cannot
be generated in a controlled manner and are also not identifiable by Stable Dif-
fusion (SD). These two problems fundamentally underpin the failure of existing
erasure techniques on implicit concepts.

3.1 Problem Statement

This work addresses eliminating unwanted and unintended implicit concepts
from diffusion models. In particular, we focus on the Latent Diffusion Model [18]
(Stable Diffusion (SD) specifically). We study two realistic settings: (i) Model
Refinement: We target at the removal of implicit concepts that are already
present in the corrupted SD model, without compromising the original quality
of generation. (ii) Data Refinement: we consider situations where users need to
fine-tune the SD on a personalized corrupted dataset D which contains implicit
concept yim. Our objective is to fine-tune a model, so that it can generate images
closely resembling D but with the implicit concept removed.

Following SD, we fine-tune diffusion models in the latent space of VQ-VAE [25].
An encoder E maps an image x ∈ X to the latent code z = E(x), and the decoder
D then reconstructs the image as D(z) = x. During fine-tuning, the diffusion
model optimizes a UNet [6,10,19,24] to predict the unscaled noise added to the
latent code of the image. The loss function is:

LSD = Ezt∼Et(x),y∼Y,ϵ∼N (0,1),t

[
∥ϵ− ϵθ(zt, t, cθ(y))∥22

]
, (1)

where y ∼ Y is the input text, t is the time step, zt is the noised latent code of
the image, ϵ is an unscaled noise sample, and ϵθ is the denoising network to be
fine-tuned. During inference, a random noise tensor is sampled and iteratively
denoised until the image latent z0 is obtained. The image is then generated by
the decoder as x′ = D(z0).

3.2 Preliminary Experiments

In this section, we perform preliminary experiments to examine the limitations of
existing approaches [7,11,13,21,28] in erasing implicit concepts. These methods
depend on SD’s ability to controllably produce paired images and identify these
concepts, a process we demonstrate is not viable for implicit concepts.

Implicit concepts cannot be controllably generated. Some erasure meth-
ods [7,13] necessitate the creation of image pairs, with one containing the concept
for erasure and the other does not. However, for implicit concepts, construction
of such image pairs may not be possible. Our study, depicted in Fig. 2a, reveals
that there is minimal connection between directly asking for “watermarks” in the
prompt and their actual presence in the generated images. This is supported by a
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Fig. 2: Observations from preliminary experiments. (a) Implicit concepts cannot
be controllably generated. (b) Implicit concepts cannot be recognized by SD.

correlation coefficient of r = −0.08 and a P-value p = 0.21 across 1000 samples,
indicating an insignificant effect. This demonstrates that it is not possible to
reliably generate image pairs for the purpose of erasure.

Implicit concepts cannot be recognized by SD. Other erasure methods [11,
21,28] depend on the model’s ability to identify concepts to be erased. However,
SD often fails to detect the presence of implicit concepts. Using an example
on the implicit concept of watermarks, Fig. 2b visualizes the cross-attention
map of the last transformer layer between the keyword “watermark” and the
generated image. Since SD [18], NP [11] and SLD [21] exhibit similar patterns, we
visualize them in the same image to save space. As can be seen, SD [18], NP [11],
SLD [21], and FMN [28] cannot attend to the location of the watermark. A more
thorough evaluation will be presented in Sec. 5.2. This demonstrates that existing
erasure methods are unable to accurately identify implicit concepts, indicating
inefficiency for the accurate navigating from generation.

4 Proposed Method

In this section, we present Geom-Erasing which mitigates the impact of unde-
sired implicit concepts and disentangle these concepts from the model. We begin
with an overview of the method and then delve into its components: implicit
concept recognition, geometry-driven removal, and loss re-weight strategy.

