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Abstract. Neural Radiance Field (NeRF) methodologies have garnered
considerable interest, particularly with the introduction of grid-based
feature encoding (GFE) approaches such as Instant-NGP and TensoRF.
Conventional NeRF employs positional encoding (PE) and represents a
scene with a Multi-Layer Perceptron (MLP). Frequency regularization
has been identified as an effective strategy to overcome primary chal-
lenges in PE-based NeRFs, including dependency on known camera poses
and the requirement for extensive image datasets. While several studies
have endeavored to extend frequency regularization to GFE approaches,
there is still a lack of basic theoretical foundations for these methods.
Therefore, we first clarify the underlying mechanisms of frequency regu-
larization. Subsequently, we conduct a comprehensive investigation into
the expressive capability of GFE-based NeRFs and attempt to connect
frequency regularization with GFE methods. Moreover, we propose a
generalized strategy, G2f R: Generalized Grid-based Frequency Regular-
ization, to address issues of camera pose optimization and few-shot re-
construction with GFE methods. We validate the efficacy of our methods
through an extensive series of experiments employing various represen-
tations across diverse scenarios.

Keywords: Implicit neural representation · Grid-based NeRF · 3D scene
reconstruction

1 Introduction

The growing interest in Neural Radiance Field (NeRF) [24] has triggered ex-
tensive investigation into the implicit neural representation (INR) of 3D scenes
across various research fields. Especially, the introduction of grid-based feature
encoding (GFE) methods, such as Instant-NGP [25], Zip-NeRF [2], TensoRF [3],
and Tri-MipRF [13], further enhances the performance of NeRF-related tech-
niques in various tasks. Unlike conventional positional encoding (PE) in MLP-
based NeRF, these methods use a 3D spatial grid to preserve local features and
transform the input coordinates into feature space by interpolating neighbor-
ing grid points. Therefore, GFE-based methods exhibit different behavior from
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Fig. 1: General overview of the concept. Left: an analysis of expressive power in the
frequency domain for PE NeRFs, a topic extensively explored and deliberated upon
in existing literature [44]. Right: extending this analysis to GFE NeRFs. According
to our study, there is a similar conclusion in GFE, but the determinative factor for
frequency bands is the grid resolution.

PE-based methods because of the heterogeneity of the feature space. Moreover,
methods such as NeuRBF [6] achieve good reconstruction performance without
the need for spatial grids.

While many traditional tasks have benefited from the aforementioned meth-
ods, challenges still remain for NeRF-related methods, such as the need for
accurate camera poses and large amounts of training data. Several effective
strategies have been proposed for PE-based NeRF to address these challenges.
Regarding the camera pose problem, many studies propose leveraging the differ-
entiable nature of NeRF to integrate camera parameters into the computational
graph [16, 42]. Concerning the issue of limited input, many works suggest em-
ploying pre-trained models to estimate and predict information for unseen areas,
yielding promising performance [4, 15,43].

Among the many existing strategies, frequency regularization emerges as a
prevailing solution to address these challenges. The coarse-to-fine optimization
scheduler applied in [18] avoids the local minima encountered during camera
pose optimization. The progressively expanding mask on the positional encoded
vectors [41] governs the frequency components directly from the input, thereby
achieving novel view synthesis within a few-shot setting. These methodologies
emphasize the importance of frequency regularization across diverse tasks with-
out introducing extra computational overhead. We can explain and comprehend
the promising results brought by this technique with the insights into the ex-
pressive capability of MLP-based INR [44]. Despite similar strategies being em-
ployed in GFE methods, demonstrating their beneficial impact [11, 17, 27, 38],
their underlying mechanisms, necessity, and functionality in discrete grids re-
main inadequately addressed from a theoretical standpoint.

Therefore, in this study, we provide a detailed validation of the GFE meth-
ods with the aim of elucidating the expressive capability of GFE through Fourier
analysis. Fig. 1 gives an overview of our concept. Subsequently, we revisit the
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camera pose optimization and few-shot NeRF problem and delve into the theo-
retical support of the frequency regularization approach [18,41]. We show that by
applying G2f R: generalized grid-based frequency regularization, one may over-
come the challenges associated with local minima in GFE NeRFs. Furthermore,
we undertake extensive experiments to fortify our theoretical proposition.

