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Abstract. The effectiveness of Vision Transformers (ViTs) diminishes
considerably in multi-modal face anti-spoofing (FAS) under missing modal-
ity scenarios. Existing approaches rely on modality-invariant features to
alleviate this issue but ignore modality-specific features. To solve this is-
sue, we propose a Missing Modality Adapter framework for Face Anti-
Spoofing (MMA-FAS), which leverages modality-disentangle adapters
and LBP-guided contrastive loss for explicit combination of modality-
invariant and modality-specific features. Modality-disentangle adapters
disentangle features into modality-invariant and -specific features from
the view of frequency decomposition. LBP-guided contrastive loss, to-
gether with batch-level and sample-level modality masking strategies,
forces the model to cluster samples according to attack types and modal
combinations, which further enhances modality-specific and -specific fea-
tures. Moreover, we propose an adaptively modal combination sampling
strategy, which dynamically adjusts the sample probability in masking
strategies to balance the training process of different modal combina-
tions. Extensive experiments demonstrate that our proposed method
achieves state-of-the-art intra-dataset and cross-dataset performance in
all the missing modality scenarios.
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1 Introduction

Face recognition (FR) systems are widely used in many security fields. However,
there are plenty of Presentation Attacks that deceive face recognition systems
and steal privacy, including 2D attacks (e.g., print and replay attack) and 3D
attacks (e.g., rigidmask and papermask attack). To protect FR systems from
being attacked, face anti-spoofing (FAS) techniques have been widely concerned.
Most existing FAS methods focus on RGB images [5,7,9,16–19,23,25,26,31,35–
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Fig. 1: (a) Visualization of features of different modalities extracted by AMA [29] (b)
Visualization of feature extracted by MMANet [27]. (c) Visualization of attention in
ShaSpec [24] and our MMA-FAS. We visualize the attention regions in different specific
encoders in ShaSpec.

42]. Deep learning techniques like convolutional neural networks (CNNs) and
vision transformers (ViTs) have been widely adopted to facilitate FAS using RGB
images but cannot generalize well to unknown attacks and unseen deployment
scenarios due to limited information in RGB images.

With the development of acquisition devices, images of various modalities
(e.g., depth images, infrared (IR) images, and thermal images) are considered to
provide complementary discriminative information beyond RGB images. Recent
multi-modal FAS methods leverage ViT backbones to extract spoofing features
for cross-modality fusion to improve generalization ability. However, these meth-
ods are trained and deployed under the requirement of inputs with complete
modality [12, 22] and could fail in missing modality scenarios for FAS due to
unmatched modalities in training and deployments.

Missing modality scenarios are common in practical applications of FAS, since
we cannot guarantee each modality will be available at deployment. For example,
the quality of RGB images could be poor in dark environments or the sensors of
IR modality might be broken. Existing methods for missing modality FAS focus
on extracting modality-invariant features for robust prediction across various
modal combinations [13,15,29]. On the contrary, existing general methods only
leverage modality-specific features for missing modality prediction [11, 24, 27].
The detailed clarification is provided in Section 3.1. Furthermore, these methods
ignore the specific problem for FAS where different attack types have different
spoofing cues and are significantly degraded when directly employed in missing-
modality FAS.

To address the above problems, we propose to enhance the modality-specific
information and integrate it with modality-invariant features during missing
modal training in FAS. Different from existing methods that extract modality-
invariant and modality-specific features with multiple encoders and loss func-
tions [24], we explicitly extract them from the view of frequency based on the
observation that modality-invariant cues are mainly represented in the low-
frequency components, while modality-specific cues are in the high-frequency
component in multi-modal FAS. As shown in Fig. 2(a), in the low-frequency com-
ponents, the forehead regions (marked by red boxes) exhibit similar traits across
modalities, whereas in the high-frequency components, the inherent spoofing
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Fig. 2: (a) Spoofing cues for FAS of three modalities in low- and high-frequency compo-
nents. The red boxes indicate the modality-invariant features, while other color boxes
refer to modality-specific features. (b) Visualization of frequency maps for features ex-
tracted by AMA [29]. (c) Visualization of frequency maps for features extracted by
Missing-aware Prompts [11]. (d) Visualization of frequency maps for features extracted
by our MMA-FAS.

cues (marked by other color boxes) differ among different modalities. Visualiza-
tion of the frequency maps of features extracted by AMA [29] and Missing-aware
Prompt [11] shows that AMA [29] extracts modality-invariant features and fo-
cuses more on low-frequency regions, while Missing-aware Prompt [11] learns
modality-specific features and focuses more on low-frequency regions.

