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Abstract. Deep learning-based methods have shown remarkable perfor-
mance in single JPEG artifacts removal task. However, existing meth-
ods tend to degrade on double JPEG images, which are prevalent in
real-world scenarios. To address this issue, we propose Offset-Aware
Partition Transformer for double JPEG artifacts removal, termed as
OAPT. We conduct an analysis of double JPEG compression that re-
sults in up to four patterns within each 8 × 8 block and design our
model to cluster the similar patterns to remedy the difficulty of restora-
tion. Our OAPT consists of two components: compression offset predic-
tor and image reconstructor. Specifically, the predictor estimates pixel
offsets between the first and second compression, which are then uti-
lized to divide different patterns. The reconstructor is mainly based on
several Hybrid Partition Attention Blocks (HPAB), combining vanilla
window-based self-attention and sparse attention for clustered pattern
features. Extensive experiments demonstrate that OAPT outperforms
the state-of-the-art method by more than 0.16dB in double JPEG im-
age restoration task. Moreover, without increasing any computation cost,
the pattern clustering module in HPAB can serve as a plugin to enhance
other transformer-based image restoration methods. The code will be
available at https://github.com/QMoQ/OAPT.git.

Keywords: JPEG artifacts removal · Image restoration · Transformer

1 Introduction

JPEG [53] is the most widely-used algorithm for image compression [15, 30, 46,
48]. Renowned for its simplicity and efficiency, JPEG is extensively applied in
bandwidth-constrained scenarios. It splits images into 8 × 8 blocks, then ap-
plies discrete cosine transform (DCT [28]) and quantization operations to each
block, resulting in lossy compression. The degree of compression can be ad-
justed by the JPEG Quality Factor (QF), ranging from 0 to 100, where smaller
QFs indicate more aggressive compression [15,48, 53]. While heavy compression
can reduce storage space, it comes at the cost of compromised image quality,
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Fig. 1: The demonstration of double compression.

leading to noticeable annoying blocky artifacts [24, 30]. The removal of single
JPEG artifacts has attracted attention [5, 33, 68, 69, 71] due to its practical us-
age. Over the last decade, numerous convolutional neural network (CNN) based
methods [14, 16, 26, 64, 65, 69, 70] have been proposed to address the ill-posed
image restoration tasks, achieving notable success in academia. In recent years,
transformer-based methods [32,33,63] have surpassed CNN-based approaches by
leveraging the promising self-attention capability [51].

Compared with single compression, double JPEG compression is more com-
mon in real-world scenarios, as images on the internet always undergo multiple
compression cycles [13, 26, 37, 55]. For example, as shown in Fig. 1(a), a newly-
taken photo, which has already gone through the first-time compression for being
stored locally in the disk of cameras, will be conducted the second-time com-
pression after image editing, like cropping, or uploading to the cloud server
of social media, making it a double-compressed image. With the recurrence of
the process mentioned above, multi-compressed images are generated naturally.
However, most previous methods are trained on single compression data and
only account for the range of QFs, encountering a substantial performance de-
cline in double JPEG image restoration, as emphasized in [26]. FBCNN [26], as
a pioneering effort for double JPEG artifacts removal, estimates dominant QF
in double compression or gets fine-tuned on synthesized double JPEG images.
Though being effective in both single and double compression artifacts reduction,
it is not explicitly designed for the characteristics of double JPEG compression.
By analyzing the occurrence of double JPEG images, we found that besides
various combination of QFs, there is obvious compression shift in double JPEG
images. With the pixel-level offsets, non-aligned compression results in no more
than four kinds of patterns within each 8×8 block from the second compression,
as illustrated in Fig. 1(b). It brings distinct borders and varying pattern charac-
teristics in 8×8 blocks, as shown in Fig. 1(c). We observed that the non-aligned
compression image restoration is a much tougher task by testing DnCNN [65] in
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various double compression scenarios. A noticeable decrease of PSNR appeared
in non-aligned compression when compared to aligned compression.

To address the non-aligned compressed image restoration, we attempt to ob-
tain the compression offsets and aggregate the same patterns together for better
restoration. Drawing inspiration from the partition operation in Swin Trans-
former [33, 36], a novel partition strategy is proposed for the same positional
patterns in 8 × 8 blocks. Based on it, we design an Offset-Aware Partition
Transformer, namely OAPT. OAPT consists of two main components: a CNN-
based compression offset predictor and a transformer-based image reconstructor.
In detail, the compression offset predictor estimates pixel offsets between two
JPEG compressions, allowing for effective clustering of patterns that exhibit
similar compression effects at the same position in each 8 × 8 block across the
entire image. The image reconstructor, composed of Hybrid Partition Attention
Blocks (HPAB), incorporates window-based self-attention and sparse attention
for clustered pattern features. The alternating attention and pattern cluster-
ing mechanism can enhance the robustness of double compression artifacts re-
moval. Experiments show OAPT achieves the best performance and relatively
has less parameters than many methods. Moreover, our pattern clustering mod-
ule in HPAB can be designed as a plugin, improving the performance of other
transformer-based methods without introducing additional parameters.

