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S1 Per-scene Results

Table S1: Per-scene comparison between 3D Gaussian Splattng [3], MERF [5] and
our method on the Mip-NeRF 360 dataset.

Method Outdoor Scenes Indoor Scenes Meanbicycleflowergardenstump tree room counterkitchenbonsai

PSNR ↑

Gaussian-30K [3] 25.06 21.40 27.33 26.67 22.49 31.67 29.09 31.53 32.31 27.51
Gaussian-7K [3] 23.39 20.32 26.05 25.57 22.06 29.53 27.26 29.23 29.80 25.91
MERF [5] 22.62 20.33 25.58 25.04 22.39 29.28 25.82 27.42 28.68 25.24
NGP-RT (Ours) 22.40 18.88 26.22 24.54 21.74 29.75 27.27 28.95 31.04 25.64

SSIM ↑

Gaussian-30K [3] 0.750 0.590 0.860 0.770 0.640 0.927 0.915 0.932 0.947 0.813
Gaussian-7K [3] 0.640 0.510 0.810 0.720 0.590 0.903 0.887 0.910 0.928 0.766
MERF [5] 0.595 0.492 0.763 0.677 0.554 0.874 0.819 0.842 0.884 0.722
NGP-RT (Ours) 0.610 0.430 0.820 0.690 0.530 0.894 0.852 0.889 0.930 0.737

LPIPS ↓

Gaussian-30K [3] 0.244 0.360 0.122 0.243 0.347 0.197 0.183 0.116 0.180 0.211
Gaussian-7K [3] 0.374 0.440 0.186 0.328 0.435 0.239 0.229 0.149 0.212 0.288
MERF [5] 0.371 0.406 0.215 0.309 0.414 0.292 0.307 0.224 0.262 0.311
NGP-RT (Ours) 0.400 0.485 0.214 0.366 0.449 0.197 0.231 0.165 0.186 0.299

Time(ms) ↓

Gaussian-30K [3] 19.65 10.02 16.67 11.54 11.21 9.65 9.12 10.99 7.30 11.79
Gaussian-7K [3] 12.70 7.62 13.40 9.17 8.15 8.03 8.43 10.25 6.34 9.34
MERF [5] - - - - - - - - - 8.40
NGP-RT (Ours) 9.00 11.70 8.72 10.23 10.29 7.97 10.15 7.37 7.85 9.25

We present a comparison of our method NGP-RT (L = 2, LC = 512) with
two recently prominent techniques, 3D Gaussian Splatting [3] and MERF [5],
for real-time rendering of unbounded 360-degree scenes. The per-scene results
are summarized in Table S1, including metrics such as PSNR, SSIM, LPIPS for
rendering quality, and rendering time in ms at a resolution of 1080×1920.

Regarding the rendering time of MERF, we only provide the average time
across all views calculated from the fps number reported in the original paper,
as the released jax code1 does not support real-time rendering of the baked
1 https://github.com/google-research/google-research/tree/master/merf
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MERF model. With the provided real-time rendering solution using web viewer,
we cannot accurately measure the rendering time from the test views due to the
upper bound of the rendering speed.

As for the rendering time of 3D Gaussian Splatting and NGP-RT, we measure
them on the same Nvidia RTX 3090 GPU to ensure fairness. We evaluate 3D
Gaussian Splatting with two configurations, 7K and 30K iterations, following the
original paper. The Gaussian-30K version achieves better rendering quality with
larger number of 3D gaussians, which leads to the slower rendering speed. As for
the Gaussian-7K version, NGP-RT produces comparable rendering quality to it
with similar rendering speed.

Different from our 1080×1920 resolution for evaluation, the original paper of
3D GS evaluates at the “reference resolution”, which is specified as the resolution
of images_2 for indoor scenes (∼1000×1500) and the resolution of images_4 for
outdoor scenes (∼800×1200). To perform a more comprehensive comparison, we
also evaluate NGP-RT at the same “reference resolution” and present the results
in Table S2. The experimental results of 3D GS are directly copied from the
original paper.

As demonstrated by the above comparisons, NGP-RT produces comparable
rendering quality to Gaussian-7K with similar rendering speed, showing that
our advancements allow NeRF-based methods to rival the performance of 3D
Gaussian Splatting with similar model size (250MB for NGP-RT v.s. 523MB for
Gaussian-7K).