Motivated by this observation, we propose a new framework named MMA-
FAS. With a multi-modal vision transformer as the backbone, we develop a
modality-disentangle adapter (MDA) to separate the fusion feature into modality-
invariant and modality-specific ones by frequency decomposition and extract lo-
cal fine-grained invariant and specific features via convolutions. Besides, we pro-
pose a LBP-guided missing modal contrastive loss, which leverages batch-level
and sample-level masking strategy with LBP-guided (local binary pattern [1])
contrastive loss to cluster the images according to their attack types and modal
combinations for further modality-specific feature enhancement and separation
of spoofing features in different attack types. Furthermore, we introduce an
Adaptively Modal combination Sampling (AMS) into Masking to dynamically
adjust the sampling probabilities, ensuring balanced training for different modal
combinations. In our experiment, we provide a comprehensive benchmark in all
the missing modality cases. All the experiments demonstrate that MMA-FAS
enhances modality-specific information and achieves SOTA performance in all
the missing modality scenarios. To sum up,

– We propose a new framework named MMA-FAS to extract both modality-
invariant and modality-specific information in FAS and solve the missing
modality problem.

– To extract modality-specific features accurately, we propose a modality-
disentangle adapter that decomposes the frequency information and ex-
tracts fine-grained spoofing cues from both modality-invariant and modality-
specific features.

– We design batch-level and sample-level masking strategies with LBP-guided
contrastive loss for further enhancing modality-specific features. Adaptive
sampling strategy on modal combination is further developed to balance the
training process of different modal combinations.
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– We provide an extensive evaluation across all scenarios with missing modal-
ities, and achieve SOTA performance on various datasets, e.g., WMCA,
CASIA-SURF and CASIA-SURF-CeFA, under several settings.

2 Related Works

2.1 Multi-modal Face Anti-Spoofing

Recent FAS methods tend to use multi-modal inputs rather than unimodal in-
puts to achieve better FAS performance through the fusion of complementary
information. Early approaches leverage CNNs to extract specific features from
each modality and then fuse them in the latter stage. CMFL designs cross-modal
focal loss to adjust the confidence of each channel in the extracted features [4].
CDCN [30] applies CDC into multi-modal FAS and proves the gradient infor-
mation in features is important for discrimination capacity. ViTs are commonly
used later due to the ability to achieve finer-grained cross-modal fusion than
CNNs. MFAST [22] applies two transformers to extract features in two modali-
ties. MFViT [12] proposes a multi-feature and multi-rank fusion strategy to learn
multi-scale features. AMA [29] is the first to jointly consider the local descriptor,
adapters, and pretraining framework in FAS. However, all these methods only
leverage modality-invariant features while ignoring the fine-grained modality-
specific knowledge, which is also beneficial for the FAS task.

2.2 Missing Modalities in Multi-modal Learning

The missing modality problem has received a lot of attention. Existing works
usually randomly drop some modalities in the training stage to mimic the missing
modality scenarios in the test stage. [28] leverage the autoencoder to reconstruct
the missing modalities. [33] uses four specific encoders for unimodal input and
then applies ViT to achieve cross-modal feature fusion. MMANet [27] leverages
a deployment network with missing modalities to distill knowledge from the
teacher network, which is trained with complete modalities. ShaSpec [24] lever-
ages several CNN encoders to capture modality-specific and modality-invariant
features for fusion. However, these methods lack of local fine-grained spoofing
cues extraction and separation of spoofing features in different attack types and
cannot be directly applied to ViT in multi-modal FAS.

3 Methods

Given N multi-modal FAS inputs {Xi, Yi}Ni=1, where Xi = {XRGB
i , XDepth

i , XIR
i }

are input images with three modalities and Yi are live/spoofing labels. In this pa-
per, multi-modal vision transformer [2] is adopted as the baseline. Since finetun-
ing the whole ViT for FAS is inefficient [29], we freeze the backbone and only tune
MDAs and the classification head. As mentioned in Sec 1, training these multi-
modal ViTs in missing modality scenarios heavily relies on modality-invariant
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Fig. 3: (a) The overall architecture of our MMA-FAS. We first apply MDA to ex-
tract modality-specific features for FAS. Then, we combine batch-level random masking
strategy and sample-level random masking strategy to mimic the missing modality sce-
narios. With the LBP-guided contrastive loss, modality-specific features are extracted.
(b) The details of MDA, where each modality corresponds to a convolution branch.
These convolutions extract local features in each modality to benefit the FAS task.

features. To extract both modality-invariant and modality-specific features dur-
ing training, we propose the MMA-FAS framework. Section 3.2 overviews the
whole framework of MMA-FAS and modality-disentangle adapter. Section 3.3
develops two levels of masking strategy with LBP-guided contrastive loss and
Section 3.4 presents the cosine function sampling strategy.