To conclude, the contribution of our work includes:

– We design a novel offset-aware partition transformer (OAPT). OAPT esti-
mates the pixel-level offsets in double compression and uses them to adap-
tively provide hybrid attention for both dense features and clustered features
by HPABs. It reduces difficulty in non-aligned compression artifacts removal.

– The pattern clustering module in HPAB can be used as a plugin on the
transformer-based methods, which brings improvement to the double com-
pression image restoration without extra computation cost and parameters.

– Experiments show that our OAPT obtains great performance compared with
previous CNN-based and transformer-based methods. It outperforms the
state-of-the-art method [26] by 0.16dB in double JPEG image restoration.

2 Related Work

Single JPEG Image Restoration Deep learning-based methods for JPEG
image restoration have witnessed significant advancements over the last decade.
ARCNN [14] is the first to introduce a deep learning network for restoring JPEG
images. [34,65,70] achieve improvement by incorporating residual learning [23]
and batch normalization [25]. Local self-similarity and non-local similarity are
proved to be significant for image restoration and used for enhancement in [39,
42, 69]. Meanwhile, [10, 16, 19, 35, 64, 66] explore various other priors to improve
performance of image restoration. Moreover, dual-domain processing [22,27,68,
71] is adopted to extract diverse types of information.

The efficacy of the self-attention mechanism [51] and its ability to han-
dle long-range dependencies have propelled transformer-based image restoration
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methods [7, 8, 11, 32, 33, 56, 61, 63] surpassing previous CNN-based approaches.
IPT [7] develops a pretrained model utilizing the powerful representation ability
of transformer for low-level computer vision tasks. Drawing on insights from [36],
SwinIR [33] demonstrates promising performance across various image restora-
tion tasks, including JPEG artifacts removal. GRL [32] presents an effective
architecture by modeling image hierarchies at global, regional, and local scales.
Additionally, ART [63], coupled with a sparse attention module, can capture a
broader receptive field, thereby outperforming existing methods across multiple
image restoration tasks.

Double JPEG Artifacts Removal The realm of double JPEG compression
has long captivated researchers, particularly in the field of detecting and local-
izing image forgery. Research studies [9,18] have illuminated substantial distinc-
tions between single and double JPEG compression. In [3, 4, 9, 37, 54], double
JPEG compression was categorized into two classes, aligned and non-aligned
double compression, for in-depth researching. Learning-based methods [31, 43,
45, 52, 62] leverage information from both spatial and DCT domains to discern
forged regions. In [2, 13, 20, 44, 55, 59], due to the difference in quantization and
compression, the initial compression’s quantization information is exploited to
distinguish areas subjected to single and double JPEG compression.

Despite the apparent progress in double compression detection, methods
for restoring double-compressed images remain scarce. FBCNN [26] stands out
as the algorithm dedicated to image restoration that encompasses non-aligned
double-compressed images. FBCNN offers two strategies to address the problem
of double JPEG image restoration. The first involves rectifying the estimated
Quality Factor (QF) to align with the dominant one. The second strategy en-
tails training the network with double JPEG compression images, utilizing the
QF predictor in an unsupervised manner. However, both approaches do not fully
exploit the characteristics of double compression, especially the different patterns
caused by pixel offsets, shown in Fig. 1(b). It has motivated us to explore a more
practical method for tackling this challenging image restoration task.

3 Method

3.1 Motivation

As highlighted in [26] that existing methods trained solely with single compres-
sion data struggle when applied to double compression image restoration, we per-
formed the experiment using DnCNN [65] which was trained with grayscale dou-
ble JPEG images with various QFs and offsets. We generated two sets of grayscale
images from LIVE1 [49] by the data degradation mentioned in Sec.4.1, which
are aligned double JPEG images with offset=(0, 0) and non-aligned double
JPEG images with offset=(4, 4). We calculate the ∆PSNR between the low-
quality images and their corresponding enhanced images processed by DnCNN
under (QF1, QF2) = (30, 50) and (QF1, QF2) = (50, 30). The results of ∆PSNR
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Fig. 2: The architecture of Offset-Aware Partition Transformer(OAPT). In PC-MSA,
P-cluster represents Pattern clustering and Inv P-cluster stands for the inverse
operation of pattern clustering. (S) means equipping with window shifting operation.

with aligned double compressed images are respectively 2.06 dB and 3.24dB,
while the results of ∆PSNR with non-aligned compressed images are 1.66 dB
and 1.64 dB. Notably, the performance on non-aligned double compressed images
is inferior to that on aligned double compressed images. Learning from that, we
can draw a similar conclusion with [26] that restoration of non-aligned double
JPEG images is more complex and difficult.

