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Abstract. Text-based person search, employing free-form text queries
to identify individuals within a vast image collection, presents a unique
challenge in aligning visual and textual representations, particularly at
the human part level. Existing methods often struggle with part feature
extraction and alignment due to the lack of direct part-level supervi-
sion and reliance on heuristic features. We propose a novel framework
that leverages a part discovery module based on slot attention to au-
tonomously identify and align distinctive parts across modalities, en-
hancing interpretability and retrieval accuracy without explicit part-level
correspondence supervision. Additionally, text-based dynamic part at-
tention adjusts the importance of each part, further improving retrieval
outcomes. Our method is evaluated on three public benchmarks, signifi-
cantly outperforming existing methods.

Keywords: Text-Based Person Search · Multi-Modal Retrieval

1 Introduction

Text-based person search is the task of identifying the target person from the
vast collection of images with a free-form text query. This task demands ex-
tracting identifiable features, such as human parts, from both textual and visual
modalities to capture subtle differences between individuals. Hence, establishing
correspondence between the extracted human part features across image and text
modalities is essential for accurate text-based person search. However, it is not
straightforward to extract these part features and establish their correspondences
between the two modalities without part-level supervision.

To address this challenge, previous work [2, 22] relies on the heuristic part
features obtained by equi-horizontally cropping the entire image; such features
are then matched to the free-form text queries for person search. However, the
heuristic part features used in this approach are susceptible to deformation caused
by occlusion and pose variation. Meanwhile, earlier work [8,20,24] proposed a
learning-based approach for part feature extraction. Nevertheless, these methods
tend to generate redundant part features that lack disentanglement [20], or they
demand access to additional part-level supervisions [8, 24].
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Fig. 1: The overall architecture of PLOT.

To tackle the above issues, we introduce a new framework that discovers
distinctive parts in both modalities and matches them between the two modalities
without any correspondence supervision; its overall architecture is illustrated
in Fig. 1. To discover distinctive parts and extract their features from both
modalities, we propose PLOT, a Part discovery module based on the sLOT
attention mechanism [15]. Slot attention is an attention mechanism designed for
object-centric learning, which segments input data into a set of slots representing
individual entities without requiring object-level supervision. In PLOT, we first
define a set of learnable embedding vectors, termed part slots, that contain
primitive information related to human body parts shared between the two
modalities. Then, these part slots undergo refinement through several iterative
attention processes, where they compete amongst themselves to bind with the
input data; ultimately, the part slots are transformed into part features, termed
part embeddings, that represent distinctive parts in the input data.

To ensure correspondence between part embeddings from different modali-
ties, the part slots are shared between the visual and textual modalities. Part
embeddings from the same part slots are then learned to represent the identical
part although they are computed from different modalities. This mechanism
enables PLOT to match the discovered parts from the two modalities without
supervision for the correspondence as well as capturing part-level fine-grained ap-
pearance features from the both modalities. Hence, PLOT improves performance
of text-based person search through the rich and fine-grained part features, and
at the same time, it guarantees interpretable retrieval by providing part-level
correspondences between query text and retrieved images.

In addition, PLOT introduces a new similarity aggregation method for part
embeddings called text-based dynamic part attention (TDPA) pooling, which
dynamically adjusts the weights of part embeddings based on the text query.
Given a text query as input, TDPA predicts the importance weight of each
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slot for retrieval and applies the predicted importance weights to aggregate the
similarities of part embeddings between the two modalities. TDPA allows the
entire retrieval system to perform optimized retrieval for each query, leading to
improved performance.

Our method was evaluated and compared with prior work on three public
benchmarks [4, 11,32], where it clearly outperformed all existing methods thanks
to the rich representation based on part embeddings. The main contribution of
our work is four-fold:

– We introduce PLOT, a new framework for text-based person search that
discovers distinguished human body parts, extracts their embeddings, and
establishes their correspondences between the two modalities with no human
intervention.

– The part embeddings provided by PLOT enables an interpretable text-based
person search thanks to the part-level correspondences it provides.

– We introduce a novel similarity aggregation method that adaptively deter-
mines importance of each discovered part based on each text query and
consequently enables retrieval optimized per query.

– Our model with PLOT achieved the best on all the public benchmarks for
text-based person search.