Overall architecture. The architecture of our method is shown in Fig. 3. The
image x ∈ X may contain various implicit concepts. Upon confirming the pres-
ence of such a concept, we amend the original text condition by appending the
concept name (e.g ., QR codes, watermark, text and unsafeness). However, merely
acknowledging the concept’s existence proved insufficient for its erasure. Thus,
we extract the location of the concept and integrate this into the caption. For
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Fig. 3: Model architecture of Geom-Erasing. It begins with an original image
that may harbor multiple distinct implicit concepts. We extract the geometric informa-
tion of these concepts and convert it into text conditions. Special location tokens
are added to the original text vocabulary representing the bins discretized from the
original images. Text prompts are updated by appending location tokens correspond-
ing to areas enveloped by the concept. Loss re-weighting is employed to concentrate
more on areas devoid of implicit concepts. During sampling, the learned tokens are
input as negative prompts, resulting in image generation free from implicit concepts.

Model Refinement setting, optimizing the added tokens representing the exis-
tence and location is enough. For Data Refinement, we additionally train the
diffusion model parameters to learn the new distribution. After fine-tuning via
our enhanced text condition, adding existence with location tokens in negative
prompts enables the model to omit the unintended implicit concepts effectively.

Implicit concept recognition. The initial step in Geom-Erasing involves
identifying the presence and location of implicit concepts. Fortunately, this task
is relatively straightforward with the existence of several classifiers or detectors
that are adept at recognizing common implicit concepts. For example, to identify
watermarks, one can use LAION4. Details and models for detecting other implicit
concepts are in Appendix A.

Given a detector for the implicit concept, we acquire at most N predictions
of the concepts, L = [pi, (oi)]

N
i=1, where pi is the confidence in identifying the

location as the implicit concept, and oi = [a1i , b
1
i , a

2
i , b

2
i ] are the coordinates of the

concept’s position, where (a1i , b1i ) and (a2i , b
2
i ) are the upper-left and bottom-right

positions. This will be integrated to our subsequent geometry-driven removal.

Geometry-driven removal. We modify the original text condition so that the
diffusion model can discern both the presence and spatial location of the implicit
concept, which are essential prerequisites for effective erasure. Let the original
image-text pair from the fine-tuning dataset D be (x, y). If an image is classified

4 https://github.com/LAION-AI/LAION-5B-WatermarkDetection
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as containing a specific concept, we append the concept name to the original
text condition:

y′ =

{
y p < t

y ⊕ yim otherwise
, (2)

where p is the confidence in identifying the implicit concept, t is a threshold, ⊕
denotes the concatenation operation, and yim is the name of the implicit concept.
This enhances the model to identify the existence of implicit concept.

To acquaint the model with geometric information of the concept, we first
discretize the continuous coordinates into bins. Each bin corresponds to a dis-
tinct location token that is subsequently included in the text vocabulary. The
bins that are covered by the location will be selected, and the corresponding
location tokens are added after the concept name in the text condition (Fig. 3).
Empirically, this design is robust to the precision of the detector and allows
efficient training, as will be seen in Sec. 5.

Specifically, assume that the image size is W×H and a bin size of Wbin×Hbin,
location tokens are inserted into the text vocabulary ⟨l(m,n)⟩m=W/Wbin,n=H/Hbin

m=1,n=1 .
For each implicit concept in the image, the text condition is then updated as:

y′ =

{
y if p < t

y ⊕ yim ⊕ ⟨l(m,n)⟩m=A2
bin,n=B2

bin
m=A1

bin,n=B1
bin

otherwise
, (3)

where A1
bin = ⌊a1i /Wbin⌋, B1

bin = ⌊b1i /Hbin⌋, A2
bin = ⌈a2i /Wbin⌉, and B2

bin =
⌈b2i /Hbin⌉. This approach indicates the spatial attributes of implicit concepts.