3.1 Difference from Existing Methods

To clarify the novelty of our MMA-FAS, we distinguish it from existing works and
specify their shortcomings. In Section 1, we argue existing works cannot extract
modality-invariant and modality-specific effectively. To be specific, MA-ViT [13]
and FM-ViT [15] only focus on modality-invariant feature via attention mech-
anisms. Adaptive Multi-modal Adapter (AMA) [29] equally leverages modality-
invariant features, since the same adapter is applied in different modal combi-
nations, as shown in Fig. 1(a). On the contrary, Missing-Aware Prompts [11]
utilizes specific prompts for each modal combinations for modality-specific fea-
tures but ignores modality-invariant features. MMANet [27] distills modality-
specific features from teacher network to the deployment network, as illustrated
in Fig. 1(b). ShaSpec [24] adopts the shared encoder and specific encoders for
modality-invariant and -specific features extraction. However, the specific en-
coders cannot extract fine-grained spoofing features for FAS by considering only
the modality discrepancy of modality-specific features to distinguish different
modalities rather than fine-grained features (e.g. spoofing cues for FAS), as
demonstrated in Fig. 1(c). Different from these works, our MMA-FAS simul-
taneously considers modality-invariant and -specific features in each layer via
frequency decomposition for fine-grained spoofing features extraction.

3.2 Missing Modality Adapter for FAS

Fig. 3 (a) depicts the proposed framework of MMA-FAS. Three modality in-
puts are first converted into the patch embeddings zRGB , zDepth, zIR via linear
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projection. To mimic the incomplete modalities in deployment, we introduce
a Bernoulli mask ∆ = {δ1, · · · , δm}, where δi is set as 0 to mimic the cor-
responding missing modality. Thus, there are 7 possible patterns for ∆ with
m = 3 in total.3 We apply two random masking strategies in our MMA-FAS
and here we firstly introduce the sample-level random masking strategy. The
batch-level random masking strategy will be introduced in the next section.
The sample-level random masking strategy randomly selects ∆ to mask zRGB ,
zDepth and zIR for each sample for each mini-batch. The masking operation in-
volves element-wise multiplying the ∆ with the corresponding modality patch
embeddings {zrgb, zdepth, zir} = {zRGB , zDepth, zIR} ⊗∆. After masking, these
patch embeddings are concatenated as z = concat(zcls, zrgb, zdepth, zir), where
zcls is the class token and zj (j ∈ {rgb, depth, ir}) denotes patch embeddings of
modality j after masking.

Consequently, z is fed into the multi-modal ViT backbone of Nb trans-
former blocks for cross-modal fusion, which consists of LayerNorm, Multi Head
Self Attention (MHSA) and Feed Forward Network (FFN) module. To enhance
modality-specific features during training, we propose modality disentangle adapters
(MDA) to extract both modality-invariant and modality-specific features by fre-
quency decomposition.

As illustrated in Fig. 3 (b), MDA consists of five modules, including down-
sampling, frequency decomposition, feature extraction, feature fusion, and up-
sampling. The Nt input patch embeddings z ∈ RNt×D are first downsampled to
K dimension (K ≪ D) with a downsampling module of a 1×1 convolution and a
GELU activation. Specifically, the 1D patch tokens are reshaped into 2D for the
next operation. Based on observations in Section 1, we then utilize a low-pass
filter and a high-pass filter to separate modality-invariant and modality-specific
features. The concatenated 2D feature is converted to the frequency map via FFT
transform. Two filter masks with a f×f kernel are overridden on the frequency
map for extracting low-frequency components and high-frequency components
separately. The filter masks are two 0/1 binary matrices with the same size as
the frequency map. For low-frequency components, the value is 1 inside the ker-
nel and 0 outside, while for high-frequency components, the value is 0 inside the
kernel and 1 outside. After filtering, two masked frequency maps are converted
to low-frequency features and high-frequency features using the IFFT trans-
form. Then, in order to extract features corresponding to specific frequencies,
modality-invariant features are sent to 5×5 Low-Frequency convolutions (LF
Conv), while modality-specific features are sent to 3×3 High-Frequency convo-
lutions (HF Conv), since a small kernel (3x3) tends to extract high-frequency
details, while a large kernel (5x5) is more sensitive to low-frequency features.
Moreover, we use convolution instead of linear transformation due to the local
information benefits FAS tasks greatly. The low-frequency features are added
to their corresponding high-frequency features of each modality to ensure the