2 Related Work

2.1 Text-Based Person Search

In recent years, the task of text-based person search has gained significant
attention in the computer vision community. Li et al., [11] proposed a gated
neural attention-based recurrent neural network (GNA-RNN) for learning the
affinity between text descriptions and images, along with providing a benchmark
dataset CUHK-PEDES for model evaluation. Zhang et al., [30] proposed cross-
modal projection matching and classification (CMPM+CMPC) loss, for learning
deep discriminative image-text global embeddings. However, these methods
primarily focus on global representations of input data and are thus not capable
of capturing distinctive human part details, leading to limited performance in
the text-based person search.

To address the above problem, a line of studies focuses on extracting fine-
grained representations. One of the prominent examples of exploiting fine-grained
information is to cut human images horizontally and use them as human parts [2,
4, 5, 16, 22, 23]. Chen et al., [2] extracts image part embeddings through equi-
horizontal cropping of the entire image and aligns additional network to transform
the textual global into corresponding parts. However, these heuristic part features
inevitably include no-informative information, such as background elements. To
avoid the above limitations, Suo et al., [22] proposed the simple and robust
correlation filtering method to extract foreground features on the heuristic part
features. Yet, the heuristically divided part features fundamentally fall short of
capturing the complex human parts, underscoring a critical limitation in their
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expressive capability. To move beyond such heuristic part structures, Shao et
al., [2] proposes a learning-based approach for part feature extraction. However,
this method struggles to extract distinctive part embeddings due to the extraction
of redundant part information, which lacks sufficient disentanglement. To extract
exquisite human parts, several studies tried to utilize useful information (e.g.,
human attributes and human keypoints) via external tools [1, 8, 24]. Wang et
al., [24] introduced an auxiliary attribute segmentation to align the visual part
features with the textual attributes parsed from text description. Jing et al., [8]
proposed a new multi-granularity attention network to learn the part feature
alignment between visual and textual with human pose estimation. However,
these approaches have inevitable limitations of high computational cost and
dependence on the performance of external tools for local feature extraction.

Most recent work, Jiang et al., [7] utilizes pre-trained CLIP [18] model,
capitalizing on the rich knowledge of models trained on extensive data for text-
to-image matching, to excel in text-based person search. Yet, this methods
primarily focus on global features, not specifically designed for extracting human
part features. Not only do we leverage pre-trained knowledge, but we transcend
heuristic human parts methods to extract sophisticated human parts without
external tools or part-level supervision.

2.2 Slot Attention

Slot attention [15] is a recently proposed attention mechanism for object-centric
learning, a problem focusing on discovering constituent visual entities within an
image. The unique property of slot attention is that it can represent input images
as a set of slots, where the slots are representations corresponding to individual
visual entities, without any object-level supervision during training. Within slot
attention, slots iteratively compete for aggregating input data, ensuring distinct
representations focusing on individual visual entities. By incorporating slot
attention, the proposed framework facilitates the unsupervised identification of a
structure underlying image and text queries, enabling the model to discern and
represent individual human parts without explicit supervision. This capability
is particularly valuable in person search datasets, where recognizing subtle
differences and understanding the correspondence of human parts across different
modalities are crucial.

3 Proposed Method

The following subsection offers details of global and part embeddings extraction
for each modality with its backbone (Sec 3.1). Subsequently, we present our
novel framework, PLOT, which includes the part discovery module (Sec. 3.2) and
similarity aggregation between part embeddings (Sec. 3.3), concluding with a
discussion on the learning objective designed to optimize our proposed framework
(Sec. 3.4) and inference of our framework (Sec. 3.5).
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3.1 Global and Part Embeddings
In our framework, a single input data is described by two different types of
representations: a global embedding and multiple part embeddings. The global
embedding is used to represent the input data holistically, while each part
embedding describes the appearance of distinctive human parts (e.g., arm, leg,
torso, etc.). We below provide details of global and part embeddings computation
for visual and textual modalities. Following the previous work [7], a pre-trained
CLIP [18] is used as the backbone networks for the visual and textual modalities.
Visual Modality: We utilize the vision transformer (ViT) from the CLIP-
B/16 [18] architecture as a visual backbone network. Initially, an input image of
a person is split into 𝑁 distinct, non-overlapping patches, which are subsequently
transformed into patch tokens through linear projection. The patch tokens and
an extra [cls] token are then fed into the visual backbone network. The token
sequence is processed throughout multiple self-attention blocks, and the [cls]
token of the last block is used as a global embedding gV ∈ R𝐷. To obtain part
embeddings PV ∈ R𝐾×𝐷, remaining patch tokens of last block xV ∈ R𝑁×𝐷 is
passed to the part discovery module. The part discovery module aggregates the
patch features describing coherent human parts into the same part embedding.
We provide more detailed information about the part discovery module in Sec. 3.2.
Textual Modality: For the textual backbone network, we utilize a transformer
architecture from the CLIP-Xformer [18] text encoder. This encoder operates
on text input transformed into byte pair encoding (BPE) sequences. Initially,
the text query undergoes tokenization via BPE, followed by the enclosing with
[SOS] and [EOS] tokens. The resulting sequence of tokens is then inputted into
the textual backbone network. Here, the [EOS] token from the final block serves
as the global embedding, denoted as gT ∈ R𝐷 . Analogous to the approach for the
visual modality, we process the remainder of the text tokens, xT ∈ R𝐿×𝐷, into
part embeddings, PT ∈ R𝐾×𝐷, utilizing the part discovery module.