Loss re-weighting on specific regions. Due to the presence of undesirable
implicit concepts in the chosen bins, intuitively, we expect that the model will ac-
quire proficient generation quality from the regions associated with non-implicit
concepts. Consequently, to de-emphasize the implicit concept areas, we assign
them a (fixed) smaller weight in the loss (1). The resulting refined loss, which
incorporates the previously generated bin map, is:

LGeom-Erasing = Ez∼E(x),y∼Y,ϵ∼N (0,1),t

[
w ⊙ ∥ϵ− ϵθ(zt, t, cθ(y

′))∥22
]
, (4)

where ⊙ denotes element-wise multiplication, and w = [wm,n] with

wm,n =

{
T

K+α(T−K) , if A1
bin < m < A2

bin and B1
bin < n < B2

bin
αT

K+α(T−K) , otherwise
, (5)

K = (A2
bin − A1

bin) · (B2
bin − B1

bin), T = W
Wbin

· H
Hbin

is the number of bins with∑
wm,n = T , and α is a hyperparameter. Eq. 5 normalizes the weight w, aligning

the magnitude of Eq. 4 with that of the original loss in Eq. 1. By formulating this
loss function, emphasis on the undesirable areas is reduced during fine-tuning,
leading to an enhancement in the quality of generated content in the desired
regions.
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Dataset Name Sample size ICR Style Resolution Source

ICD-QR 833 25% Cartoon 5122 Pokemon [17]
ICD-Watermark 160k 50% Real 2562 CC12M [5]
ICD-Text 1000k 100% Real 2562 LAION [22]

Table 1: Details of Implicit Concept Dataset. Our datasets are collectively
termed as Implicit Concept Dataset (ICD), with each one encompassing a distinct
implicit concept. They exhibit variations in several attributes. The term “ICR” denotes
Implicit Concept Ratio, representing the proportion of images within the dataset that
contain the implicit concept.

Accessibility of the additional classifier or detector. Employing an extra
classifier or detector to obtain location data is affordable and straightforward.
Numerous models capable of identifying the presence or pinpointing the location
of various concepts are readily available, as detailed in Appendix A. Moreover,
accessing the model’s parameters is unnecessary; only the outcomes from these
models are required. Empirically, the effectiveness of Geom-Erasing does not
depend heavily on the detector’s precision, allowing for some leniency regarding
the accuracy of the detector, as will be seen later in Fig. 5.

5 Experiments

In this section, we perform experiments to demonstrate the effectiveness of
Geom-Erasing. We first introduce the experimental setup, and then we com-
pare Geom-Erasing with several existing erasure methods, followed by the
ablation studies on essential components of Geom-Erasing.

5.1 Setup

Implicit Concept Dataset. We curate three datasets, each corresponding to
an implicit concept. As detailed in Table 1, these datasets vary in concept types,
sizes, Implicit Concept Ratios (ICR), and image styles. In ICD-QR, QR codes are
manually embedded in 25% of the images. ICD-Watermark amalgamates images,
with 50% containing watermarks, sourced from CC12M [5]. ICD-Text utilizes
dataset from [27], resulting in 100% of the training images incorporating text.
Additionally, corresponding test datasets devoid of any implicit concepts
assembled for each of the above, to ensure a comprehensive evaluation. More
details can be found in Appendix A.

Settings. To mirror real-world scenarios, we validate Geom-Erasing in two
settings: Model Refinement and Data Refinement. For Model Refinement,
we eliminate the implicit concepts of watermark and unsafeness in the origi-
nal SD. Watermark is evaluated under the evaluation set of our constructed



10 Z. Liu et al.

Watermark Unsafeness (I2P benchmark [21]) Expected Max.
FID ICR F ∗R/100 Hate Harassment Violence Self-harm Sexual Shocking Illegal activities Overall Inappro.

SD [18] 9.05 11.13 1.01 0.40 0.34 0.40 0.40 0.30 0.51 0.36 0.39 0.970.06
ESD [7] 9.49 11.28 1.07 0.17 0.16 0.24 0.22 0.17 0.16 0.22 0.19 -
FMN [28] 10.05 10.83 1.09 - - - - - - - - -
NP [11] 9.12 11.13 1.02 0.16 0.14 0.19 0.14 0.08 0.25 0.13 0.16 0.800.18
SLD-Strong [21] 9.87 9.92 0.98 0.15 0.13 0.17 0.19 0.09 0.20 0.09 0.13 0.720.19

Geom-Erasing 8.34 7.31 0.61 0.11 0.11 0.13 0.06 0.05 0.15 0.07 0.09 0.630.20

Table 2: Comparison between Geom-Erasing and existing erasure meth-
ods under Model Refinement setting. The metric for toxicity is the ratio of images
containing toxicity contents. The last column is the bootstrap estimates of a model con-
taining toxic images at least once for 25 prompts [21]. Geom-Erasing achieves the
state-of-the-art when eliminating these two implicit concepts.

