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A FSVGP details

This section describes the details of our Formula-Supervised Visual-Geometric
Pre-training (FSVGP). Section A.1 details the Visual Geometric Fractal Database
(VG-FractalDB). Section A.2 details a unified model for pre-training VG-FractalDB.

A.1 VG-FractalDB construction details

This section delineates the methodology employed in constructing the VG-FractalDB,
focusing on using 3D Iterated Function Systems (3D-IFS) [1] and our dataset
diversity and consistency between visual and geometric modalities.

3D-IFS is a mathematical framework for generating fractal geometry. It is
central to defining the categories and variations in VG-FractalDB. Formula-
supervised consistency labels in VG-FractalDB are linked to the 3D-IFS param-
eters. In certain 3D-IFS parameter cases, the 3D fractal point cloud is concen-
trated in a part of the 3D space. Therefore, the quality of the 3D fractal point
cloud is checked based on the variance threshold to exclude such 3D fractal point
clouds. Only the 3D fractal point clouds whose variance value exceeds the vari-
ance threshold value in all axes are defined as the categories of VG-FractalDB.
The variance threshold ensures a wide variety of fractal shapes. For augmenting
within each category, we used FractalNoiseMix proposed by Yamada et al. [8].
This augmentation technique enriches the dataset with a broader range of fractal
geometries by augmenting 3D fractal models by mixing other 3D fractal models.

The 3D fractal models are then projected onto 2D planes to generate frac-
tal images. This process randomly selects a camera viewpoint in 3D space. A
perspective projection transformation maps point clouds onto a 2D plane. This
particular transformation is chosen to accurately maintain the relative size and
shape of 3D objects in the 2D rendering. Each parameter must be defined to
achieve a realistic projection, such as the viewing angle (focal length), aspect
ratio, and near and far planes. We set the focal length to 45 degrees, the aspect
ratio to 1.0, and the near and far planes to 1.0 and 100, respectively. The camera
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viewpoint setting is also an integral part of the projection process. This involves
determining the camera’s position, the point it is looking at, and its upward di-
rection. These elements are used to compute a view matrix, which transforms the
3D objects from the world coordinate system to the camera coordinate system.

For each 3D fractal model, a corresponding fractal image is generated from a
randomly selected viewpoint. This approach ensures that each pair of 3D fractal
point clouds and fractal images uniquely represents a particular viewpoint. The
resulting VG-FractalDB provides a rich 2D-3D fractal data representation for
classification pre-training.

A.2 Pre-training transformer model details

We designed a single transformer model for learning VG-FractalDB. Our trans-
former model is built upon the standard Vision Transformer (ViT) [2] and Point
Transformer (PointT) [9] structure, comprising transformer blocks. Each block
includes a multi-head self-attention mechanism and a Multi-Layer Perceptron
(MLP) block integrated with LayerNorm for normalization.

The property of our single transformer model is to process both fractal images
and 3D fractal point clouds through different embedding procedures tailored to
the nature of each data type. For images, the image is then divided into patches
of size 16×16, with each patch undergoing a linear projection to transform it into
an embedding. For point cloud data, we start by downsampling a point cloud
to a specific number of points. The downsampling point cloud is then clustered
using a K-nearest neighbor, ensuring that local geometries within the cloud
are preserved. These clustered points are passed through an MLP, generating
embeddings.

Our transformer model is designed to be simple, learning visual-geometric
representation from VG-FractalDB. Using distinct embedding processes for dif-
ferent data types showcases our transformer model’s flexibility and potential to
adapt diverse downstream tasks.

B Experimental setting details

This section describes the experimental setup in detail. First, Section B.1 de-
scribes the training setup in FSVGP. Sections B.2 and Section B.3 describe the
experimental setup for image recognition and 3D object recognition, respectively.
Finally, Section B.4 explains in detail the setup of the ablation study.

B.1 Pre-training

Our experiments set the hyperparameters based on the Data-efficient image
Transformers (DeiT) model [7], as detailed in Table A. The training scripts
were adapted from previous studies [6], providing a foundational framework for
our approach.
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Table A: Pre-training setting.