Our contributions are summarized as follows:

– We offer a theoretical analysis of GFE NeRFs, shedding light on their ex-
pressive capability through their behavior in the frequency domain.

– We demonstrate that the supported frequency bands depend on the res-
olution of the grids and additionally propose G2f R to extend frequency
regularization concept to GFE NeRFs.

– We elucidate the significance of the generalization, which further supports
the validity and necessity of frequency regularization.

2 Related Work

2.1 NeRF Related Implicit Neural Representations

NeRF stands out as a widely embraced INR example in the context of novel view
synthesis [24]. NeRF employs a fully connected MLP for scene representation,
which is used to retrieve color and density information for each input point. Then,
volume rendering is applied to integrate the queried colors along camera rays,
yielding estimated colors corresponding to pixels. This straightforward pipeline
for dense reconstruction positions NeRF-related INRs as favorable choices for
tasks such as SLAM and 3D reconstruction [23,26,40,46,48]. The implicit nature
of INRs also enables easier approaches for handling information from different
types of sensors [8, 12,14,47].

2.2 Encoding Methods in NeRFs

The encoding methods for input coordinates in NeRFs can be broadly categorized
into two types: positional encoding (PE) and grid-based feature encoding (GFE).

PE typically maps the input coordinates to higher-frequency contents before
feeding them into an MLP [29, 30, 34]. As extensively studied by various re-
searchers [24,34,44], PE stands out as a cornerstone of NeRF’s success. Further
investigations emphasize the significance of the rank of the embedding matrix
concerning the encoding function [45]. Generally speaking, PE methods offer the
advantage of generating compact models while preserving high-frequency details.
However, a significant drawback is the typically long training time.

GFE methods explicitly generate grid maps in which the grid points en-
capsulate local features, then utilize linear interpolation to obtain the feature
located at the input coordinate [3, 13, 25]. GFE methods usually have better
memorization ability and can converge faster; nonetheless, they cost larger mem-
ory [9, 33]. Hence, there’s a growing interest in relatively memory-efficient tech-
niques. Instant-NGP employs a hash mapping technique to effectively reduce the
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memory requirement down to the size of the hash table [25]. TensoRF and Tri-
Miprf are inspired by tensor decomposition and represent the high-dimensional
feature tensors as the outer product of 1D vectors and 2D planes [3, 13]. [37]
introduces a hybrid encoding method, which leverages PE for coarse components
and integrates GFE to capture high-frequency details.

2.3 NeRF with Camera Pose Optimization

Requirement for accurate camera pose inputs remains one of the the major is-
sues of NeRF. Including camera pose parameters in the training is the most
straightforward yet effective approach [16, 32, 39, 42]. To avoid local minima in
the training process, many methods are proposed, including more complex rep-
resentations for camera poses [5, 20], and control of PE inputs [10, 18], which
can be considered as a form of frequency regularization. Chng et al . highlight
the effect of applying Gaussian-based activation function, suggesting PE with
Fourier contents might not be necessary [7].

This task is also feasible for GFE NeRFs. The rapid convergence of GFE
facilitates the utilization of Monte Carlo approaches, effectively enhancing ro-
bustness [19]. Heo et al . [11] emphasize the impact of smooth gradient with
respect to interpolation methods inside grids. Furthermore, Park et al . [27] use
preconditioners to enable smoother and more robust optimization of camera
intrinsic and extrinsic parameters.

2.4 Few-Shot NeRF

Another primary issue for NeRF is the requirement for a large number of input
images. Many efforts have also been made targeting the Few-Shot reconstruction
task. Conventional approaches typically use pre-trained models to extrapolate
observed information to unobserved regions. These approaches commonly apply
CNN models [4, 43] and transformers [35, 36] to extract latent features from in-
put images. Then, they employ a learnable volume rendering technique combined
with a feature decoder for color synthesis. Jain et al . [15] utilize a CLIP-based
Vision Transformer to ensure semantic consistency between reference and query
views. Moreover, frequency regularization is also applicable to this issue. Yang et
al . [41] have proposed a method that masks high-frequency parts in positional
encoded vectors to ensure low-frequency components in the scene are properly
learned. This work makes few-shot reconstruction possible even without intro-
ducing additional pre-trained models.