In Fig. 1(b), it delineates the shifting offsets in double compression cause
four patterns in each 8× 8 coding unit. The four parts locate in the same 8× 8
block in the second compression, while belonged to 4 different 8 × 8 blocks in
the first compression. So after the second compression, four parts in the same
8 × 8 block are degraded by different kinds of block effects and compression
patterns. It inspired us that the potential simplification of double JPEG im-
age restoration might be individually processing the clustered patches of the
same patterns. Considering the sparse clustered patches will harm the locality
of images, unlike transformer-based models, CNN-based methods which depend
its modeling solely on the relative position are not likely to benefit from it [58].
Meanwhile, transformer-based methods usually perform window partition before
self-attention as a pre-processing to reduce the computation cost [8,32,33], which
is similar to the pattern clustering. So we introduce the Offset-Aware Partition
Transformer, denoted as OAPT. It is designed to estimate compression offsets
and dynamically provide hybrid attention tailored to different patterns.

3.2 Network Architecture

The architecture of OAPT is depicted in Fig. 2. It comprises two main com-
ponents: a ResNet-based compression offset predictor and a transformer-based
image reconstructor. The compression offset predictor is tasked with estimating
the compression shift in both rows and columns, while the reconstructor aims
to restore images using the predicted compression offsets.
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Fig. 3: The demonstration of pattern clustering module.

Compression Offset Predictor As analyzed in Sec.3.1, the shifting manifests
in 8×8 blocks which are uniform and periodic, indicating that the offsets of rows
and columns range from 0 to 7. During image degradation, we randomly remove
the first i rows and j columns in the second compression to simulate non-aligned
compression, with the resulting offsets labeled as (i, j). Detailed information on
synthesizing double compressed images is provided in Sec.4.1.

As depicted in Fig. 2, the compression offset predictor relies on ResNet-
18 [23]. It takes low-quality images as inputs and estimates the offsets of rows
and columns. Differing from the resconstructor, the predictor’s input is only a
44× 44 patch from the top-left corner of the input image where JPEG starts to
split the image into blocks and conducts compression. To minimize the number
of parameters, we replace all convolution layers in residual blocks with depthwise
separable convolution [12] layers, denoting these modified blocks as D-Resblocks.
Additionally, we introduce an extra linear layer, sigmoid activation function, and
round operation to generate an output consisting of two integers between 0 and
7, shown in Eq. (1),

[r̂, ĉ] = Round(Sigmoid([r′, c′])× 7), (1)

where r′ and c′ are the output of the last linear layer, while r̂ and ĉ are the
final predicted offsets of rows and columns. Leveraging a compact CNN network
and the reduced input size, the computation cost of the predictor is substan-
tially lower than that of the reconstructor. We optimize the offset predictor by
minimizing

Loffset = ∥r̂ − r∥1 + ∥ĉ− c∥1, (2)

where r and c are the ground-truth offsets of rows and columns.

Hybrid Partition Attention Blocks based Image Reconstructor Inspired
by the window partition operation in [36], we design a new partition operation
for our hybird attention to match double JPEG image restoration. With the
estimated offsets from the predictor, we can split every 8× 8 block to four parts
and cluster the same positional patterns for the following self-attention. Our
image reconstructor is mainly composed of this new hybrid attention.

In detail, the image reconstructor are based on three parts: one convolution
layer for shallow feature extraction, serials of transformer-based modules for deep
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feature extraction and one convolution layer for high-quality image reconstruc-
tion. The part for deep feature extraction is the core of OAPT, which consists
of Hybrid Partition Attention Blocks (HPAB) and one convolution layer.

The HPAB is a residual block with one convolution layer, four Swin Trans-
former Layers (STL) and two Pattern Clustering-based Swin Transformer Layers
(PC-STL), as illustrated in Fig. 2. The HPAB can provide vanilla window-based
self-attention [36] and sparse attention. The STL proposed in [33] is focused
on the dense attention for local continuous features within every window. The
PC-STL is equipped with a pattern clustering-based multi-head self-attention
(PC-MSA). The pattern clustering module takes the estimated offsets to divide
every 8 × 8 block into four patterns and clusters patterns in the same position
for self-attention respectively, which is shown in Fig. 3. After clustering, the
PC-STL achieves sparse pattern attention and then reverses the clustered pat-
terns to their original positions. Seemingly being similar to the sparse attention
in ART [63], ours decomposes the input feature into 4 relatively sparse patches
according to the offsets for better extracting information in the same patterns,
while the purpose of sparse attention with uniform sampling in ART is to enlarge
the receptive field size. Meanwhile, our module advantages the attention module
of ART in less parameters and computation cost.

The PC-STL is expressed as Eq. (3),

X ′ = PC-MSA(LayerNorm(X), offset) +X,

Y = MLP(LayerNorm(X ′)) +X ′,
(3)

where X stands for the input feature of PC-STL, offset is the estimated offsets
from the predictor and Y is the output of PC-STL. In detail, PC-MSA can be
expressed as below:

[x1, x2, x3, x4] =PC(XLN, offset),

X̂ = invPC(W-MSA([x1, x2, x3, x4]), offset),
(4)

where PC denotes pattern clustering module, xi represents the clustered parts
of the similar pattern after pattern clustering, invPC denotes the inverse op-
eration of pattern clustering and XLN denotes the input feature of PC-MSA.
W-MSA represents the typical window-based multi-head self-attention [51] for
each clustered part separately, which can be also formulated as:

Attention(Q,K, V ) = Softmax(QKT /
√
d+B)V, (5)

where Q, K, V are respectively the query, key, value from the linear projecting
of input xi, B is the learnable relative positional encoding and d denotes the
dimension size of each token.