Config Value
VG-FractalDB-1k VG-FractalDB-21k

Epochs 200 100
Batch Size 1024 8192
Optimizer AdamW AdamW
LR 5e-4 5e-4
Weight Decay 0.05 0.05
LR Scheduler Cosine decay Cosine decay
Warmup Steps 5k 5k
Resolution 224×224 224×224
Label Smoothing 0.1 0.1
Drop Path 0.1 0.1
Rand Augment 9 / 0.5 9 / 0.5
Mixup 0.8 0.8
Cutmix 1.0 1.0
Erasing 0.25 0.25

Table B: Image classification setting.
Config Value

ImageNet-1k Others

Epochs 300 300
Batch Size 1024 1024
Optimizer AdamW AdamW
LR 5e-4 5e-4
Weight Decay 0.05 0.05
LR Scheduler Cosine decay Cosine decay
Warmup Steps 5 (epoch) 5 (epoch)
Resolution 224×224/384× 384 224×224
Label Smoothing 0.1 0.1
Drop Path 0.1 0.1
Rand Augment 9 / 0.5 9 / 0.5
Mixup 0.8 0.8
Cutmix 1.0 1.0
Erasing 0.25 0.25

Table C: Image object detection and in-
stance segmentation setting.

Config Value
From Scratch Pre-train

Epochs 30 30
Batch Size 16 16
Optimizer AdamW AdamW
LR 1.6e-4 4e-1
Weight Decay 0.2 0.1
Warmup Steps 1k 1k
Resolution 1024×1024 1024×1024
Drop Path 0.1/0.4 0.1/0.4
Large Scale Jitter [0.1, 2.0] [0.1, 2.0]
Rand Flip 0.5 0.5

B.2 Image recognition

Image classification. Our experiments validated our results using the im-
age classification dataset that previous studies evaluated. We compare the top-
1 accuracy during fine-tuning in 300 epochs as an evaluation metric. Hyper-
parameters at additional learning are shown in Table B. These are the same
conditions as in the previous experimental setup in FDSL [6].

Image object detection and instance segmentation. This experiment was
validated at MS COCO2017 using the official ViTDet [5] GitHub. We used the
hyperparameters of ViTDet as they are. The specific hyperparameters for the
fine-tuning are shown in Table C.



4 R. Yamada et al.

Table D: 3D object classification setting.
Config Value

VG-FractalDB Others

Epochs 300 300
Batch Size 32 32
Optimizer AdamW AdamW
LR 5e-4 5e-4
Weight Decay 0.05 0.05
LR Scheduler Cosine decay Cosine decay
Warmup Steps 10 (epoch) 10 (epoch)
Num. of Points 1024(M)/2048(S) 1024(M)/2048(S)
Num of Patches 64 64
Patch Size 32 32
Augmentation ScaleAndTranslate ScaleAndTranslate

Table E: 3D object detection and parts
segmentation setting.
Config Value

ScanNet ShapeNet-parts

Epochs 1080 300
Batch Size 32 32
Optimizer AdamW AdamW
LR 4e-4 5e-4
Weight Decay 0.1 0.05
LR Scheduler Linear warmup Cosine decay
Warmup Steps 20 (epoch) 10 (epoch)
Num. of Points 40000 2048
Num of Query/Patches 256 64
Patch Size – 32
Augmentation RandomCuboid ScaleAndTranslate

B.3 3D object recognition

3D object classification. We used ModelNet40 and ScanObjectNN. The evalu-
ation was conducted on ModelNet40 and three ScanObjectNN subsets: OBJ-BG
(including object surroundings), OBJ-ONLY (objects without background), and
PB-T50-RS (a challenging subset with translated, rotated, and scaled objects).
We employed the AdamW optimizer for fine-tuning and adjusted over 300 epochs
using a cosine decay schedule. Models were fine-tuned on point clouds with 1024
points for ModelNet40 and 2048 points for ScanObjectNN, and performance
was measured using overall accuracy, focusing on the highest accuracy achieved
within 300 epochs. The specific hyperparameters for the fine-tuning are shown
in Table D.
Few-shot learning. We conducted experiments by selecting K classes from
the ModelNet40 dataset and sampling N + 20 objects from each class. These
classes formed the basis for K-way, N -shot training subsets, with K and N
varying between {5, 10} and {10, 20}, respectively. We created ten different
subsets for these experiments and evaluated the model’s performance by com-
puting the mean and standard deviation of the highest accuracy obtained across
these subsets. The AdamW optimizer was used during fine-tuning, adjusting it
according to a cosine decay schedule over 150 epochs. We fine-tuned the model
on ModelNet40 using point clouds of 1024 points each.
3D object detection. In our 3D object detection experiment, the ScanNet was
used as a benchmark. We adopted the 3DETR model to fine-tune our 3D object
detection approach, using its PointT-Small backbone network. The hyperparam-
eters were tuned to those used in the original 3DETR. Our evaluation metrics
were based on mean average precision (mAP) at 25% and 50% intersection over
union (IoU). The specific fine-tuning hyperparameters are shown in Table E.
Parts segmentatoin. We employed the ShapeNetPart dataset to evaluate part
segmentation, which involves identifying detailed class labels for each point of
a 3D model. We assessed performance using the mean IoU (mIoUins) across all
instances and IoU for each category. Furthermore, we reported the Mean IoU
across all categories (mIoUcat), ensuring equal treatment of each category in the
dataset, irrespective of its frequency. This approach provides a comprehensive
overview of the model’s segmentation performance. The specific hyperparameters
for the fine-tuning are shown in Table E.