It is noteworthy that frequency regularization methods have proven effective
in addressing both issues. Although some studies have tried similar strategies
in GFE methods [11, 17, 27, 38], the theoretical background of frequency regu-
larization within grids remains insufficiently explored. Therefore, in our study,
we closely investigate GFE methods from the fundamental essence, aiming to
bridge the existing knowledge in PE NeRFs with our findings.
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3 Expressive Analysis of GFE NeRFs

This section begins with an introduction to some fundamental concepts of NeRF.
Then we shift our attention towards formulating the GFE NeRFs utilizing lin-
ear interpolation. Subsequently, we delve into an examination of the expressive
capabilities of the GFE NeRFs. Our emphasis lies in explaining the distribution
of frequency components of GFE methods and clarifying the connections and
distinctions with PE method.

3.1 Preliminary: Neural Radiance Fields

We will first briefly introduce the basic concepts of NeRF. NeRF takes multiple
images as input to generate an INR for a scene to synthesize novel views. Since
NeRF applies volume rendering [21], the density σ ∈ R and color c ∈ R3 at
each point x ∈ R3 must be modeled. Accordingly, we can denote the neural
representation as fΘ : x → [c, σ]⊤, where Θ signifies the trainable parameters.
Generally speaking, the input of NeRF also contains a view direction part, but
we omit this part here for brevity.

Once a pixel coordinate u ∈ R2 and the camera pose p are given, we can
estimate the color of u by volume rendering. Let zi be the depth of i-th sampling
point along the ray, and we obtain the 3D world coordinates of the point with a
warping function as xi = W(u,p, zi). The warping function W(·) also includes
the camera intrinsic parameters. Then, we can estimate the color Î(u,p) as:

Î(u,p) =
N∑
i=1

exp

−
i∑

j=1

σ(u, zj)

 · σ(xi) · c(xi). (1)

We assume the total number of input images as I, the total amount of pixels for
each image as J . Then we optimize the parameters of fΘ using the input color
I(u), as follows:

Θ = arg min
Θ

I∑
i=1

J∑
j=1

∥Î(uj ,pi;Θ)− Ii(uj)∥22. (2)

3.2 Formulation of GFE methods

Hereby, we formulate the GFE function using linear interpolation of local fea-
tures. We start with general INRs. Consistent with prior research [31, 44], we
assume the INR architecture is composed of an encoding function Ψ(x) and an
MLP. Let the input and output dimensions of l-th layer of the MLP be Fl−1

and Fl, respectively. The total number of layers is L. The l-th layer is described
by the weights W(l) ∈ RFl×Fl−1 and biases b(l) ∈ RFl , with the element-wise
non-linear activation function ρ(l)(·) applied between layers. The overall network
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fΘ is expressed as:

z(0) = Ψ(x), (3)

z(l) = ρ(l)
(
W(l)z(l−1) + b(l)

)
, l = 1, 2, . . . , L− 1, (4)

fΘ(x) = W(L)z(L−1) + b(L). (5)

We take the multi-resolution hash encoding [25] with a total of M ∈ N levels
as an example. Here, one may understand the term resolution as the number of
grids at certain level. ψm(x) ∈ Rq, q ∈ N, signifies the mapped feature at level
m ∈ N and m ≤M for a normalized input x. The encoded feature Ψ(x) ∈ RqM

is expressed as:

Ψ(x) = [ψ1(x)
⊤, . . . ψm(x)⊤, . . . ψM (x)⊤]⊤. (6)