S2 Implementation Details

S2.1 Network Design

Multi-level Hash Features. In NGP-RT, we set the resolution of the coarse-
grained level to LC = 512, and the resolutions of the fine-grained levels to 1024
and 2048 for L = 2. With each increase in L, we double the resolution of the
finest level. As mentioned in Section 4.1, we employ an auxiliary NGP model
to optimize the coarse-grained features and attention parameters. This auxiliary
model comprises 6 coarse-grained resolution levels ranging from 16 to LC = 512.
Each coarse-grained level has a hash table with a maximum length of 221 and
a feature dimension of 4. After training and baking the features into feature
grids, this auxiliary NGP model will be discarded. Regarding the L fine-grained
resolution levels, we set the length of the hash tables to 222 to accommodate
diverse high-resolution features. The hash tables at the fine-grained levels consist
of explicit 8-dimensional deferred NeRF features, as opposed to the implicit
features used in the coarse-grained levels.

Forward Pass. For 3D points sampled along the casting ray of a training
pixel, we extract coarse-grained hash features from different resolution levels.
These features are then concatenated into a 24-dimensional vector. We feed
this vector into a shallow MLP with 1 hidden layer containing 64 neurons.
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Subsequently, the MLP decodes the concatenated features into a (8 + 2L)-
dimensional coarse-grained feature. This feature includes a 1-dimensional den-
sity value σ̃, a 3-dimensional RGB color value c̃d, a 4-dimensional feature vector
f̃s for view-dependent colors, and a 2L-dimensional set of attention parameters
a = [ω1, β1, . . . , ωL, βL] for the L fine-grained resolution levels. The attention pa-
rameters are used to aggregate the fine-grained hash features, while the density
values are employed to accumulate the color features through volume render-
ing. After the alpha composition process, we utilize another MLP, denoted as
MLPψ, to decode the view-dependent colors according to Eq. (5). MLPψ con-
sists of two hidden layers, each with 64 neurons. In addition to the accumulated
view-dependent features, MLPψ takes the embedding of the view direction as
input. This view direction embedding is represented by a 16-dimensional vector
that encodes a 4-degree spherical harmonics representation.

Table S2: Per-scene comparisons between 3D Gaussian Splattng [3] and our method
using the resolution settings utilized in the 3D Gaussian Splatting paper on the Mip-
NeRF 360 dataset.

Method Outdoor Scenes Indoor Scenes Meanbicycle flower garden stump tree room counter kitchen bonsai

PSNR ↑
Gaussian-30K [3] 25.25 21.52 27.41 26.55 22.49 30.63 28.70 30.32 31.98 27.21
Gaussian-7K [3] 23.60 20.52 26.25 25.71 22.09 28.14 26.71 28.55 28.85 25.60
NGP-RT (Ours) 22.50 19.03 26.19 24.70 21.68 29.81 27.24 28.94 31.03 25.68

SSIM ↑
Gaussian-30K [3] 0.771 0.605 0.868 0.775 0.638 0.914 0.905 0.922 0.938 0.815
Gaussian-7K [3] 0.675 0.525 0.836 0.728 0.598 0.884 0.873 0.900 0.910 0.770
NGP-RT (Ours) 0.621 0.425 0.823 0.692 0.537 0.888 0.853 0.885 0.929 0.739

LPIPS ↓
Gaussian-30K [3] 0.205 0.336 0.103 0.210 0.317 0.220 0.204 0.129 0.205 0.214
Gaussian-7K [3] 0.318 0.417 0.153 0.287 0.404 0.272 0.254 0.161 0.244 0.279
NGP-RT (Ours) 0.391 0.475 0.215 0.360 0.437 0.201 0.231 0.162 0.187 0.295

FPS ↑
Gaussian-30K [3] - - - - - - - - - 134
Gaussian-7K [3] - - - - - - - - - 160
NGP-RT (Ours) 175 139 183 161 167 190 171 201 189 175

Activation Layers. In NGP-RT, we employ different activation functions
and strategies for features of different modalities.

1) For the per-point density value σ, we apply the exponential function with
truncated gradients for activation following [4].