3 The 7 possible ∆ are {1, 0, 0}, {0, 1, 0}, {0, 0, 1}, {1, 1, 0}, {1, 0, 1}, {0, 1, 1} and
{1, 1, 1}, corresponding to 7 modal combinations (RGB, Depth, IR, RGB+Depth,
RGB+IR, Depth+IR and RGB+Depth+IR).
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richness of information in feature of every modalities. We utilize a cross-modal
fusion convolution layer to interactively fuse features across multiple modali-
ties. Finally, the extracted modality-invariant and modality-specific features are
added and the 1D flatten sequences are upsampled with a 1×1 convolution and
a GELU activation.

After feature extraction and cross-modal fusion, the class token is sent to the
classification head for the final prediction Ŷi. The classification loss is Lcls =∑N

i=1 CE(Ŷi, Yi), where CE is binary cross entropy loss and Yi is the label.

3.3 LBP-guided Missing Modality Contrastive Learning

Although MDA effectively extracts modality-invariant and modality-specific fea-
tures, there lack of regulation of these two features. To further enhance the
modality-invariant and modality-specific features, we apply contrastive loss to
cluster images of the same modal combinations while separate images of different
modal combinations. The ensures features in the same modal combination con-
tain similar information, which is modality-invariant, while features in different
modal combination contain their own unique information, which is modality-
specific. However, the vanilla contrastive loss cannot be directly applied here
since the modal combinations are different in each batch under the sample-level
masking strategy, which means there may be no positive pairs in one batch.

To solve this problem, in MMA-FAS, we combine sample-level and batch-level
random masking strategies to obtain sufficient positive and negative samples
for computing the contrastive loss. Different from sample-level random masking
strategy, the batch-level random masking strategy randomly selects one ∆ in
a mini-batch so that the samples within the same batch belong to the same
modality combination. Therefore, we leverage the batch-level masking strategy
to generate positive sample pairs with the same modal combinations and the
sample-level masking strategy for negative sample pairs with different modal
combinations. As shown in Fig. 3(a), the batch-level random masking strategy
adopts one ∆ for all the samples in one batch such that all the samples in
the batch have the same modal combination, while the sample-level random
masking strategy randomly selects different ∆ for each sample in one batch. Let
∆b ∈ RB×3 and ∆s ∈ RB×3 denote the batch-level and sample-level masks for
patch embeddings zRGB , zDepth, zIR in a batch of size B, respectively. The two
CLS tokens are concatenated as

zs = concat(zclss , zrgbs , zdepths , zirs )

zb = concat(zclsb , zrgbb , zdepthb , zirb )
(1)

where zclsj , j ∈ {s, b} means the CLS token under sample-level masking and
batch-level masking, zjv, j ∈ {rgb, depth, ir}, v ∈ {s, b} means the patch embed-
dings of three modalities after sample-level masking and batch-level masking. zs
and zb are separately fed into the Nb blocks to extract modality-invariant and
modality-specific features. zclss and zclsb contain global spoofing cues for classifi-
cation.
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Negative Sample Pairs. We set the zclsb,i as the anchor, where i indicates the
ith samples in zclsb . To push away samples of different modal combinations and
labels, we leverage samples under the sample-level masking strategy as negative
pairs. The negative pair set is denoted as

b−i =

{
zclsb,n, if Yi ̸= Yn

zclss,n, if ∆b
i ̸= ∆s

n

. (2)