Let the resolution at level m be sm ∈ N. Define the feature in the t-th
grid (t ∈ Z and t ∈ [0, sm − 1]) at the m-th level as h(t;m) ∈ Rq. In GFE
methods, features like h(t;m) are stored discretely at grid points, necessitating
linear interpolation to acquire features for arbitrary point inputs. Hence, ψm(·) is
a linearly interpolated function of features. For illustrative purposes, we consider
the situation of 1D input and 1D output, where x = x ∈ R and q = 1. Consider
a normalized input x ∈ [0, 1], t−1

sm−1 ≤ x ≤ t
sm−1 , where t and t − 1 represents

two neighboring indices of the grids, then ψm(x) can be written as,

ψm(x) = (sm − 1)
(
h(t;m) − h(t−1;m)

)
· x+ (1− t) · h(t;m) + t · h(t−1;m). (7)

To facilitate easier understanding, we transform Eq. (7) into a simpler form. Let
us consider a 1D triangular pulse function Λ(·) defined as follows (see Fig. 2a):

Λ(x) = max(0, 1− |x|). (8)

It is evident that a linearly interpolated function can be represented as a sum-
mation of triangular pulse functions as demonstrated in Fig. 2b. Therefore we
can rewrite Eq. (7) as follows:

ψm(x) =

sm−1∑
t=0

h(t;m) · Λ((sm − 1)x− t). (9)

It is effortless to extend this formulation to n-dimensional grids using n-dimensional
triangular functions: Λ(n)(x) =

∏n
i=1 Λ(xi).

Up to this point, the learnable parameters Θ of the whole INR as listed in
Eq. (2) can be expressed as follows: Θ = {h(t;m)|t ∈ [0, sm − 1],m ∈ [1,M ]} ∪
{W(l),b(l)|l ∈ [1, L]}.

3.3 Expressive Power of GFE NeRFs

Our objective is to clarify the expressive capacity of GFE NeRF through a
similar approach demonstrated by [44], which comprehensively demonstrates
the expressive power of PE INRs.
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Fig. 2: Connections between linear interpolation and triangular pulse function Λ(·).

Expressive Power of PE INRs According to [44], the expressive power of PE
INRs can be written as a linear combination of harmonics of Fourier features.
Let fΓ be a PE INR that takes x as input, when subjected to a polynomial
approximation of the activation functions, fΓ can be fully expressed as:

fΓ(x) =
∑

ω∈H(Ω)

cω sin(⟨ω,x⟩+ ϕω). (10)

Here ⟨·, ·⟩ represents the dot product; H(Ω) represents the set of available fre-
quencies; coefficients cω and ϕω are learnable parameters. The size of H(Ω) grows
exponentially with the depth of the MLP network. If we apply Fourier transform
to Eq. (10), we can find that in frequency domain, fΓ is characterized by a series
of Dirac δ functions, which corresponds to Fig. 1 (left).

Next, we focus on explaining the expressive power of GFE NeRF. According
to our study, the frequency range of GFE NeRF also expands as the network
goes deeper. However, in GFE cases, the network is typically shallow thus the
influence from network depth is not significant. Additionally, we argue that the
frequency range is almost solely related to the resolution of the grids.

We discuss about the most straightforward scenario, 1D input and 1D output,
where L = 1,M = 1, F0 = F1 = 1. Complicated cases can be handled in a similar
way. Denote resolution of the only level s1 = s, we can ascertain the following:

z(0) = Ψ(x) =
s−1∑
t=0

h(t;1) · Λ((s− 1)x− t), (11)

fΘ(x) = z(1) = ρ(1)

(
s−1∑
t=0

W(1) · h(t;1) · Λ((s− 1)x− t) + b(1)

)
. (12)

We approximate ρ(·) using a polynomial such that ρ(1)(z) =
∑K

k=0 αkz
k [44].

Then we can show that fΘ(x) can be approximated by a series of functions
Λk(·). Let the new coefficients for Λk((s − 1)x − t) be h′(t;1),k which can be
calculated using αk and h(t;1). Making C a constant term, fΘ(x) becomes:

fΘ(x) = C + P (x) +

K∑
k=0

s−1∑
t=0

h′(t;1),k · Λk((s− 1)x− t). (13)
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Fig. 3: Left: The bandwidth of Λ2(x) in frequency domain, indicated by the dashed
line, does become larger compared to that of Λ(x). Right: We directly scale x by 1

4
.