2) For the per-point and per-level attention parameters {ωl, βl}, we utilize a
Sigmoid layer to normalize them to the range of [0, 1].

3) As for features of the color modality, we first compute the RGB values for
the training pixel using Eq. (5). Then, we apply a Sigmoid layer to normalize
the color components to the range of [0, 1].

Number of Feature Parameters. At the rendering stage, we discard the
auxiliary NGP model and bake the coarse-grained features into a sparse feature
grid F̃ . The dimensions of F̃ are LC×LC×LC×(8+2L), where LC represents the
coarse-grained resolution, and L denotes the number of fine-grained resolution
levels. The sparsity ratio is around 2%, which is similar to that of MERF. Overall,
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the number of feature parameters of the NGP-RT model in Table 1 is comparable
to that in MERF, which contains a 512 × 512 × 512 × 8 coarse-grained feature
grid with sparsity ratio of 2% and three 2048× 2048× 8 feature planes. Thereby
the comparisons between NGP-RT (L = 2, LC = 512) and MERF in Table 1 and
Table S1 are fair. We can calculate the number of parameters for both models
as follows:

NMERF = 8× (0.02× 5123 + 3× 20482) = 122.1M,

Nours = 12× 0.02× L3
C + 8× L× 222 = 99.32M.

(S1)

S2.2 Loss Functions

We train NGP-RT with the Huber Loss [2] Lcolor of predicted color values and
the regularizer Ldist proposed in Mip-NeRF 360 [1]. The overall loss function for
each training pixel can be formulated as follows,

L = Lcolor + ηLdist,
Lcolor = LHuber(Cpred,Cgt),

Ldist =
∑
i,j
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∑
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w2
i (ti+1 − ti),

(S2)

where wi denotes the rendering weight and ti denotes the ray distance. In our
experiments, we set η = 0.01 to adjust the strength of the regularization term
and effectively regularize the underlying radiance field of NGP-RT.

We also observe that a high η leads to missing parts (e.g., petals and leaves) in
the renderings of intricate small structures, resulting in degenerated rendering
quality for outdoor scenes. As shown in Table S3, by tuning the weight η for
each outdoor scene, we achieve comparable rendering quality to MERF while
maintaining an acceptable average rendering speed (102 FPS) across all Mip-
NeRF 360 scenes.

Table S3: Experimental results with tuned weights η for Ldist.

bicycle flower garden stump treehill outdoor Mip-NeRF 360

η 0.005 0.001 0.010 0.001 0.005 - -
PSNROurs 22.71 19.86 26.22 24.93 22.43 23.23 25.91

PSNRMERF 22.62 20.33 25.58 25.04 22.39 23.19 25.24

S2.3 Auto-tuning of Marching Step Size

During the training stage of NGP-RT, the regularization term Ldist gradually
sparsifies the underlying radiance field of NGP-RT, which results in fewer sam-
pled points along each casting ray. Such a reduction on the number of sampled



NGP-RT Supp. 5

Fig. S1: Illustration of the optimization process of N̄batch, γ and s.

points alleviates the burden of frequent feature access and helps to achieve real-
time rendering. However, the strength of regularization can make our model get
stuck into suboptimals with only one even no sampled points on the casting rays.
To prevent the collapse into an excessively small number of sample points, we
introduce an auto-tuning strategy of ray marching step size when the number of
sampled points hits a minimum value Nmin at the training stage. Specifically, we
count the average number of sampled points N̄batch across all casting rays inside
the training batch. According to N̄batch of the last training batch, we design a
strategy to automatically tune a scaler γ for the marching step size to avoid over
sparsification. The auto-tuning strategy can be formulated as follows,

s = γ · s0,

γ =

{
min{1.0, (1 + κ) · γ}, if N̄batch ≥ Nmin ,

max{γmin, (1− κ) · γ}, otherwise,
(S3)

where s0 denotes the base step size varying according to the specially designed
contraction function, s denotes the scaled step size which is utilized in ray march-
ing, and γmin denotes the minimum value for the scaler γ. In our experiments, we
set the base step size inside our [−1, 1]

3 ROI grid to 2
√
3

512 , Nmin = 3 to reserve
a small number of marching points, κ = 0.001 for the progressive multiplier,
γmin = 0.2217 for the minimum value of scaler γ, and the initial value of γ to
1.0. We plot the optimization progress of N̄batch, γ and s in Figure S1, which
reflects the effectiveness of our auto-tuning strategy.