Positive Sample Pairs. For the purpose of pulling close samples of the
same modal combination and labels, we leverage samples under the batch-level
masking strategy as positive pairs. To this end, we design the positive pair set
as

b+i = {zclsb,p}, if Yi = Yp. (3)
LBP-Guided Weighting. Different from other tasks, different attack types

have different spoofing cues in FAS tasks [7], which means features of different
attack types should be separated. Since attack types could be missing in some
datasets, we introduce Local Binary Pattern (LBP) [1] features as the metric
to distinguish different attack types. If two spoofing features have similar LBP
features, these two features can be viewed as the same attack types. On the
contrary, if two spoofing features have different LBP features, these two features
belong to different attack types, which are separated. Therefore, to separate
different attack types in positive pairs, we leverage LBP feature similarity to
weigh the positive pairs. Given two spoofing features, an indicator determines
whether they are the same attack types.

s(a, b) = sim(fLBP (a), fLBP (b)), (4)

where sim(·, ·) denotes a similarity function and fLBP is the LBP feature ex-
tractor. We use this indicator to weigh the positive pairs and formulate the
contrastive loss [8].

Lcon=

N∑
i=1

−log

∑|b+i |
j=1 exp(s

+
i,j/τ) · sLBP

i,j∑|b+i |
j=1exp(s

+
i,j/τ)+

∑|b−i |
k=1exp(s

−
i,k/τ)

, (5)

where s+i,j = sim(zclsb,i , b
+
i,j), s

−
i,k = sim(zclsb,i , b

−
i,k), and sLBP

i,j = s(zclsb,i , b
+
i,j). Note

that sLBP
i,j is only computed for spoofing images with Yi = 0.

Besides, we apply mutual information to show the effectiveness of the pro-
posed loss.

Proposition 1 The LBP-Guided Contrastive Loss promotes to learn modality-
specific features by increasing the mutual information I(X;X+) but decreasing
I(X;X−), where X,X+ and X− are random variables of anchor, positive sam-
ples and negative samples.

The proof can be found in the supplementary materials. As a result, the overall
loss can be written as

L = Lcls + λ · Lcon, (6)
where λ is the trade-off parameter.
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Fig. 4: Comparison of different sampling strategies. (a) The vanilla sampling strategy
is uniformly distributed. (b) One-hot sampling aims to enhance one modal combination.
(c) our AMS leverages the cosine function to dynamically adjust the probability.

Table 1: Comparisons with state-of-the-art approaches for intra-dataset protocol in
WMCA ‘seen’ protocol and CASIA SURF. The bold font represents the best perfor-
mance and the underlining font represents the second best performance.

Methods Modalities
R D I RD RI DI RDI mean±std

WMCA
mmformer [33] 6.77 14.59 19.57 12.92 5.09 6.05 5.98 10.14±5.58
MMANet [27] 29.50 25.43 6.67 26.99 4.09 12.02 10.47 16.45±10.53
Vanilla ViT 12.84 14.08 12.30 12.68 13.67 13.54 7.68 12.39±2.17
FM-ViT [15] 2.45 2.84 3.10 2.58 2.83 2.86 1.17 2.54±0.64
MA-ViT [13] 5.64 3.75 2.15 2.46 2.94 2.57 1.51 3.00±1.35
AMA [29] 10.03 10.76 7.90 8.27 10.82 8.06 3.19 8.43±2.63
MAP [11] 11.14 7.43 5.24 8.79 3.87 5.03 4.43 6.56±2.66
MMA-FAS 4.42 3.63 1.46 1.80 1.38 1.88 1.25 2.26±1.24

CASIA-SURF
mmformer [33] 22.82 5.03 31.88 5.10 25.40 7.14 7.31 14.95±11.34
MMANet [27] 24.06 3.45 24.90 3.23 19.56 4.38 4.00 11.94±10.33
Vanilla ViT 34.81 35.16 32.04 33.92 34.34 34.33 7.19 30.25±10.22
FM-ViT [15] 13.24 4.05 3.54 6.51 8.47 3.90 3.52 6.17±3.62
MA-ViT [13] 12.67 2.66 4.39 5.47 8.78 4.62 2.12 5.81±3.71
AMA [29] 28.57 26.58 28.29 27.15 28.33 25.89 11.55 25.19±6.09
MAP [11] 32.45 28.53 8.53 27.04 29.73 22.25 2.38 21.55±11.56
MMA-FAS 12.99 3.25 4.26 4.86 6.58 3.87 3.17 5.56±3.47

3.4 Adaptively Modal Combination Sampling

Random masking training in missing modality scenarios often results in imbal-
ance training, i.e. the model converges faster in some modal combinations and
slower in other modal combinations (weak combinations). To balance the train-
ing process of weak combinations, MMANet [27] applies an auxiliary classifier
for the weak combination to encourage the model to focus more on the weak
combination. However, as shown in Fig. 6 (b), by simply applying the auxiliary
classifiers, MMANet only focuses on one weak modal combination, which may
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cause performance degradation over other modal combinations. To balance the
training process of all the modal combinations, we propose the AMS strategy to
simultaneously balance the training process of all the modal combinations.