Abbreviated paper title 5
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Fig.A: The examples of image and point cloud pair data in ShapeNet.

Image

Point clouds

Fig. B: The examples of image and point cloud pair data in the Visual-Geometric
Perlin Noise dataset.

B.4 Ablation study

(i) Which is more effective, fractal point clouds or CAD models in
FSVGP? In this experiment, we tested the pre-training effect of FSVGP by ap-
plying it to an existing 3D dataset, ShapeNet. We generated images and point
clouds for ShapeNet based on the VG-FractalDB construction procedure. Specif-
ically, we project each 3D model of a ShapeNet onto an image from a random
viewpoint position. An example of a generated image and point cloud is shown
in Figure A.
(ii) Can other generation rules be effective in FSVGP? In this exper-
iment, we verified the pre-training effect of the generation rules by compar-
ing fractal and Perlin noise in terms of the mathematical formula regularity
that generates the data. Perlin noise is a gradient noise function for generating
natural-looking textures and shapes, and previous studies [3,4] have reported its
effectiveness in generating pre-trained datasets for image and video recognition.
Therefore, we employed Perlin noise as the generating function to be compared
in this experiment, considering its extensibility to 3D models.

We first generate 2D Perlin noise. Next, we lift the 2D Perlin noise to a point
cloud. We then construct the Visual-Geometric Perlin Noise (VG-PN) dataset
by projecting the point cloud onto an image. The 2D Perlin noise is pre-defined
as a 100 × 100 grid. Random coordinates are determined within each grid, and
a gradient vector is generated from the vertices of each grid based on these
coordinates. The values in the grid are determined by linearly complementing
the gradient vectors. The key parameters for generating the Perlin noise, the
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Table F: Effect of formula supervision.

Shuffle type CIFAR100 ModelNe40

w/o shuffle 85.9 92.9
category 84.4 92.7
instance + category 83.5 92.5

Table G: Effect of loss functions.

Loss function CIFAR100 ModelNet40

CE 85.9 92.9
VGC 8.4 92.5
CE + VGC 85.4 92.2

frequency, and scale, are varied within a specific range to ensure the diversity of
the shape of the 3D Perlin noise. The VG-PN dataset defines these parameters
as categories. The 2D Perlin noise is converted to a 3D Perlin noise as a point
cloud by taking the values of each grid of the 2D Perlin noise as the Z-coordinate,
finally, by projecting the 3D Perlin noise onto a image under the same conditions
as VG-FractalDB. Finally, the 3D Perlin noise is projected onto the image under
the same conditions as VG-FractalDB to generate the image/point cloud pair
data, as shown in Figure B.

C Additional experiments

C.1 What is the pre-training effect of collapsing the pair labels in
VG-FractalDB?

This experiment verifies the pre-training effect based on the formula-supervised
consistency label. We shuffled each pair of fractal data in VG-FractalDB to
make it inconsistent. Specifically, we implement two shuffle methods, named
category and instance + category, which shuffle the categories of 3D fractal
point clouds for each category and instance, respectively. Let I = {I1, I2, . . . , IC}
and X = {X1,X2, . . . ,XC} denote the image and pointcloud data, respectively,
where C is the number of categories. The instances of images and point clouds
in category c are denoted as Ic = {Ic1, Ic2, . . . , IcM} and Xc = {Xc

1,X
c
2, . . . ,X

c
M},

respectively, where M is the number of instances in each category.
The category shuffle randomizes the category indices of point clouds to de-

stroy the consistency of categories for images and point clouds. After cate-
gory shuffle, the instances of point clouds in category c are denoted as Xc

cs =
{Xc′

1 ,X
c′

2 , . . . ,X
c′

M}, where c′ is the shuffled category index. Therefore, the cat-
egory labels for point cloud data are different from those for image data in the
pre-training step, though the labels in each category are consistent for both
images and point clouds.