As the Charbonnier loss [6] is effective in image restoration, we optimize the
reconstructor by minimizing the pixel loss:

Lrec =

√
∥Î − I∥2 + ϵ2, (6)

where ϵ is a constant value of 10−3, Î is the reconstructed image by the recon-
structor, and I is the corresponding ground-truth high-quality image.
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3.3 Pattern Clustering Plugin Module for Transformer based
Methods

The proposed pattern clustering in HPAB is a robust mechanism, capable of
functioning as a plugin module for other transformer-based methods without in-
troducing additional parameters or computational overhead. Transformer-based
networks can easily incorporate the pattern clustering as a pre-processing before
self-attention to enhance non-aligned double compressed image restoration. And
the inverse pattern clustering can also be incorporated as a post-processing for
rearranging the clustered patches to their original position after going through
self-attention. So our pattern clustering plugin module is composed of pattern
clustering operation and inverse pattern clustering operation. We conduct the
experiment of implementing pattern clustering mechanism on HAT-S [8] and
the details are demonstrated in Sec. 4.4. The results show that this cheap plu-
gin module not only contributes improvement to HAT-S, but also expand the
receptive field without extra parameters or computation complexity.

4 Experiments

4.1 Experimental Setup

Datasets and Degradation Methods. For datasets, we use the Y channel
of YCbCr space for grayscale image datasets, and the RGB channels for color
image datasets. Same as [16,26], we train our OAPT network on DIV2K [1] and
Flickr2K [50]. We follow the degradation setting in [26], the degradation model
can synthesize both aligned and non-aligned double JPEG images via

y = JPEG(Shifti,j(JPEG(x,QF1)),QF2). (7)

Among them, x presents the high-quality image, y denotes the double JPEG
compressed image. QF1 and QF2 are quality factors of the first and second
compression, which are both randomly sampled from 5 to 95. The Shift is the
random removal of the first i rows and j columns in the second compression,
where 0 <= i, j <= 7. Especially, we only train a single model to cover all the
range of QFs and the offsets of pixels in double compression.

Training Details. For the offset predictor, the number of D-Resblocks is 8,
and the max channel is 512. For the image reconstructor, we set the HPAB
number, channel number and window size to 6, 180 and 7, respectively. The
size of randomly extracted input image patches is 224 × 224 and the batchsize
is 4. To optimize the parameters, we adopt Adam solver [29] and initialize the
learning rate as 2e−4. We pretrain the offset predictor first and train our OAPT
model with freezing the parameters of the offset predictor on 4 Nvidia V100
GPUs. As the main backbone is similar with SwinIR, we initialized the image
reconstructor of ours with the pretrained model of SwinIR, and fine-tune it on
double compression datasets.
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Table 1: Quantitative comparison (average PSNR/SSIM/PSNR-B) with state-of-the-
art methods on grayscale double JPEG images and computation cost. Best perfor-
mance is noted in Red. (QF1, QF2, i, j) in Type means the combination types of double
compression. QF1 and QF2 are quality factors of the first and the second compression,
i and j denote the pixel-level shifting offset (i, j) between two compressions.

Dataset Type DnCNN [65] RNAN [69] FBCNN [26] HAT-S [8] ART [63] SwinIR [33] OAPT(Ours)

Classic5 [17]

(30, 30, 4, 4) 31.68/0.8603/31.41 31.89/0.8652/31.59 32.12/0.8686/31.89 32.28/0.8707/31.99 32.29/0.8716/31.96 32.26/0.8703/31.95 32.32/0.8718/32.07
(50, 50, 4, 4) 33.22/0.8903/32.90 33.46/0.8943/33.09 33.70/0.8974/33.33 33.85/0.8985/33.44 33.86/0.8990/33.37 33.80/0.8980/33.40 33.87/0.8992/33.51
(30, 50, 4, 4) 32.30/0.8737/32.08 32.51/0.8777/32.25 32.74/0.8810/32.56 32.91/0.8827/32.67 32.93/0.8834/32.69 32.90/0.8830/32.68 33.02/0.8851/32.77
(50, 30, 4, 4) 32.31/0.8731/31.99 32.57/0.8784/32.21 32.81/0.8822/32.38 32.96/0.8835/32.52 33.02/0.8850/32.55 32.95/0.8833/32.46 32.97/0.8840/32.54
(30, 30, 0, 4) 31.83/0.8652/31.55 32.05/0.8703/31.74 32.30/0.8736/31.99 32.46/0.8754/32.13 32.47/0.8764/32.08 32.43/0.8753/32.05 32.50/0.8768/32.18
(50, 50, 0, 4) 33.34/0.8937/33.03 33.57/0.8975/33.22 33.85/0.9007/33.38 33.99/0.9017/33.52 33.98/0.9020/33.43 33.94/0.9014/33.43 34.02/0.9026/33.57
(30, 50, 0, 4) 32.44/0.8776/32.18 32.65/0.8819/32.37 32.93/0.8855/32.64 33.07/0.8870/32.80 33.10/0.8878/32.82 33.06/0.8872/32.81 33.16/0.8889/32.89
(50, 30, 0, 4) 32.44/0.8769/32.10 32.69/0.8821/32.32 32.94/0.8860/32.38 33.11/0.8872/32.61 33.14/0.8883/32.62 33.09/0.8869/32.53 33.11/0.8874/32.61