In batch-level and sample-level random masking strategies, the sampling
probability distribution for every modal combinations is uniform, as shown in
Fig. 4 (a). If we increase the probability of one modal combination, the model
will face more samples of this modal combination, which is more focused on this
modal combination, as shown in Fig. 4 (b). To balance all the modal combi-
nations, we assign different sampling probabilities to each modal combination.
To be specific, for each modal combination, MMANet [27] calculates its KL di-
vergence of prediction distribution with the complete modalities as prediction
discrepancy and we leverage these prediction discrepancy as imbalance score for
all the modal combinations. We rank the imbalance scores from the largest to
the smallest and calculate the cosine function of the imbalance scores as the
sampling probability, as shown in Fig. 4(c). Finally, we reorder the the sampling
probability as in Fig. 4 (d). It is worthy noting that we assign sampling prob-
ability for every modal combinations to encourage the model to synergistically
focus on all the modal combinations.

4 Experiments

4.1 Dataset and Performance Metrics

Following [29], we experiment on WMCA [6], CASIA-SURF [32] and CASIA-
SURF CeFA (CeFA) [14]. We use all three datasets to experiment in the missing
modality scenario. As for evaluation metrics, we leverage Average Classification
Error Rate (ACER) for intra-dataset experiments. The ACER on the testing
set is determined by the Equal Error Rate (EER) threshold on dev sets for
CASIA-SURF and CeFA, and the BPCER=1% threshold for WMCA [29].

4.2 Implementation Details

We adopt MultiViT-B [2] as our backbone with 3 tokenizers and 12 ViT blocks.
The number and dimension of patch embeddings are D = 768 and Nt = 589.
The kernel size of the filtering mask in MDA f is 2. The trade-off parameter λ
is set to 0.1. We use Adam optimizer and the learning rate is set to 7e-4 with
a cosine decline schedule. We train 100 epochs with batch size 32 and weight
decay 5e-3. The code will be made available upon acceptance.

4.3 Experimental Results

To validate the ability to address missing modality problems in FAS, we evaluate
MMA-FAS on various combinations of modalities under varying settings and
compare with i) general methods directly employed to solve missing modality
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Table 2: Comparisons of cross-dataset protocol. The models are trained on WMCA
’seen’ protocol and tested on CASIA-SURF.

Methods Modalities
R D I RD RI DI RDI mean±std

mmformer [33] 47.93 49.92 49.49 49.79 45.54 49.82 48.76 48.75±1.58
MMANet [27] 55.48 40.27 53.46 62.06 56.14 50.01 62.26 54.24±7.57
Vanilla ViT 28.19 29.56 22.42 29.46 28.52 24.35 25.51 26.85±2.78
FM-ViT [15] 28.01 26.32 22.50 25.38 24.66 21.07 24.98 24.70±2.31
MA-ViT [13] 28.32 25.52 23.67 23.94 24.48 22.57 23.78 24.61±1.86
AMA [29] 26.97 21.85 22.92 22.37 23.89 26.57 21.63 23.74±2.19
MAP [11] 41.64 35.61 44.41 48.76 31.47 25.71 31.31 36.98±8.23
MMA-FAS 24.23 24.39 22.20 17.56 21.45 20.97 22.62 21.91±2.59

Table 3: Comparisons of cross attack protocol. We leverage CeFA (protocol4@3) and
WMCA (’flexiblemask’) in this protocol.

Methods Modalities
R D I RD RI DI RDI mean±std

Protocol4@3
mmformer [33] 19.11 43.14 40.11 48.04 23.01 32.45 32.32 34.02±10.53
MMANet [27] 57.92 36.31 5.18 34.42 10.24 16.51 13.09 24.81±18.81
Vanilla ViT 26.84 25.29 26.18 26.96 25.76 26.23 13.59 24.40±4.80
FM-ViT [15] 30.53 34.20 28.53 29.23 26.47 20.19 18.43 26.79±5.64
MA-ViT [13] 26.88 35.51 25.14 26.99 24.55 22.16 19.81 25.86±4.96
AMA [29] 34.65 34.37 34.63 34.42 32.89 34.02 19.45 32.06±5.59
MAP [11] 52.34 42.86 40.73 37.66 52.30 34.83 23.47 40.59±10.12
MMA-FAS 19.06 12.21 14.34 19.99 20.91 6.58 8.86 14.56±5.65