The instance + category shuffle randomizes both instance and category in-
dices of point clouds to disrupt the consistency of instances for images and point
clouds. After instance + category shuffle, the instances of point clouds in cat-
egory c are denoted as Xc

ics = {Xc′1
i′1
,X

c′2
i′2
, . . . ,X

c′M
i′M

}, where c′j and i′j are the
shuffled category and instance indices for the j-th instance, respectively. There-
fore, even the labels in each category are not consistent in point clouds. Note
that the shuffling methods exclusively randomize the labels for point cloud data
to disrupt the consistency between image and point cloud data. In other words,
the labels associated with image data remain unaffected by the shuffling.
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Table F shows that FSVGP without shuffling was more effective than cate-
gory shuffle and instance + category shuffle in CIFAR100 and ModelNet40. This
result shows that the formula-supervised consistency labels used in FSVGP im-
prove the performance of pre-training. The pre-training using the data shuffled
by instance + category still achieved reasonable results. We believe pre-training
on such data optimizes the model towards near-optimal parameters based on
consistent image data, even though the shuffled point cloud data may impede
convergence. To validate the hypothesis, we examined the loss values both with
and without the shuffling. The values for image data were similar (2.45 vs 2.48),
whereas the values for point cloud data differed significantly (6.90 vs 1.02). In
addition, the shuffling of both visual and geometric modalities disrupted the
pre-training, causing a divergence in the loss values.

C.2 Does the standard cross-entropy loss function alone suffice for
pre-training in FSVGP?

We contrast two scenarios: one employing CE loss based on the formula-supervised
consistency label and another employing cross-entropy loss with a constraint
term derived from visual-geometric correspondence (VGC). We developed VGC
as consistency labels, representing whether the pair of images and point cloud
represent the same instance. We shuffle the point cloud data instances in each
category to generate a non-consistent pair. In each epoch of pre-training, we uti-
lize both non-shuffled and shuffled data equally, randomly splitting the dataset
in half. VGC calculates the loss values using cross-entropy loss with consistency
labels. Table G shows that FSVGP with only CE loss is better than the fine-
tuning accuracy with VGC + CE loss. This result finds that FSVGP learns
visual-geometric representation with only CE loss rather than explicit visual-
geometric correspondence terms such as VGC.

C.3 Evaluation of the performance of pre-training models by linear
probing

Our experiment of this paper basically followed the evaluation protocols of pre-
vious FDSL studies. However, we believe that it is important to know about the
feature representation that the pre-trained models learn through linear probing.
Therefore, we investigate the feature representations learned by FSVGP (VG-
FractalDB-1k) and MAE (ImageNet). Specifically, we stop the gradient update
of some transformer blocks in ViT during fine-tuning and evaluate which trans-
former block feature representations in ViT contribute to fine-tuning.

We froze the first m blocks of ViT-B during the fine-tuning (m = 0 and 12
indicate full fine-tuning and linear probing, respectively). As shown in Figure C,
although the difference in data domain between real images and fractal data
degenerates the performance of FSVGP in linear probing, the fine-tuning from
pre-trained representations significantly improves the performance. This result
indicates the meaningful representation learned from FSVGP, especially in early
layers.
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Fig. C: Comparison of classification accuracy when parameter update of each trans-
former block is frozen during fine-tuning of SVGP (VG-FractalDB-1k) and MAE (Im-
ageNet). We use ViT-B on ImageNet100.

C.4 Multi-modal evaluations in 3D object classification

We consider multi-modal evaluation important for showing the use case of FSVGP.
Therefore, We conducted an initial experiment of 3D object classification using
images and point clouds on ModelNet40. We confirmed that VG-FractalDB (V
+ G) outperforms VG-FractalDB (V or G) by +0.2 points and +0.6 points, re-
spectively, when fine-tuning images and point clouds on ModelNet40. This result
suggests the potential applications of FSVGP, such as autonomous driving with
point clouds and bird’s-eye view images.

D Qualitative examples

The visualized predictions of the MS COCO underscore the ability of our FSVGP
model to identify and delineate objects with high accuracy in complex scenes.
Figure D demonstrates the FSVGP’s accuracy in pinpointing object locations
and discriminating between overlapping entities in detail-rich images. For ex-
ample, in Figure D, one can observe the FSVGP’s acute precision in detecting
and separating a cluster of beans on a plate, demonstrating its ability to locate
and distinguish even the smallest objects. In addition, the figure highlights the
model’s ability to detect overlapping objects, such as a book partially obscured
by a houseplant, demonstrating the nuanced recognition capabilities of FSVGP
across a wide range of object categories.
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Fig.D: FSVGP Success Cases: compare ground truth with training from scratch,
MAE, VisualAtom, and FSVGP output results. We use VitDet (ViT-B) on MS COCO
2017 Val.
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