LIVE1 [49]

(30, 30, 4, 4) 31.58/0.8789/31.30 31.78/0.8836/31.47 31.94/0.8859/31.73 32.05//0.8875/31.79 32.07/0.8885/31.76 32.04/0.8871/31.76 32.10/0.8889/31.88
(50, 50, 4, 4) 33.28/0.9120/32.91 33.51/0.9161/33.06 33.70/0.9188/33.34 33.81/0.9199/33.40 33.83/0.9204/33.33 33.80/0.9195/33.38 33.88/0.9210/33.52
(30, 50, 4, 4) 32.26/0.8939/32.04 32.42/0.8976/32.18 32.64/0.9004/32.49 32.74/0.9018/32.56 32.76/0.9023/32.51 32.77/0.9023/32.59 32.86/0.9043/32.70
(50, 30, 4, 4) 32.26/0.8927/31.88 32.50/0.8980/32.05 32.69/0.9012/32.24 32.77/0.9019/32.27 32.83/0.9033/32.30 32.78/0.9016/32.25 32.80/0.9025/32.34
(30, 30, 0, 4) 31.80/0.8849/31.51 31.97/0.8892/31.62 32.16/0.8914/31.76 32.26/0.8930/31.86 32.28/0.8939/31.84 32.25/0.8930/31.84 32.35/0.8946/31.97
(50, 50, 0, 4) 33.51/0.9168/33.17 33.72/0.9205/33.29 33.94/0.9229/33.37 34.05/0.9239/33.51 34.06/0.9245/33.43 34.04/0.9238/33.48 34.13/0.9252/33.60
(30, 50, 0, 4) 32.46/0.8994/32.23 32.64/0.9032/32.37 32.88/0.9061/32.51 32.97/0.9073/32.65 33.02/0.9082/32.69 32.99/0.9077/32.70 33.08/0.9095/32.77
(50, 30, 0, 4) 32.45/0.8976/32.09 32.69/0.9028/32.23 32.88/0.9061/32.29 32.98/0.9065/32.38 33.03/0.9078/32.40 32.98/0.9062/32.37 33.00/0.9071/32.45

BSDS500 [38]

(30, 30, 4, 4) 31.48/0.8757/31.16 31.64/0.8800/31.26 31.81/0.8822/31.56 31.87/0.8833/31.57 31.89/0.8843/31.51 31.87/0.8828/31.54 31.93/0.8847/31.66
(50, 50, 4, 4) 33.18/0.9102/32.76 33.36/0.9139/32.84 33.54/0.9163/33.15 33.63/0.9171/33.17 33.64/0.9176/32.05 33.62/0.9166/33.14 33.68/0.9182/33.27
(30, 50, 4, 4) 32.14/0.8910/31.87 32.27/0.8943/31.96 32.49/0.8970/32.31 32.55/0.8980/32.34 32.57/0.8984/32.29 32.59/0.8985/32.38 32.67/0.9006/32.47
(50, 30, 4, 4) 32.16/0.8902/31.72 32.37/0.8950/31.82 32.53/0.8977/32.03 32.59/0.8983/32.00 32.64/0.8996/32.00 32.59/0.8977/31.97 32.61/0.8988/32.08
(30, 30, 0, 4) 31.69/0.8817/31.31 31.84/0.8857/31.38 32.03/0.8876/31.55 32.09/0.8888/31.60 32.11/0.8898/31.52 32.08/0.8887/31.54 32.17/0.8907/31.71
(50, 50, 0, 4) 33.41/0.9151/32.92 33.57/0.9183/32.99 33.78/0.9204/33.06 33.85/0.9212/33.15 33.86/0.9218/33.01 33.85/0.9211/33.08 33.93/0.9227/33.24
(30, 50, 0, 4) 32.36/0.8966/32.02 32.52/0.9000/32.11 32.74/0.9027/32.27 32.79/0.9036/32.37 32.84/0.9045/32.37 32.82/0.9040/32.41 32.91/0.9060/32.48
(50, 30, 0, 4) 32.36/0.8952/31.85 32.56/0.8999/31.94 32.74/0.9026/31.99 32.80/0.9031/32.03 32.85/0.9043/32.01 32.81/0.9027/32.00 32.82/0.9035/32.10

Params. × 0.67M 8.96M 71.92M 9.24M 16.14M 11.49M 12.96M
MACs × 17.08G 193.98G 71.21G 227.14G 415.51G 293.42G 293.60G

Table 2: Quantitative comparison (average PSNR/SSIM/PSNR-B) on color double
JPEG images.