3.2 Part Discovery Module
For extracting part embeddings in each modality, part discovery module ag-
gregates patch tokens xV and text tokens xT into the visual part embeddings
PV and textual part embeddings PT , respectively. It is worth noting that the
part discovery module for each modality has identical model architecture and
functions equivalently. Therefore, we will only explain the part discovery module
on the visual modality for brevity.

Part discovery module consists of initial part slots S0 ∈ R𝐾×𝐷 and 𝑇 multiple
iteration of the part slot attention block (PSA block). To extract part embeddings,
we first initialize a set of learnable embeddings part slots S0 ∈ R𝐾×𝐷, where
𝐾 indicates the number of part slots. Then, through a series of 𝑇 iterations of
our PSA block, the initial S0 evolves into refined S𝑇 , where each slot captures
distinct parts within input data. The refined part slots S𝑇 are used as visual part
embeddings PV . The part discovery module can be formulated as follows:

PV := S𝑇 ,where S𝑡 = PSA_BlockV (xV ; S𝑡−1). (1)
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The PSA block first transforms the inputs S𝑡−1 and xV with layer normaliza-
tion and linear projection layers 𝑞(·), 𝑘 (·) and 𝑣(·) to obtain embeddings of 𝐷ℎ
dimension. Then the attention map 𝐴 ∈ R𝑁×𝐾 between S𝑡−1 and xV is computed
by

𝐴𝑛,𝑘 =
𝑒𝑀𝑛,𝑘∑𝐾
𝑖=1 𝑒

𝑀𝑛,𝑖

, where 𝑀 =
𝑘 (xV)𝑞(S𝑡−1)⊤

√
𝐷ℎ

. (2)

The attention map is obtained through normalization across part slots; this
normalization encourages competition among themselves to bind distinct sets
of patch tokens to each slot. We update part slots with weighted mean of patch
tokens obtained by attention map 𝐴𝑛,𝑘 and then feed it to a gated recurrent unit
(GRU) using S𝑡−1 as hidden state as follows:

𝐴𝑛,𝑘 =
𝐴𝑛,𝑘∑𝑁
𝑖=1 𝐴𝑖,𝑘

, S̄𝑡 = GRU
(
S𝑡−1, 𝐴⊤𝑣(xV)

)
. (3)

Then, we obtain 𝑡-th part slot by feeding S̄𝑡−1 into a multi-layer perceptron
(MLP) with layer normalization, ReLU activation, and residual connection:

S𝑡 = PSA_BlockV (xV ; S𝑡−1) = MLP(S̄𝑡−1) + S̄𝑡−1. (4)

Finally, we can obtain the visual part embeddings PV = {pV
𝑘
}𝐾
𝑘=1 which is the

output of 𝑇-th iteration of PSA block: PV = S𝑇V ∈ R𝐾×𝐷.
Part Correspondence through Slot Sharing: Additionally, we share the
learnable part slots S0 between two part discovery modules to establish correspon-
dences between part embeddings extracted from each modality, considering that
part embeddings extracted from the same part slot are corresponding part across
modalities, thereby contributing to a clearer comparison between modalities.

3.3 Measuring Similarity between Embeddings

In the context of training and applying our retrieval model, selecting an ap-
propriate similarity function between embeddings is crucial. The challenge lies
in dealing with two distinct types of embeddings: global embeddings and part
embeddings. For global embeddings, cosine similarity offers a straightforward
and effective means of measuring similarity.