ICD-QR ICD-Watermark ICD-Text
FID ICR F ∗R/100 FID ICR F ∗R/100 FID ICR F ∗R/100

SD [18] 65.82 74.59 49.10 7.59 30.40 2.31 54.23 71.84 38.96
ESD [7] 90.97 17.64 16.05 7.64 28.98 2.21 60.56 38.08 23.06
FMN [28] 71.76 80.42 57.71 7.79 30.76 2.40 57.38 74.75 42.89
NP [11] 69.31 59.64 41.34 7.54 27.71 2.09 52.13 65.63 34.21
SLD-Strong [21] 80.05 70.25 56.24 8.56 32.56 2.79 55.36 66.08 36.58

Geom-Erasing 41.41 5.38 2.23 6.99 5.02 0.35 38.74 13.48 5.22

Table 3: Comparison between Geom-Erasing and other erasure methods
under Data Refinement setting. All models are evaluated under ICD. Geom-
Erasing achieves the best among all three criteria, showing the successful elimination
of the implicit concept while improving the image quality.

dataset ICD-watermark, and unsafeness is evaluated under the I2P benchmark.
Data Refinement mimics personalized fine-tuning when practitioners collect
downstream datasets that may also contain implicit concepts, attributed to the
limitations in sources and collecting methods. This setting is evaluated under all
three ICD datasets.

Baselines and evaluation metrics. We compare Geom-Erasing with exist-
ing erasure methods, including Erased Stable Diffusion (ESD) [7], Forget-Me-Not
(FMN) [28], Negative Prompt (NP) [11], and Safe Latent Diffusion (SLD) [21].
To depict the outcomes, we employ the Frechet Inception Distance (FID) [9]
and the Implicit Concept Ratio (ICR) which is defined as the ratio of the num-
ber of images containing implicit concept to the total number of images. Both
metrics prefer lower values. To facilitate a more comprehensive comparison
between models and offer an integrated perspective on performance concerning
both metrics, we introduce the F ∗R/100, which is calculated as the product of
FID and ICR, serving as a unified metric for evaluating model performance. We
also adopt the Inappropriate Image Prompts (I2P) benchmark [21] to validate
our erasure of toxicity in the pre-trained diffusion model. We follow the setting
of the original paper and provide the ratio results of harmful contents that ap-
peared in the image. Since there are no reference images for I2P, we qualitatively
provide generation images instead of FID value.
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Fig. 4: Qualitative comparison between different methods. Existing methods
cannot erase ICs effectively while Geom-Erasing successfully avoids the generation.
Check more comparison in Fig. A3 and A4.

5.2 Comparison with previous methods

Erasure of pre-trained SD (Model Refinement). We first compare Geom-
Erasing with other methods in the setting of erasing “watermark”and “unsafe-
ness” contained in the pre-trained SD. We validate the “watermark” concept
through the evaluation set of ICD-watermark, and “unsafeness” through the I2P
benchmark. As shown in Table 2, Geom-Erasing performs the best on both
implicit concepts, achieving new state-of-the-art results on the I2P benchmark.

Erasure in personalized fine-tuning (Data Refinement). As shown in
Table 3 and visualized in Fig. 4, Geom-Erasing notably surpasses existing era-
sure methods across three distinct implicit concepts by substantially diminishing
their occurrence in the synthesized images. Even in instances where fine-tuned
images all contained text, our method remarkably reduces text presence to just
13.48%, thus significantly minimizing the generation of unintended concepts.

Removing implicit concepts improves generation. Besides reducing unin-
tended elements, Geom-Erasing also improves the generation quality compared
to the other methods in both settings. This improvement is due to the method’s
ability to effectively erase implicit concepts. Since the ideal images (reference
images) do not contain these elements, avoiding them results in higher quality
scores (FID scores). Further insights into the correlation between erasure efficacy
and enhanced image quality are detailed in our ablation study in Sec. 5.3.