Dataset Method (30, 30, 4, 4) (50, 50, 4, 4) (30, 50, 4, 4) (30, 30, 0, 4) (50, 50, 0, 4) (30, 50, 0, 4)

ICB [47]

JPEG 32.18/0.8077/31.51 33.47/0.8339/32.87 32.66/0.8189/32.19 32.21/0.8073/31.44 33.50/0.8343/32.81 32.61/0.8195/32.00
HAT-S [8] 34.56/0.8438/34.53 35.67/0.8608/35.62 34.94/0.8505/34.92 34.74/0.8460/34.71 35.82/0.8630/35.78 35.04/0.8529/35.03

SwinIR [33] 34.56/0.8436/34.52 35.64/0.8605/35.60 34.93/0.8504/34.90 34.73/0.8459/34.70 35.78/0.8627/35.74 35.02/0.8529/35.01
OAPT(Ours) 34.69/0.8447/34.66 35.78/0.8616/35.74 35.08/0.8520/35.05 34.85/0.8469/34.82 35.91/0.8637/35.88 35.17/0.8542/35.15

LIVE1 [49]

JPEG 28.00/0.8220/26.86 29.55/0.8649/28.48 28.61/0.8405/27.84 28.02/0.8229/26.74 29.56/0.8655/28.40 28.58/0.8422/27.57
HAT-S [8] 30.20/0.8701/30.01 31.87/0.9040/31.59 30.85/0.8848/30.73 30.44/0.8760/30.16 32.10/0.9085/31.72 31.04/0.8904/30.82

SwinIR [33] 30.21/0.8701/30.03 31.86/0.9039/31.61 30.87/0.8856/30.77 30.44/0.8764/30.17 32.09/0.9086/31.73 31.07/0.8912/30.86
OAPT(Ours) 30.26/0.8712/30.11 31.92/0.9050/31.69 30.95/0.8870/30.84 30.51/0.8773/30.25 32.16/0.9094/31.80 31.14/0.8924/30.93

BSDS500 [38]

JPEG 28.12/0.8233/26.82 29.70/0.8685/28.48 28.75/0.8430/27.83 28.15/0.8251/26.64 29.72/0.8695/28.29 28.74/0.8454/27.49
HAT-S [8] 30.20/0.8689/29.96 31.89/0.9049/31.57 30.84/0.8840/30.69 30.42/0.8746/30.04 32.09/0.9090/31.58 31.03/0.8897/30.73

SwinIR [33] 30.19/0.8689/29.97 31.88/0.9048/31.58 30.87/0.8849/30.72 30.42/0.8749/30.04 32.09/0.9093/31.58 31.06/0.8905/30.76
OAPT(Ours) 30.24/0.8699/30.05 31.92/0.9056/31.65 30.93/0.8861/30.79 30.47/0.8757/30.13 32.13/0.9099/31.66 31.12/0.8917/30.82

4.2 Double JPEG Image Restoration

As double JPEG image restoration is a relatively new task, we compare our
method with DnCNN [65], RNAN [69], SwinIR [33], HAT [8], ART [63] and
FBCNN [26]. As for the experiment of grayscale double JPEG image restoration,
except FBCNN, the others are all fine-tuned on the double JPEG compression
dataset. For relatively fair comparison, we train the small version of HAT(HAT-
S), and use its pretrain weights for super-resolution task to initialize it. Both
SwinIR and the reconstructor of our model are initialized on the weights of
SwinIR for JPEG artifacts reduction, and we also train ART with its pretrain
model for JPEG artifacts reduction. Following the same setting in [26, 33], the
PSNR, SSIM [57] and PSNR-B [60] results are used as main metrics.

Quantitative Evaluation. We test different methods with eight combinations
of QFs and offsets on four benchmark datasets, i.e. Classic5 [17], LIVE1 [49],
BSDS500 [38] and ICB [47]. The quantitative results for grayscale images are
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HAT-S

Fig. 4: Visual comparison for various methods on benchmark datasets. The compres-
sion type is QF1 = 30, QF2 = 50, offsets=(4, 4).

HAT-S SwinIR OAPT

5.40/29.38 5.41/29.25 5.36/29.03 10.04/41.06 11.06/42.43 9.69/40.05

HAT-S SwinIR OAPT

Fig. 5: NIQE↓ / BRISQUE↓ results on real-world images.

shown in Tab. 1. As observed, the proposed OAPT outperforms most previous
methods on PSNR, SSIM and PSNR-B performance. Compared with prior state-
of-the-art method [26], OAPT achieves great improvement of 0.16dB averagely
on gray images. The result also shows OAPT improves about 0.18dB for the
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Table 3: PSNR/SSIM results on Classic5 and NIQE↓ / BRISQUE↓ results on Re-
alSRSet of random-compression experiments and PSNR/SSIM results on LIVE1 of
singe-compression experiments.