However, the situation becomes more complex when considering part embed-
dings. A direct method for addressing this complexity involves calculating the
average cosine similarity across all pairs of part embeddings. This approach, while
straightforward, has its drawbacks, primarily because it treats all part-wise simi-
larities as equally significant. In reality, the relevance of specific part embeddings
to the actual similarity between data instances can significantly vary, influenced
by the context of a text query. For instance, if a text query focuses exclusively
on particular features of a human figure, the similarity contributions from other
unrelated part embeddings should be less relevant. This challenge highlights the
necessity for an approach that can dynamically assess and prioritize the relevance
of part embeddings based on the context provided by the query.
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To address this challenge, we introduce text-based dynamic part attention
(TDPA) to aggregate the similarities between part embeddings. Firstly, textual
global embedding gT is transformed to the TDPA a ∈ R𝐾 , using MLP and a soft-
max function. Using TDPA, the aggregated similarity between part embeddings
are computed as follows:

a = 𝜎
(
MLP(gT)

)
∈ R𝐾 , (5)

𝑐agg (PV ,PT ; gT) :=
𝐾∑︁
𝑘=1

a𝑘 · 𝑐(pV
𝑘
, pT
𝑘
), (6)

where 𝑐(·, ·) denotes cosine similarity between two embeddings, a𝑘 is the 𝑘-th
value of a, and 𝜎(·) is a softmax function. If given textual global embedding
gT , TDPA is computed by MLP which is learned in an end-to-end manner by
minimizing our partNCE loss, as will be introduced in Sec 3.4. This dynamic
attention enables us to adaptively assign importance to each part embedding,
which reduces the impact of non-informative part embedding and promotes a
more informative similarity measurement that reflects the significant semantic
similarity of each text query.

3.4 Learning Objective

Our model is trained through the establishment of cross-modal alignments,
considering both global and part levels. The alignment at the global-level is
accomplished by aligning global embeddings gV and gT that capture the com-
prehensive information of each modality. For part-level alignment, we leverage
part embeddings PV and PT that have locally exclusive features within each
modality due to the slot attention. Furthermore, by dynamically adjusting weights
of specific part slots based on the text global embedding gT , we facilitate the
learning of more informative alignments.
Global Alignment Loss: To align global embeddings gV and gT extracted from
each modality backbone, we first define a batch of global embeddings Bglobal =
{(gV

𝑖
, gT
𝑖
)}𝐵
𝑖=1, where 𝐵 is batch size. Then we adopt the InfoNCE loss [17]

which is a contrastive learning objective that maximizes the similarity between
embeddings of positive pairs while minimizing the similarity between negative
pairs in the batch. Consequently, our globalNCE loss with cosine similarity
function 𝑐(·, ·) is formulated as follows:

LNCE = −
𝐵∑︁
𝑖=1

©«log 𝑒𝑐 (g
V
𝑖
,gT

𝑖
)/𝜏∑𝐵

𝑗=1 𝑒
𝑐 (gV

𝑖
,gT

𝑗
)/𝜏

+ log 𝑒𝑐 (g
V
𝑖
,gT

𝑖
)/𝜏∑𝐵

𝑗=1 𝑒
𝑐 (gV

𝑗
,gT

𝑖
)/𝜏

ª®¬ , (7)

where the 𝜏 is temperature term. Additionally, we employ an identity classification
loss LID to ensure that the embeddings extracted from the same identity become
similar. The LID is denoted by

LID = −
𝐵∑︁
𝑖=1

(
𝒚𝑖 log𝜎(gV

𝑖 WID) + 𝒚𝑖 log𝜎(gT
𝑖 WID)

)
, (8)
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where 𝒚𝑖 ∈ R𝐶 is the identity ground truth of corresponding global embedding g𝑖
represented by a one-hot vector and 𝐶 is the number of identities, WID ∈ R𝐷×𝐶

is a classifier shared between the two modalities. For cross-modal alignments, the
commonly used CMPM loss [7, 30] is additionally adopted. Finally, we describe
global alignment loss as below:

LGlobal = LNCE + LID + LCMPM. (9)

Part Alignment Loss: Similar to the alignment of global embeddings, we first
define a batch of part embeddings Bpart = {(PV

𝑖 ,P
T
𝑖 )}𝐵𝑖=1 with batch size 𝐵, and

we adopt the InfoNCE loss to align part embeddings extracted from two modalities.
For learning text query-based informative alignment of part embeddings between
modalities, we employ text query-based similarity aggregation function 𝑐agg in
Eq. 6 to compute InfoNCE loss. We termed this InfoNCE with 𝑐agg as PartNCE
loss, and it is formulated by