If we compare the bandwidth of Λ2(x) and Λ(x
4
), we may find the increase brought by

larger order k in Λk(·) is not that apparent.

P (x) here stands for the product between neighboring triangular pulses. Given
that the scale of P (x) is significantly small than Λk((s − 1)x − t) and thus
contribute less, and also due to the limited space, we will focus our discussion
on the latter term. Note that the coefficients of the polynomial used in the
approximation usually decay very rapidly as the order k increases, especially for
the ReLU activation function [22, 44]. Consequently, when k > 2, coefficients
h′(t;1),k tend to take extremely small value.

We further apply Fourier transform to Eq. (13). Here, we use ξ to absorb the
relatively higher-order components when k > 2 and Fourier transformation of
P (x) part. Then, due to the linearity of Fourier transform, we can obtain,

FΘ(ω) =

2∑
k=1

s−1∑
t=0

h′(t;1),k · Fx

[
Λk((s− 1)x− t)

]
+ ξ

=

s−1∑
t=0

h′(t;1),1 · (s− 1) · e−jω t
s−1 ·

2− 2 cos( ω
s−1 )

ω2

+

s−1∑
t=0

h′(t;1),2 · (s− 1)2 · e−jω t
s−1 ·

4 ω
s−1 − 4 sin( ω

s−1 )

ω3
+ ξ.

(14)

It is apparent that the Fourier transform of Eq. (10) will yield a composite
of multiple Dirac δ functions in the frequency domain (see Fig. 1). The result
shown by Eq. (14) emphasizes a key distinction between PE and GFE methods:
while the PE structure produces discrete frequency components, GFE can yield
a continuous frequency distribution as described in Eq. (14).

Bandwidth of Single Pulse Let us consider F [Λ(x)](ω) = 2−2 cos(ω)
ω2 and

F [Λ2(x)](ω) = 4ω−4 sin(ω)
ω3 . Obviously, we can see ∃η1, η2 ∈ R, and η1, η2 > 0

that make F [Λ(x)](ω) ≤ η1 · 1
ω2 and F [Λ2(x)](ω) < η2 · 1

ω2 . This implies that
as the frequency ω increases, the magnitude of the frequency components for
both Λ(x) and Λ2(x) tends to approach zero. Similar conclusions can be inferred
for larger values of k. As a result, increasing k will only slightly contribute to
expanding the bandwidth. Fig. 3a provides a visualization of this process. With
the same concept, one may easily extend the conclusion to the discussion of P (x)
and its corresponding Fourier transformation.
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Bandwidth and Resolution As evident from Eq. (14), a smaller resolution s
leads to a narrower frequency range, and conversely, a higher resolution results
in a broader bandwidth. Fig. 3b provides an illustration of this point by set-
ting a 4-times larger resolution. Considering the quickly diminishing factor αk

and shallow network depth, the frequency bandwidth is almost entirely deter-
mined by the resolution parameter s, which implies that we may regularize the
frequency components by controlling the resolution of the grids.

4 Frequency Regularization in GFE NeRFs

In this section, we propose one potential choice of frequency regularization tech-
nique G2f R in GFE NeRFs, extending the idea from existing works in PE cases.
We further discuss the importance of model generalization in both camera pose
optimization and few-shot reconstruction tasks, which supports the validity of
G2f R from an alternative perspective.

4.1 From PE to GFE

Recall that in prior work [18,41], a mask was proposed to apply to positional en-
coding across different frequency bands. A clearer understanding of this masking
technique emerges from the insights [28, 44]: the supported frequency range ex-
tends by gradually integrating higher-frequency encoded elements into the input.
This masking technique can be seen as a type of Frequency Regularization.