WMCA Flexiblemask
mmformer [33] 31.04 49.61 31.96 41.26 40.24 34.44 38.31 38.12±6.42
MMANet [27] 37.30 45.58 30.28 35.31 17.94 36.49 23.56 32.35±9.26
Vanilla ViT 21.03 53.51 42.52 16.73 19.06 32.49 21.18 29.50±13.95
FM-ViT [15] 22.34 46.86 38.59 20.28 18.47 31.11 25.78 29.06±10.46
MA-ViT [13] 22.68 45.14 36.61 21.15 16.48 35.52 21.17 28.39±10.62
AMA [29] 20.73 44.71 26.78 11.98 12.68 30.94 9.15 22.42±12.72
MAP [11] 28.40 60.56 49.77 35.29 33.72 40.14 12.09 37.13±15.47
MMA-FAS 21.10 35.08 20.07 11.44 10.54 25.63 9.65 19.07±9.34

problems in FAS (i.e., MMANet [27], mmformer [33], MAP (short for Missing-
aware Prompts) [11]), and ii) recent methods in flexible modal FAS (i.e., FM-
ViT [15] and MA-ViT [13]). We reproduce the results of FM-ViT [15] and MA-
ViT [13] due to their lacking of codes. Besides, we directly apply AMA [29] in
missing modality scenarios for comparison4. For simplicity, we abbreviate each
modality combination in our experiments ({R, D, I, RD, RI, DI, RDI} are short
for {RGB, Depth, IR, RGB+Depth, RGB+IR, Depth+IR, RGB+Depth+IR})
seperately.

Intra-dataset Protocol. Table 1 shows that MMA-FAS outperforms other
methods on WMCA (‘seen’ protocol) and CASIA-SURF. This demonstrates the
effectiveness of our missing modality adapters. Meanwhile, MMA-FAS has less
variance than other methods, indicating our AMS mines the weak combinations

4 AMA [29] is trained without modality masking but we train AMA with modality
masking to mimic the missing modality. Besides, AMA are trained separately for
each modal combination in [29] but we train AMA once for all modal combinations.
Therefore, the results are different from those in [29]
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Table 4: Ablation study on each component of the proposed MMA-FAS.

MultiViT MDA Contrastive LBP-Guided AMS Mean ACER (%)
! % % % % 12.39
! ! % % % 4.28
! ! ! % % 3.59
! ! ! ! % 2.72
! ! ! ! ! 2.26

(a) (b)
Fig. 5: TSNE visualization of (a) extracted features in the adapters from the low
layer (layer 1) and high layer (layer 11). (b) Top two columns: extracted features
in different modal combinations w/o and w contrastive loss. Bottom two columns:
extracted features of different attack types w/o and w LBP-guided contrastive loss.

effectively. The great performance gap between MMA-FAS and other methods
illustrates the essential role of modality-specific features. Besides, MMA-FAS
achieves slightly higher performance with FM-ViT [15] and MA-ViT [13] while
our MMA-FAS only contains 20× less training parameters than these methods
(10.48M vs 271M).

Cross-dataset Protocol. To evaluate the cross-dataset generalization abil-
ity, we use WMCA for training and CASIA-SURF for testing. Table 2 shows
that MMA-FAS achieves better and more stable performance, indicating the
high-frequency components generalize well across datasets.

Cross-attack Protocol. We use ‘protocol4@3’ on CeFA and the ‘flexible-
mask’ protocol on WMCA. The model is trained on fixed attack types and eval-
uated on unknown attack types. Table 3 shows that MMA-FAS also achieves the
best performance in the more difficult settings.

4.4 Visualizations.

Fig. 2(b)(c)(d) visualize the frequency map of extracted features in AMA [29],
MAP [11] and our MMA-FAS. It is obvious that AMA [29] and MAP [11] mainly
focus on low-frequency and high-frequency regions, while our MMA-FAS takes
both low-frequency and high-frequency information into account. Meanwhile,
this visualization confirms that our motivation is correct.
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(a) (b)
Fig. 6: (a) Ablation study for position of MMA-FAS. (b) The learning process of weak
combinations without AMS (left) and with AMS (right).
Table 5: Dimension K for
MDA.