LPartNCE = −
𝐵∑︁
𝑖=1

©«log 𝑒𝑐agg (PV
𝑖 ,P

T
𝑖 ; gT

𝑖
)/𝜏∑𝐵

𝑗=1 𝑒
𝑐agg (PV

𝑖 ,P
T
𝑗 ; gT

𝑗
)/𝜏

+ log 𝑒𝑐agg (PV
𝑖 ,P

T
𝑖 ; gT

𝑖
)/𝜏∑𝐵

𝑗=1 𝑒
𝑐agg (PV

𝑗 ,P
T
𝑖 ; gT

𝑖
)/𝜏

ª®®¬ , (10)

Similar to global alignment loss, we adopt the identity loss that shares classifier
weights between the two modalities for part alignment; however, the difference is
that the part embeddings are concatenated along the embedding dimension. The
identity loss for part alignment is formulated by

LPartID = −
𝐵∑︁
𝑖=1

(
𝒚𝑖 log𝜎( [PV

𝑖 ]WPartID) + 𝒚𝑖 log𝜎( [PT
𝑖 ]WPartID)

)
, (11)

where [P] ∈ R𝐾𝐷 is the concatenation of part embeddings P along the embedding
dimension, and WPartID ∈ R𝐾𝐷×𝐶 is a classifier shared between both modalities.
Finally, the part alignment loss is computed by

LPart = LPartNCE + LPartID. (12)

Cross-Modal Masked Language Model (CMLM)
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Fig. 2: Illustration of CMLM.

Cross-Modal Masked Language Mod-
eling Loss: Following the practices of em-
ploying Transformer-based backbones in
existing methods [7,21], we adopt an auxil-
iary loss, the cross-modal masked language
modeling (CMLM) loss, to facilitate the
learning of interactions between modali-
ties. Similar to BERT [3], given a text description, we randomly select text
tokens with a 15% probability and replace them with the learnable [MASK] token.
The masked text description is then processed through the text backbone to
obtain the masked textual tokens. After obtaining the masked textual tokens,
we concatenate them with the visual tokens extracted via the image backbone.
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The concatenated tokens are then fed into a transformer to acquire cross-modal
fused tokens. Among the fused tokens, those corresponding to the indices of
textual tokens are denoted as F composed as {f1, · · · f𝐿}, where a fused token
f ∈ R1×𝐷 and 𝐿 indicates the max length of input text descriptions. Ultimately,
these tokens are fed into a CMLM classifier WCMLM to predict the probability
of vocabulary IDs. The overall procedure of CMLM is illustrated in Fig. 2 and
through this procedure we compute the LCMLM loss as follows:

LCMLM = − 1
𝐿

𝐿∑︁
𝑙=1

𝒚𝑙 log
(
𝜎(f𝑙WCMLM)

)
, (13)

where WCMLM ∈ R𝐷×𝑉 and 𝒚𝑙 ∈ R𝑉 is the vocabulary ground truth of 𝑙-th text
tokens, represented by a one-hot vector and 𝑉 is the size of vocabulary. Finally,
our overall objective function for training is denoted by

L = LGlobal + LPart + LCMLM. (14)

3.5 Inference

During testing, the global and part embeddings of each modality input are fully
exploited to calculate the similarity between the image-text pair. In particular, the
similarities between visual part embeddings and their corresponding textual part
embeddings are linearly combined with the attention weights a to aggregate them.
The image-text pair similarity is defined as the sum of the similarity between
the global embeddings of the image-text pair and the similarity between the
part embeddings of it, which can be computed by 𝑐(gV , gT) + 𝑐agg (PV ,PT ; gT).
Finally, given the text query, the images in the gallery are ranked according to
similarity scores between the images and the text for inference.

4 Experiments

In this section, we provide a detailed account of our experimental setup (Sec. 4.1),
evaluate our method, and compare it with state of the arts on three benchmark
datasets for text-based person search (Sec. 4.2). Furthermore, we qualitatively
present retrieval results and analyze the effectiveness of the part discovery module
and TDPA with visualization results (Sec. 4.3). We also conduct ablation studies
on the losses employed in model training, the methodologies of part discovery,
and the strategies for part similarity aggregation (Sec. 4.4).