We aim to extend the concept of frequency regularization to GFE NeRFs.
Firstly, the encoding function Ψ(x) should include multiple resolution levels.
Multi-resolution hash encoding [25] serves as a good example, as illustrated
in Eq. (6). The rationale behind this requirement becomes evident: employing
multiple resolution levels facilitates accommodating various bandwidths. Subse-
quently, we apply a similar mask as used in the PE cases [18, 41] to the feature
mapping functions ψm(x) at different levels. We modify Eq. (6) as follows:

Ψ(x) = [w1(τ) · ψ1(x)
⊤, . . . wi(τ) · ψi(x)

⊤, . . . wM (τ) · ψM (x)⊤]⊤, (15)

where wi(τ) ∈ [0, 1]. τ ∈ [0,M ] is a parameter indicating the optimization
progress. Let the total iteration number be T , and the first βT iterations β ∈
(0, 1), denote the duration for frequency regularization. For iteration t ∈ [0, T ],
we define τ = M · min( t

βT , 1). Without specific design, we follow the style of
BARF [18]: We fix w1(τ) = 1 and for i ≥ 2 define wi(τ) =

1
2 [1 − cos((τ − i)π)]

when i ≤ τ < i + 1, wi(τ) = 0 when τ < i, and wi(τ) = 1 when τ ≥ i + 1. We
notice that many studies [11,17,27] apply binary masks instead of smooth ones
as introduced above. Empirically, we find that there was no significant difference
between binary and smooth masking techniques, since both of them manage to
control the frequency components.

We call this method G2f R: generalized grid-based frequency regularization,
since it is not limited to hash encoding and can be extended to other GFE
methods. Certainly, G2f R is not the only approach. For example, in [13], a
series of real-time computed Mipmaps can serve the same purpose.
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4.2 Model Generalization with G2f R

We next focus on discussing how G2f R performs in terms of the model’s ability
to generalize. We clarify this point by analyzing specific tasks and establish-
ing a connection between generalization capability and frequency regularization
through the concept of the Lipschitz Constant.

Model Generalization in Different Tasks The following two notable tasks
in NeRF are greatly related to model generalization:

1. Camera poses optimization: Denoting the camera parameters at iteration i
as pi, at iteration i+1, the camera parameters evolve to pi+1 = pi+∆p, im-
plying that rendering always occurs from novel viewpoints. Therefore, model
generalization is significant, as by changing viewpoints, we might observe re-
gions lacking supervision data.

2. Few-Shot NeRF: When the input viewpoints of NeRF are sparse, the infor-
mation for reconstion may be insufficient. Thus, it becomes important to
generalize the observed data to encompass the unobserved regions.

In the event of poor generalization, there exists a risk of overfitting and stumbling
upon random local minima. Results from [18,41] demonstrate this points.

The Lipschitz Constant Generalization cannot be evaluated without detailed
context. One idea is that the model ought to learn a function within a space con-
strained by certain priors, ensuring that the function’s value does not exhibit
drastic variations. Thus we can discuss the problem in terms of Lipschitz con-
tinuous. Recall that for any function f : Rn → Rm, if ∀x, y within its domain
and x, y ∈ Rn, ∃L ≥ 0, L ∈ R, such that

∥f(x)− f(y)∥i ≤ Lf∥x− y∥i, (16)

f can be considered as Lipschitz continuous and the smallest such bound Lf

is called as the Lipschitz constant for f . Usually i takes the value of 2 or ∞.
An intuitive interpretation of this theory suggests that a smaller value of the
Lipschitz constant corresponds to a reduced variation in the function’s output,
thereby indicating a more robust and generalizable model, and vice versa.

We now turn our attention to Eq. (15). Considering random input x and y
within the domain for Ψ(·), we take L2 norm in Eq. (16) and then have

LΨ = sup

 1

∥x− y∥2
·

√√√√ M∑
m=1

w2
m · ⟨ψm(x)− ψm(y), ψm(x)− ψm(y)⟩

 , (17)

where wm follows the definition in Sec. 4.1, ⟨·, ·⟩ stands for dot product. LΨ

value tends to grow larger as the optimization moves on, since {wm} indicates a
mask that includes more and more levels into calculation. Therefore the whole
system will have better generalization capability at the beginning phase, which
corresponds to the learning process of the low-frequency components as discussed
in Sec. 3.3.
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Scene

Camera pose registration View synthesis quality
Rotation error (◦) ↓ Translation error ↓ (×102) PSNR ↑