K Mean ACER (%)
16 3.03
32 3.75
64 2.72
78 4.45
128 3.18

Table 6: Length of fre-
quency mask f for MDA.

f Mean ACER (%)
2 2.26
3 3.98
4 5.84
5 8.27
6 5.67

Table 7: Results with various
feature descriptors (FD).

FD Mean ACER (%)
LBP [1] 2.26
HoG [10] 3.99
DoG [34] 3.18
SIFT [20] 2.82

Fig. 5(a) provides the TSNE visualizations on feature distribution in adapters
in WMCA dataset. Different colors refer to features of different modalities. It
is intuitive that the AMA captures modality-invariant features in both low and
high layers, while MMA-FAS captures both modality-invariant and modality-
specific features simultaneously. The modality-invariant features overlap in dif-
ferent modalities, while modality-specific features classify different modalities
properly.

Fig. 5(b) visualize the distribution of the CLS token extracted by MMA-
FAS in different modal combinations in WMCA dataset with and without LBP-
guided supervised contrastive loss. It is obvious that only applying MDA without
LBP-guided contrastive loss distinguishes different modal combinations prelim-
inarily, which contain some modality-specific features. The distribution of live
and spoofing samples is even not aligned. However, leveraging LBP-guided con-
trastive loss efficiently clusters samples according to modal combinations and
categories, and live-spoofing sample separation is well aligned in different modal
combinations. Meanwhile, Fig. 5(b) visualize the distribution of features of dif-
ferent attack types. Under the guidance of the LBP feature, the different attack
types are successfully separated and the MultiViT extracts characteristic fea-
tures specific to the attack types.

4.5 Ablation Study

We further validate the effectiveness of each component of MMA-FAS on WMCA.
Table 4 shows MMA-FAS suffers worse ACER when removing any component.

Position of Adapters. As shown in Fig. 6(a), we yield the best performance
by only applying adapters to FFN, since FFN contains more useful knowledge
but MHSA is just used to calculate similarity.

Dimension K of Adapters. Table 5 shows that the best performance is
obtained when the dimension K is 64. This is consistent with the result in [3].



14 G. Zheng et al.

Kernel Size f of Filtering in MDA. We evaluate different kernel sizes f of
filtering masks in MDA. The smaller f is, the more high-frequency information is
used for modality-specific feature extraction. Table 6 shows that when f = 2, the
performance of MMA-FAS achieves the best. When the kernel size f increases,
the performance of MMA-FAS decreases. This is because a larger kernel size
results in less modality-specific feature extraction. On the contrary, small kernel
size f ensures sufficient modality-specific features extracted by MDA.

Feature Descriptors in Contrastive Loss. We evaluate several common
used feature descriptors (LBP [1], HoG [10], DoG [34] and SIFT [20]) in con-
trastive loss for comparison. As shown in Table 7, the LBP descriptors achieves
the best performance, which is consistent with the results in [21].

Balanced Learning for Every Modal Combinations. To illustrate the
effectiveness of AMS, we train the MMA-FAS model with sampling probability
adjustment for 5 epochs. As shown in Fig. 6(b), given the weak combinations
[’RGB+Depth’, ’IR’, ’Depth+IR’] with imbalanced scores from the largest to
the smallest, MMANet [27] results in the performance increase of this modal
combination, while performance decrease of other two modal combinations dur-
ing training, which only increases the probability of ’RGB+Depth’. However,
after adjusting sampling probabilities using our AMS, the performance of all
three modal combinations increases, while the most imbalanced combination
’RGB+Depth’ increases greatly. This demonstrates that our AMS encourages
the model to balance all the modal combinations simultaneously.

5 Conclusion

In this paper, we propose a comprehensive framework delicately designed for
FAS to tackle the missing modality problem. We propose modality-disentangle
adapters, which extract and enhance modality-invariant and -specific features si-
multaneously from the view of frequency decomposition. We also combine batch-
level and sample-level masking strategies to generate positive pairs and negative
pairs for LBP-guided contrastive loss to further enhance modality-specific fea-
tures. As for weak combinations, we propose a adaptively modal combination
sampling strategy to dynamically adjust the probability of each combination.
Extensive experiments demonstrate the effectiveness of MMA-FAS for missing
modality scenarios.
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ral Science Foundation of China under Grant 62125109, Grant 61931023, Grant
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