4.1 Experimental Setup

Datasets: On three benchmark datasets, CUHK-PEDES [11], ICFG-PEDES [4],
and RSTPReid [32], we evaluate and compare the performance of our method
against previous methods. In CUHK-PEDES collected from five existing person
re-identification datasets [6,12,13,28,31], it contains 40,206 images corresponding
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to 13,003 individual IDs, with each image being approximately matched with two
annotated text descriptions. We follow the data split of [11] with 34,054 images
from 11,003 person IDs and 68,126 text descriptions for training, 3,078 images
from 1,000 IDs and 6,158 text descriptions for validation, and 3,074 images from
1,000 IDs and 6,156 text descriptions for testing. The remaining two datasets are
collected from MSMT17 [26]. ICFG-PEDES consists of 54,522 image-text pairs
from 4,102 individual IDs, which are split into 34,674 and 19,848 for training and
testing, respectively. RSTPReid contains 20,505 images of 4,101 individual IDs,
with each ID having 5 images and each image associated with the corresponding
two annotated text descriptions. We follow the data split of [32] with 18,505
images from 3,701 IDs and 37,010 text descriptions for training, 1,000 images
from 200 IDs and 2,000 text descriptions for validation, and 1,000 images from
200 IDs and 2,000 text descriptions for testing, respectively.
Evaluation Protocol: We employ the standard metric of rank at K (R@K=1,5,
10) for all retrieval experiments. Specifically, given a query text, images are sorted
based on their similarity to the query text. The search is considered correct if at
least one relevant image appears in the top K positions of the ranking.
Network Architecture: We adopt the pre-trained CLIP models from Ope-
nAI [18] for both image and text encoders, where the size of the image encoder is
ViT-B/16. The input images are resized to 384×128. Random horizontal flipping,
random cropping, and random erasing are applied for the data augmentation in
training time. The maximum text length is set to 77.
Network Optimization: Our model is trained using the Adam optimizer for
60 epochs with a batch size of 128 for all experiments. For the CLIP encoders,
the initial learning rate is set to 5e−6, using a cosine schedule with the warm-up
strategy at the first five epochs; we use a high learning rate for the remaining
parameters by scaling 20 times.
Hyperparameters: We set the number of part slots to 8. The number of
iterations in the part slot attention block is set to 5. The temperature parameter
𝜏 is set to 0.015.

4.2 Quantitative Results

We compare our method with previous text-based person search methods on
CUHK-PEDES [11], ICFG-PEDES [4], and RSTPReid [32]. The performance
comparison and the backbones for each modality employed by each method
are shown in Table 1. Specifically, our method achieves an outstanding R@1
metric of 75.28%, 65.76%, and 61.80% on the CUHK-PEDES, ICFG-PEDES,
and RSTPReid datasets, respectively, outperforming previous methods utilizing
different backbones from ours. Moreover, our method improves the previous
state of the art, IRRA [7], on R@1 by a large margin as 1.9%p, 1.7%p, and
1.6%p, respectively. Since IRRA only focuses on aligning the global embeddings
of each modality, it is hard to capture the fine-grained differences. In contrast,
our method not only takes account of the global embeddings but also aims to
discover and align discriminative part embeddings from each modality; it allows
the model to effectively find the target person.
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Table 1: Performance of text-based person search methods on the three datasets. Bold
and underline denote the best and the second best.