NGP NGP Mtrf Mtrf BARF NGP NGP Mtrf Mtrf BARF NGP NGP Mtrf Mtrf BARFw/ w/o w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o

Chair 0.101 0.580 0.048 0.053 0.124 0.514 2.549 0.184 0.267 0.470 33.98 32.86 31.78 31.80 30.98
Drums 0.028 0.131 0.031 0.032 0.047 0.149 0.193 0.164 0.240 0.314 24.98 24.60 22.95 22.53 23.88
Ficus 0.063 0.410 0.069 0.067 0.103 0.274 1.593 0.289 0.431 0.671 26.68 25.30 26.31 26.41 25.79

Hotdog 0.164 0.203 0.099 0.183 0.134 0.891 1.307 0.365 0.489 2.331 36.28 35.35 34.79 34.86 33.91
Lego 0.049 1.181 0.051 0.354 0.074 0.167 4.361 0.178 0.933 0.430 32.53 31.33 28.72 27.54 28.03

Materials 0.045 2.234 0.459 1.168 1.023 0.189 9.715 3.031 4.762 3.113 27.76 23.22 27.43 27.03 25.03
Mic 0.042 0.965 0.043 0.556 0.392 0.139 2.627 0.164 2.104 0.411 33.30 30.02 33.10 32.83 30.87
Ship 0.729 1.475 0.513 0.540 0.988 1.426 3.048 0.986 0.562 1.877 29.19 28.07 26.57 27.69 27.04

Bicycle 0.216 0.346 0.693 0.255 7.095 0.283 0.703 0.795 0.309 0.322 22.34 21.08 20.72 20.87 16.70
Bonsai 0.108 0.137 0.457 0.125 5.519 0.214 0.329 0.654 0.239 0.415 29.28 25.72 23.95 25.49 19.99
Counter 0.068 0.529 0.191 0.152 26.91 0.101 0.483 0.203 0.083 0.509 25.86 20.96 23.15 24.42 12.16
Garden 0.063 0.295 0.157 0.086 11.95 0.104 0.646 0.219 0.199 0.260 24.05 21.62 21.01 21.73 15.78
Kitchen 0.048 0.052 0.259 0.063 19.89 0.039 0.128 0.277 0.064 0.402 27.20 26.76 23.10 24.34 13.02
Room 0.142 0.128 0.537 0.091 7.494 0.154 0.268 0.532 0.132 0.220 29.45 29.21 25.19 27.03 18.37

Table 1: Quantitative results of camera pose optimization are presented for both
synthetic and real-world scenes. In the majority of tested scenes, the optimization
accuracy demonstrates enhancement following the application of G2f R across both
methodologies. In the cases of using Mtrf, we observe a decline in performance for the
results in real-world scenes. Further explanations are provided in Sec. 5.3.

5 Experimental Results

We validate the efficacy of G2f R for both camera pose optimization and few-shot
reconstruction tasks employing GFE NeRFs. Our evaluation utilizes Instant-
NGP [25] alongside a multi-resolution version of CP-TensoRF [3], denoted as
Mtrf, on a platform equipped with a GeForce RTX 4090 GPU. We also make
comparisons with several existing methods.

5.1 Camera Pose Optimization

Experiment Settings Following the setting of BARF [18] and CamP [27], we
perturb the se(3) camera poses with additive noise N (0, 0.15I) in the synthetic
dataset [24], and N (0, 0.01I) in the real-world dataset [1]. We conduct experi-
ments with and without applying G2f R while ensuring the same perturbation.

Results Interpretation We offer quantitative evaluation in Tab. 1 and qual-
itative evaluation in Fig. 4. The findings described in Tab. 1 strongly support
the efficacy of the proposed frequency regularization strategy. G2f R not only
is useful within the widely applied Instant NGP paradigm [25], but also holds
promise for other multi-resolution GFE NeRFs, such as Mtrf.