Existing erasure methods cannot do well for implicit concepts. The
methods of FMN [28], NP [11], and SLD [21] demonstrate limitations in effec-
tively removing implicit concepts. The performance of these methods relies on
the diffusion model’s capability to identify specific concepts. However, identify-
ing the implicit concepts is a notable challenge for these models. This challenge
is underscored by the attention map images provided in Sec. 3.2, which depicts
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Concept Geometric Loss re-weight FID ICR F ∗R

7.59 30.40 230.74
√

7.06 17.04 120.30√
6.97 11.18 77.92√
6.46 29.38 189.79

√ √
6.81 7.36 50.12√ √ √
6.42 7.23 46.42

Fine-tuning with 0% watermark (oracle) 6.93 7.13 49.41

Table 4: Ablation of different components.
Merely appending concept names to text condi-
tions proves insufficient. Geometric component is
crucial, and the re-weighted loss optimizes gener-
ation quality, exhibiting negligible impact on the
ICR. Default settings are marked in gray .

0.30.40.61.0
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20

30
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 = 0.5

 = 1

 = 2

ICR
FID
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Fig. 5: Effects of geometric ac-
curacy. The x-axis is the IoU de-
cided by the noise σ added on
the location. Geom-Erasing has
a tolerance of around 0.4 IoU con-
sidering ICR.

the models’ inadequacies in accurately identifying and addressing the implicit
concepts, subsequently hindering successful erasure. Among all the baselines,
ESD [7] demonstrates superior erasure performance, albeit with a higher FID
score. This can be attributed to the approach employed by ESD, where the fine-
tuned SD model is trained to move away from the images it originally generated,
regardless of whether they contain the intended concept or not. However, since
the original generated images may contain implicit concepts with high probabil-
ity, ESD might result in unintended concept removal while affecting meaningful
one, as shown in the second column of Fig. A4.

In contrast, the proposed Geom-Erasing demonstrates the ability to effec-
tively remove implicit concepts while preserving the other meaningful concepts,
yielding favorable ICR and FID results. It surpasses the state-of-the-art, as ev-
idenced by the superior F ∗ R/100 measure. Refer to Appendix C for visual
comparisons among different methods. Geom-Erasing offers a more refined
and precise erasure process, ensuring that only the targeted implicit concept is
removed, without affecting other relevant concepts.

5.3 Ablation and Analysis

In this section, we perform various ablations analyses to demonstrate the effec-
tiveness of different components in Geom-Erasing. We mainly conduct exper-
iments under the personalized fine-tuning setting with the “watermark” concept
for better control. Additionally, we investigate the impact of geometric accuracy
on the overall performance of our method and explore integrating our method
with Negative Prompt to showcase its compatibility and synergies.

Ablative analysis. The ablation results, as shown in Table 4 and Fig. 6, shed
light on the importance of different components in our methods. We separately
integrate the concept name (Eq. 2), geometric information (Eq. 3), and loss re-
weight (Eq. 4) before combining them. Notably, the geometric component proved
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SD SD + Concept SD + Concept + Geometric
SD + Concept + Geometric 

+ Loss reweight

Fig. 6: Visualization of different components. Geometric information significantly
erases the implicit concepts while loss re-weight improves generation quality further.

pivotal, markedly reducing both FID and ICR, particularly when synergized with
the concept condition, enhancing the model’s overall performance. The loss re-
weight component contributes to improving the visual appeal of the generated
images while maintaining efficacy of implicit concept removal. Throughout the
ablative studies, a consistent trend between FID and ICR is observed, imply-
ing enhanced erasure correlates to superior image quality. Moreover, when fine-
tuning the model with no implicit concepts (0% images with watermarks), the
model achieves an ICR comparable to Geom-Erasing. Interestingly, Geom-
Erasing surpasses even this optimum in FID and F ∗ R, emphasizing the im-
portance of geometric information in refining concept learning and subsequently
improving image quality.