Method Classic5 [17](Compression rounds) RealSRSet [67]
2 4 5 7 blind

HAT-S [8] 32.02/0.8654 31.25/0.8509 29.91/0.8174 28.34/0.7710 9.89/29.56
SwinIR [33] 32.04/0.8661 31.25/0.8508 29.96/0.8191 28.29/0.7710 9.56/29.38

OAPT(Ours) 32.12/0.8682 31.27/0.8513 29.96/0.8195 28.36/0.7722 9.55/29.27

Method LIVE1 [49](QF)
10 20 30 40 50

SwinIR [33] 29.75/0.8245 32.13/0.8871 33.53/0.9139 34.51/0.9288 35.32/0.9391
OAPT(Ours) 29.77/0.8260 32.16/0.8886 33.57/0.9154 34.56/0.9301 35.38/0.9403

hard cases mentioned in FBCNN [26] which are non-aligned double JPEG images
with QF1 ≤ QF2. Besides, compared with SwinIR [33], OAPT only increases
1.5M parameters of offset predictor but improves averagely about 0.06dB on
three datasets. The results on color double JPEG images are illustrated in Tab. 2.
We mainly compare OAPT with SwinIR and HAT-S [8], which have similar
parameters with ours. We observe that our OAPT outperforms SwinIR on all
settings and achieves the averagely improvement of 0.08dB over SwinIR.

Visual Comparison. Fig. 4 illustrates visual quality of two grayscale images in
LIVE1 [49] with type (QF1,QF2, i, j) = (30, 50, 4, 4). As shown in the examples,
OAPT can not only remove the compression artifacts and the non-aligned com-
pression borderlines, but also enrich details of image. Moreover, Ours∗, which is
OAPT equipped with ground-truth offsets, generates better visual results.

4.3 Real-Word JPEG Image Restoration

To further demonstrate the effectiveness of our OAPT model, we first conduct
the random-compression experiment on Classic5 [17] and RealSRSet [67] to verify
the univerality of OAPT to multi-compressed image restoration. In Tab. 3, we
compressed the images under diverse compression rounds with random QFs and
offsets to simply simulate the multi-compression situation, which occurs in the
real world. And we also test SwinIR and OAPT on grayscale single-compressed
images of LIVE1 [49] under QF=10, 20, 30, 40, 50. The results shows although
the OAPT model is trained with double compression datasets, it has greater
robustness on multi-compressed images and single-compressed images.

Also, we conduct experiments on real-world JPEG images. We test models
on several pictures collected from the internet, these images were compressed
more than once and gone through some other unknown degradations. We only
test the NIQE [40] and BRISQUE [41] results on the Y channel of these images
and the visual results are shown in Fig. 5. It illustrates our model still surpasses
other compared methods.
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GT HAT-S HAT-S* SwinIR Ours*

Fig. 6: LAM [21] results for different methods. * denotes the model equipped with
pattern clustering plugin and the ground-truth offsets.
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(a) OCAB with Pattern-clustering (b) PSNR of FBCNN, HAT-S and HAT-S* on LIVE1 with offset=(4, 4)

Fig. 7: The OCAB module in HAT-S [8] with pattern clustering plugin module and
PSNR results.

4.4 The Effectiveness of the Plugin Module

To assess the effectiveness of the pattern clustering plugin module, we strategi-
cally insert the plugin module in the Overlapping Cross-Attention Block (OCAB)
of HAT-S [8] and name the new network as HAT-S∗. Fig. 7(a) illustrates the in-
tegration of OCAB with our plugin module. We refrain from adding an offset
predictor to HAT-S and use ground-truth offsets for the pattern clustering mod-
ule to train the whole network. The results illustrated in Fig. 7(b), shows HAT-S
with this cheap plugin module can easily improve 0.03dB of PSNR value over
the base model fine-tuned on double compression dataset averagely without ad-
ditional parameters and computation complexity.

Furthermore, with the assistance of LAM [21], we can identify pixels that
significantly contribute to the selected region of the output image. As illustrated
in Fig. 6, the range of contributing pixels expands in HAT-S when our plugin
module is applied. Additionally, Ours∗, which is the OAPT model equipped with
the ground-truth offset, incorporates more pixels than SwinIR. It affirms that
our hybrid attention can not only avoid distraction from degradation of different
patterns, but also enlarge the receptive field by non-local grouping.

4.5 Ablation Study

Network structure. In this section, we evaluate the effectiveness of the HPAB
structure. We designed four structures with the same parameters shown in
Fig. 8(a): the Serial Hybrid Attention (SHA), the Uniformed Sparse Attention
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Fig. 8: Ablation study on various structures of attention.

(10, 90, 4, 4) (90, 10, 4, 4)

(a) Predicted offsets under various types (b) Offset prediction accuracy(Acc.).