Backbone CUHK-PEDES ICFG-PEDES RSTPReid

Methods Image Text R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

GNA-RNN [11] RN50 LSTM 19.05 - 53.64 - - - - - -
CMPM/C [30] RN50 LSTM 49.37 71.69 79.27 43.51 65.44 74.26 - - -
PMA [8] RN50 BERT 53.81 73.54 81.23 - - - - - -
TIMAM [19] RN101 BERT 54.51 77.56 84.78 - - - - - -
SCAN [9] RN50 BERT 55.86 75.97 83.69 50.05 69.65 77.21 - - -
ViTAA [24] RN50 LSTM 55.97 75.84 83.52 50.98 68.79 75.78 - - -
NAFS [5] RN50 BERT 59.94 79.86 86.70 - - - - - -
DSSL [32] RN50 BERT 59.98 80.41 87.56 - - - 32.43 55.08 63.19
MGEL [23] RN50 LSTM 60.27 80.01 86.74 - - - - - -
SSAN [4] RN50 LSTM 61.37 80.15 86.73 54.23 72.63 79.53 43.50 67.80 77.15
LapsCore [27] RN50 BERT 63.40 - 87.80 - - - - - -
SRCF [22] RN50 BERT 64.04 82.99 88.81 57.18 75.01 81.49 - - -
LGUR [20] RN50 BERT 64.21 81.94 87.93 57.42 74.97 81.45 - - -
TIPCB [2] RN50 BERT 64.26 83.19 89.10 - - - - - -
CAIBC [25] RN50 BERT 64.43 82.87 88.37 - - - 47.35 69.55 79.00
SAF [10] ViT-B/16 BERT 64.13 82.62 88.40 - - - - - -
IVT [21] ViT-B/16 BERT 65.59 83.11 89.21 56.04 73.60 80.22 46.70 70.00 78.80
CFine [29] CLIP-ViT-B/16 BERT 69.57 85.93 91.15 60.83 75.55 82.42 50.55 72.50 81.60
IRRA [7] CLIP-ViT-B/16 CLIP-Xformer 73.38 89.93 93.71 63.46 80.24 85.82 60.20 81.30 88.20
Ours CLIP-ViT-B/16 CLIP-Xformer 75.28 90.42 94.12 65.76 81.39 86.73 61.80 82.85 89.45

4.3 Qualitative Results

Retrieval Results: Top-5 retrieval results of our method on the CUHK-PEDES
dataset are illustrated in Fig. 3. Above all, it shows the overall satisfactory
retrieval results. In particular, we can observe our model retrieves targets well,
even with distinctive human parts that are small or located in various positions.
For instance, the small distinctive human parts like “ponytails” and “high skirts” in
Fig. 3(a), “black shoes” in Fig. 3(b), and “blue plaid shorts” in Fig. 3(c), as well as
human parts that could appear in various viewpoints such as “yellow shoulder bags”
in Fig. 3(a), “floaty dresses” in Fig. 3(b), and “red backpacks" in Fig. 3(d). The
CUHK-PEDES dataset typically contains three target images on average in the
search space, thereby most of the false matches in the figure are observed by a
lack of additional targets. Despite the false matching due to the limitation of the
dataset, the retrieval results are reasonable in that the retrieved false matching
contains distinctive human parts described by the query description.
Visualization of Attention Map 𝐴𝑘 in PSABlock: To demonstrate the
effectiveness of our part discovery module, we visualize the attention map 𝐴𝑘 in
𝑇-th iteration of the PSA block for both visual and textual modalities (in Eq. (2)).
The visualization results are illustrated in Fig. 4. It not only demonstrates that
the part embeddings extracted by our part discovery module capture distinctive
human parts but also shows that the part embeddings extracted from the same
part slot attend to the semantically identical human parts regardless of modality.
For example, the 1st part slot typically focuses on bottom clothes, the 4th on
footwear, the 5th on objects being held, the 7th on top clothes, and the 8th on
the person’s head. Furthermore, in Fig. 4 compared (a) and (b) of visual modality,
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Query: the woman is wearing a white cardigan 
over a long floaty dress and black shoes. she is 
carrying a back carry-on bag.

Query: a girl with a ponytail wearing a red top 
with blue denim thigh high skirt and carrying a 
yellow shoulder bag looking at a phone.

Query: person wearing a dark brown sweater, 
denim cropped pants that go just below the 
knees, and white sneakers. they are wearing a 
red backpack over both shoulders.

Query: the little boy is wearing his hat 
backwards. he has on a blue, short sleeved shirt 
and grey plaid shorts.

(a) (b)

(c) (d)
Fig. 3: Top-5 retrieval results of our method on the CUHK-PEDES dataset. Images
are sorted from left to right according to their ranks below each text query. Green and
red boxes indicate true and false matches, respectively.

our part discovery module is capable of capturing the distinctive human parts,
while it is robust against pose variations and viewpoint changes.
Visualization of TDPA: We visualize TDPA weights a in Eq. (6) to demon-
strate the effectiveness of similarity aggregation between part embeddings of two
modalities with TDPA. The visualization results are presented in the bottom
left in Fig. 4(a, b), respectively. Comparing examples (a) and (b), the 5th part
slot typically focuses on human parts associated with held objects, like bags,
leading to a predicted lower TDPA weight for this part slot in (b) due to the
absence of such distinctive information in its query description. However, the
presence of the “hat" in the query description of (b) leads to having a high TDPA
weight for the 8th part slot that typically focuses on the human head part. In
contrast, since this related human head part information is not provided in the
query description of (a), the TDPA weight for the 8th part slot in (a) is predicted
to be a low value. These observations highlight the capability of TDPA, which
adaptively improves part-based retrieval depending on the contents of the text
query.