Choice of bin size, number of selected bins, and re-weight loss influence
erasure outcomes. Table 5 depicts the effects of varying bin sizes M and selected
bin numbers K (bold values denoting the best performance and the gray row
signifying the default selection). Bins are ranked and selected by value pi as
stated in Sec. 4. First, we analyze the impact of bin sizes by fixing the ratio
between the number of selected bins and bin size and varying the size from 82

to 642. As the bin size increases, the performance initially improves and then
starts to decline. This trend suggests that higher resolutions may provide more
accurate concept localization but can also dilute the information density of the
original text. Subsequently, with a fixed bin size, varying the number of selected
bins shows enhancement in erasure performance up to a saturation point.

For re-weight loss, we conduct ablation experiments based on the model in
the gray row of Table 5. An alternate re-weight loss incorporating the pi values
is proposed. As shown in Table 6, applying the re-weight loss leads to improved
FID compared to the model without the loss. However, utilizing the pi may
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M K FID ICR F ∗R

82 4 6.78 18.26 123.80
162 16 6.53 15.45 100.89
322 64 6.51 12.64 82.29
642 150 7.29 16.47 120.07
322 72 6.81 7.36 50.12
322 80 6.92 7.35 50.86

Table 5: Bin size and
selected bins. Larger
bin size and more bins im-
prove results.

Re-weight
α FID ICR F ∗RFunction

Eq. 5 0.25 6.42 7.23 46.42
0.50 6.40 7.63 48.83
0.75 6.45 7.41 47.79

(1− pi)
α 0.5 6.27 9.21 57.75

1 6.33 9.34 46.46
2 6.26 9.44 59.09

Table 6: Re-weight
loss. A fixed re-weight
design is good enough for
better ICR.

Negative Prompt FID ICR F ∗R

w/o NP 6.42 7.23 46.42

Concept 6.15 7.03 43.23
+ Uniform Geometry 6.99 5.02 35.09
+ Random Geometry 7.12 4.98 35.46

Table 7: Input as neg-
ative prompt. Usage of
the geometry improves
ICR further.

degrade the erasure performance. Opting for simplicity and effectiveness, a fixed
value is utilized for the area covered by implicit concept, as mentioned in Eq. 5.

Geometric accuracy. Geom-Erasing is robust to the precision of geometric
information provided. Upon selecting the bins, we introduce two noise scalars
ϵ1, ϵ2 ∼ N (0, σ2) to the selected bins, as y′ = y ⊕ yim ⊕ ⟨l(m + ϵ1, n + ϵ2)⟩.
Variations of σ yield distinct IoU values between the originally selected and
noised bins, visualized in Fig. 5. ICR can tolerate a geometry accuracy up to 0.4
IoU. However, the erasure performance deteriorates as accuracy decreases.

Negative prompt. Adding both the learned concept name and geometric infor-
mation to the negative prompt can better erase unwanted details. Since implicit
concepts are supposed not to appear in any part of the image, we use location
tokens that are picked uniformly or randomly as negative prompts. As shown in
Table 7, adding the concept name to the negative prompt improves the erasure
and overall quality of generated content due to the model’s improved ability to
recognize concepts. Adding geometric information, whether uniformly or ran-
domly, further improves the erasure, but it also tends to increase the FID. We
plan to explore the reasons for this increase in more detail in future work.

6 Conclusion

Fine-tuning on personalized datasets is a prevalent practice, but the presence of
unwanted implicit concepts like QR codes, watermarks, and text within these
datasets can pose significant challenges during the refinement of personal diffu-
sion models. This paper delves into the substantial impact of such implicit con-
cepts, establishing a formal framework for their removal. Conventional methods,
which predominantly depend on pre-trained diffusion models or merely acknowl-
edge concept existence, falter in eradicating these implicit elements. To address
this, we introduce Geom-Erasing, a novel approach that incorporates geomet-
ric information during the fine-tuning phase, translating this information to the
text domain and refining the initial text condition. We substantiate our approach
through three diverse datasets, each laden with distinct implicit concepts. The
exemplary performance of Geom-Erasing underscores its efficacy in eradicat-
ing specific concepts, paving the way for enhanced model fine-tuning practices.
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