(30, 50, 0, 4) (50, 30, 0, 4)

Fig. 9: Illustration of prediction results. Fig.9(a) is the distribution map of predicted
offsets, the brightness in cells denotes the quantity of predicted offsets, and the coor-
dinates of the cell marked with red lines represents the ground-truth offset. Fig.9(b) is
the combined bar graph for results of accuracy and average L1 distance of predicted
offsets and ground-truth offsets.

(USA), the Parallel Hybrid Attention (PHA), and the Uniformed Dense Atten-
tion (UDA). Fig. 8(b) is the PNSR results of networks equipped with different
structures under type=(30, 50, 4, 4). It shows all the Serial structures outperform
the Parallel one. The parallel structure may introduce confusion in conducting
different attentions, thereby compromising the representation of deep features.
As for the serial structures, the network with SHA structure surpasses that with
the USA structure in PSNR results. The USA structure, which destroys the nat-
ural image structure and only focuses on non-local features, yields the second
least favorable results, highlighting the necessity of dense attention and locality.
Furthermore, when the pattern-clustering module is omitted, the SHA struc-
ture is simplified to the UDA, which is equivalent to Residual Swin Transformer
Block (RSTB) in SwinIR [33], and it also has less PSNR value than SHA. The
result emphasizes the effectiveness of our hybrid attention blocks. In summary,
the SHA structure is proved to be relatively more effective than the alternatives.

Offset prediction. We pretrained the offset predictor first with 44 × 44-sized
patches of double compressed images from training datasets. And during the
training phase, we freezed the parameters of offset predictor and fine-tuned
the image reconstructor with the loss in Eq. (6) for more stable training state.
Fig. 9(b) denotes the accuracy of offset predictor and L1 distance between pre-
dicted offsets and ground-truth offsets under type=(QF1, QF2, 4, 4), it shows the
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Table 4: PSNR/SSIM results and the prediction accuracy(Acc.).

Dataset Type HAT-S [8] SwinIR [33] OAPT(Ours) OAPT*(Ours*) Acc.

LIVE1 [49]

(10, 90, 0, 2) 29.70/0.8250 29.76/0.8259 29.77/0.8267 29.77/0.8266 97%
(30, 50, 4, 4) 32.74/0.9018 32.77/0.9023 32.86/0.9043 32.87/0.9046 52%
(40, 70, 1, 5) 33.95/0.9222 33.99/0.9227 34.07/0.9241 34.10/0.9247 34%
(70, 40, 5, 1) 29.39/0.8156 29.44/0.8169 29.48/0.8189 29.53/0.8204 3%
(90, 10, 2, 0) 29.51/0.8193 29.54/0.8200 29.57/0.8217 29.62/0.8226 0%

accuracy is somehow limited, especially when QF1 > QF2. While QF1 < QF2,
with the gap between QF1 and QF2 getting bigger, the accuracy gets much
higher. We suppose when QF1 ≥ QF2, which means the degree of the second
compression is high enough to ruin and cover the blocky boundaries caused by
the first compression, the predictor can hardly find any clue to estimate the
offsets on the images. Thus, the cases with QF1 ≥ QF2 are hard cases for pre-
diction. Also, in Fig. 9(a), we find that the predicted offsets are prone to settling
down round the centers of all potential values of offset, like (3, 3), due to the
offset loss function in Eq. (2), when encountering hard cases for prediction.

To find out whether the ground-truth offsets are significant to the network
and how the prediction accuracy affects it, we conducted the experiment as
follows. We remove the offset predictor from OAPT and fine-tune it with ground-
truth offsets making the OAPT model a non-blind model, termed as OAPT* or
Ours*, which shares the same parameters with SwinIR. Tab. 4 illustrates some
results of HAT-S, SwinIR, OAPT and OAPT* under other compression types
and the accuracy of the offset predictor in OAPT. We find OAPT gets the
best performance averagely with ground-truth offsets (OAPT*) and increases
no more parameters and computation complexity, improving about 0.08dB over
SwinIR on average. Moreover, with the prediction accuracy increasing, the gap of
performance between OAPT and OAPT* gets narrower. It indicates with the low
accuracy, the performance only benefits from larger receptive field by non-local
grouping, while with the high accuracy, it benefits from both larger receptive field
and proper pattern clustering by correct offsets for better information extraction.

5 Conclusion

In this paper, we propose a method for double compressed image restoration,
named as Offset-Aware Partition Transformer(OAPT), which consists of a com-
pression offset predictor and a hybird attention-based image reconstructor. Based
on the hybrid attention mechanism, OAPT can adjust to the non-aligned dou-
ble compression by effective pattern clustering operation. Extensive experiments
demonstrate that our method outperforms state-of-the-art methods.
Limitation. In our work, the offset predictor is not consistently reliable. In-
correctly predicted offsets merely expand the receptive field, leading to minimal
improvement. Enhancements can be achieved by increasing prediction accuracy
or implicitly utilizing the predicted offsets in future work.
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