S2.4 Optimization

We train NGP-RT for 100k iterations using an Adam optimizer with an linearly
decaying learning rate. The learnig rate is warmed up during the first 1k itera-
tions where it is increased from 0 to 0.01, and then decay to 0 in the following
iterations. The weighting parameter η for Ldist is linearly warmed up in the first
50k iterations from 0 to 0.01, and then remains as a constant value. Adam’s
hyperparameters β1, β2 and ϵ are set to 0.9, 0.99 and 1e-8, respectively. When
collecting the training batch of rays, we expect the total number of sample points
to be less than 221 and the total number of rays to be less than 8000.
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S2.5 Real-time Rendering

At the rendering stage, we utilize several techniques to further improve the
rendering speed.

1) We employ the visibility culling and occupancy dilation techniques simi-
lar to MERF [5] to generate the occupancy grid for rendering, which contains
much less occupied positions compare to that utilized at the training stage. The
occupancy grid is then down-sampled to 5 resolution levels including 5123, 2563,
1283, 643, and 323 for fast occupancy check.

2) We stop the ray marching of a casting ray when the transmittance value
of a sampled point is less than 2e-3, in order to avoiding redundant samplings
in the empty space behind the visible surfaces.

3) We utilize the fully fused MLP implemented in tiny-cuda-cnn2 to acceler-
ate the execution of our view-dependent MLPψ.

4) We implement a CUDA-based C++ program to render NGP-RT at the
fast speed. Our implementation utilizes aligned memory to increase the efficiency
of memory fetching performed by CUDA kernels.

S3 Analysis of Hash Feature Attention

S3.1 Example of Hash Collision Reduction

To demonstrate the collision reduction effects of our attention mechanism, we
examine two 3D points in the bonsai scene: Point PA on the detailed flowers and
Point PB on the flat floor.

At the 2048 resolution, two corners of their enclosing voxels collide after the
hash function. Therefore both points influence the learning of the same hash
entry H. As shown in Table S4, PA and PB have similar influence weight ξ on
H due to the similar point-to-corner distance. Similar ξ values result in hash
collision and impede the optimization of H due to averaged gradient directions.

Differently, NGP-RT disambiguates PA and PB using different ω and β val-
ues. This offloads the influence of PB to another resolution level and alleviates
the hash collision. As a result, the improved allocation of hash features con-
tributes to a notable enhancement in rendering the bonsai scene. Please refer to
Figures S2 to S5 for more visualizations of the attention weights allocation.

Table S4: Pre-attention weights ξ and post-attention weights ξ′.

PX Resolution ξX ω(X) β(X) ξ′X,ω = ξX · ω(X) ξ′X,β = ξX · β(X)

PA 2048 0.436 0.257 0.636 0.112 0.277
PB 2048 0.515 0.033 0.164 0.017 0.084

PB 1024 0.604 0.349 0.671 0.211 0.405

2 https://github.com/NVlabs/tiny-cuda-nn
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S3.2 Visualization of Attention Parameters

Besides the visualizations of multi-level color contributions in Figure 6, we fur-
ther visualize the post-Sigmoid attention parameters of NGP-RT (L = 4) in Fig-
ures S2 to S5 to illustrate the functionality of the proposed lightweight attention
mechanism. We generate the visualization results by applying volume rendering
to the attention weights.

As shown in the visualizations, different fine-grained levels focus on different
regions with the help of our lightweight attention mechanism, which sufficiently
exploits the expressive power of multi-level hash features. We also notice that the
regions-of-interest for attention parameters ω and β are different, indicating that
it is necessary to employ separate attention parameters for the density values
and color-related features.

Fig. S2: Visualization of the color decomposition and multi-level attention parameters
for the density values and color-related features.
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Fig. S3: Visualization of the color decomposition and multi-level attention parameters
for the density values and color-related features.

Fig. S4: Visualization of the color decomposition and multi-level attention parameters
for the density values and color-related features.
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Fig. S5: Visualization of the color decomposition and multi-level attention parameters
for the density values and color-related features.
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