4.4 Ablation Studies

In our ablation studies conducted on the CUHK-PEDES datasets, we evaluate
the effectiveness of proposed components and their combinations in improving
text-based person search performance. In Table 2, we compare several config-
urations: The baseline method employs only global embeddings g trained by
InfoNCE (LNCE) loss. When incorporating the cross-modal masked language
modeling (LCMLM), there is a slight improvement across all metrics. The addition
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Text: the woman is wearing a white cardigan over a long floaty dress and black 
shoes. she is carrying a back carry-on bag.

Text: the little boy is wearing his hat backwards. he has on a blue, short sleeved 
shirt and grey plaid shorts.

TDPA 
weights

TDPA 
weights

(a)

(b)

Part 1 Part 2 Part 3 Part 4 Part 5 Part 6 Part 7 Part 8Image

Part 1 Part 2 Part 3 Part 4 Part 5 Part 6 Part 7 Part 8Image

Fig. 4: Visualization of each modality’s attention map 𝐴𝑘 in 𝑇-th iteration of PSA
block and TDPA weights a on CUHK-PEDES dataset.

of part embeddings P that without LPartID also shows significant enhancement in
R@1 and R@5, where we observe an increase of 3.46%p and 2.64%p, respectively.
Notably, the full configuration achieves the best performance with LPartID, under-
scoring the importance of part embeddings for accurate text-based person search.
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Table 2: Ablation studies on the CUHK-PEDES datasets.

Loss CUHK-PEDES
Method LNCE LID LCMLM LPartNCE LPartID R@1 R@5 R@10

Global Only ✓ ✗ ✗ ✗ ✗ 71.39 (+0.0) 87.65 (+0.0) 92.74 (+0.0)
✓ ✓ ✗ ✗ ✗ 71.83 (+0.44) 88.06 (+0.41) 92.58 (-0.16)

+ CMLM ✓ ✓ ✓ ✗ ✗ 72.65 (+1.26) 88.58 (+0.93) 92.93 (+0.19)

+ Part Embeddings ✓ ✓ ✓ ✓ ✗ 74.85 (+3.46) 90.29 (+2.64) 94.10 (+1.36)
✓ ✓ ✓ ✓ ✓ 75.28 (+3.89) 90.42 (+2.77) 94.12 (+1.38)

This suggests that our part embeddings significantly contribute to discerning
fine-grained details critical for text-based person search.

Table 3: Ablation study of different part
discovery methods on the CUHK-PEDES.

Methods R@1 R@5 R@10
Ours + TIPCB [2] 73.23 89.10 94.04
Ours + PAT [14] 72.76 89.23 93.42
Ours 75.28 90.42 94.12

Ablation Study on Part Discovery
Methods: To validate the effectiveness
of our proposed part discovery module,
we conduct experiments by replacing our
part discovery module with other meth-
ods such as TIPCB [2] and PAT [14].
TIPCB is a simple yet effective heuristic
part discovery method, which extracts
image part embeddings through equi-horizontal cropping of the entire image and
transforms the global embedding of the text modality into corresponding parts
by using additional learnable MLPs for each image part. PAT performs part
discovery with a querying transformer approach by leveraging learnable queries
and conventional cross-attention. A key difference of our method from PAT is
that ours explicitly encourages the discovered parts to be spatially separated
since our part slots compete with each other to aggregate input data. In contrast,
parts found by PAT, based on conventional cross-attention, often over-capture
salient regions and are likely to miss fine details. To demonstrate this limitation,
we show the visualization of part attentions with PAT applied to ours in the
supplementary materials. As indicated in Table 3, our part discovery method
outperforms these heuristic and conventional cross-attention based part discovery
methods across all metrics, with the most significant difference observed in the
R@1 metric, which requires a precise discernment of human parts.

5 Conclusion

We proposed a novel framework that extracts distinctive human parts correspond-
ing across visual and textual modalities through part discovery module without
part-level supervision. The introduced TDPA further refines the retrieval process
by adjusting the importance of each part slot based on the contents of the text
query, leading to more precise and relevant retrieval.
Limitation: Since slots learn to occupy the entire image and text, some of them
may indicate irrelevant part of input. TDPA addresses this issue to some extent,
but a more explicit solution would further enhance our system.
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