Results from the real-world dataset in Tab. 1 demonstrate that G2f R con-
tinues to show good performance when integrated with NGP. There is improve-
ment in both pose accuracy and reconstructed image quality. In the case of
using Mtrf, the proposed G2f R technique seems to have negative effects. Simi-
larly, BARF [18], as a classical method using frequency regularization, also faces
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w/o G!𝑓R w/ G!𝑓R

Initial Error

w/o G!𝑓R w/ G!𝑓R w/o G!𝑓R w/ G!𝑓R

Bicycle Counter

w/o G!𝑓R w/ G!𝑓R

Initial Error

Lego

Materials

Fig. 4: Qualitative results of camera pose optimization on NeRF-synthetic and
MipNeRF-360 dataset using NGP. Both pose accuracy and novel view synthesis quality
are improved with the application of G2f R.

Methods Rot. error (◦) ↓ Trans. error↓ (×102) PSNR↑ Memory Iterations Time

BARF [18] 0.076 0.300 28.32 ∼ 6MB 200k ∼ 5h
L2G-NeRF [5] 0.100 0.433 27.97 ∼ 11MB 200k ∼ 3.5h

RCPR [11] 0.064 0.280 32.21 ∼ 150MB 200k ∼ 2h
CamP [27] 0.164 0.884 32.33 ∼ 525MB 200k ∼ 4.5h

NGP+G2f R 0.043 0.143 33.55 ∼ 150MB 20k ∼ 5min
Mtrf+G2f R 0.039 0.148 29.71 ∼ 11MB 50k ∼ 20min

Table 2: Comparative results include rotation and translation errors, PSNR, model
memory usages, optimization iterations, and training time. Results of Lego from syn-
thetic dataset are shown. After implementing G2f R, it becomes evident that both
NGP and Mtrf reveal commendable performance and achieve efficiency in both time
and memory usages.

some difficulties in handling the complex scenes. These phenomena can be con-
sidered as one limitation of G2f R that degrades the memorization capability of
the model, which will be discussed in Sec. 5.3.

Comparative Experiments We also compare the performance of our meth-
ods with several existing methods that demonstrate amazing performance in
the task of concurrent camera pose optimization using synthetic dataset. The
tested methods include, BARF [18]: frequency regularization in PE NeRF; L2G-
NeRF [5]: local-to-global camera pose representation; RCPR4 [11]: smooth in-
terpolation instead of linear; CamP [27]: preconditioners for camera pose and
intrinsic parameters. Since some of these methods are relatively sensitive to ro-
tation errors, we set the se(3) pose perturbation as N (0, 0.15I) for translation
4 The codes of [11] are not publicly available when we write this paper. In this study,

we use our own implementation according to the description in the paper.
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Scene

View synthesis quality

Scene

View synthesis quality
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

NGP NGP NGP NGP NGP NGP NGP NGP NGP NGP NGP NGP
w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o

Chair 25.72 17.02 0.925 0.847 0.076 0.281 Bicycle 20.63 21.08 0.452 0.487 0.443 0.419
Drums 14.67 11.79 0.724 0.710 0.335 0.530 Bonsai 24.15 21.92 0.825 0.817 0.174 0.189
Ficus 17.90 16.07 0.869 0.849 0.177 0.245 Counter 20.84 19.16 0.689 0.653 0.269 0.324

Hotdog 27.51 18.07 0.919 0.876 0.074 0.198 Garden 24.32 23.51 0.679 0.682 0.272 0.253
Lego 22.46 19.85 0.860 0.826 0.094 0.184 Kitchen 25.02 23.92 0.857 0.833 0.129 0.157

Materials 17.89 16.12 0.813 0.730 0.153 0.282 Room 25.14 24.57 0.805 0.821 0.186 0.208
Mic 29.92 26.88 0.967 0.943 0.030 0.092 –
Ship 18.38 16.23 0.683 0.663 0.234 0.306 –

Table 3: Quantitative results of few-shot reconstruction on both the NeRF-
synthetic and MipNeRF-360 datasets utilizing NGP. Following the implementation
of G2f R, performance enhancements are evident in most cases. The performance for
outdoor environments such as Bicycle and Garden appears less impressive compared
to simpler indoor cases.

w/o G!𝑓R w/ G!𝑓R
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Fig. 5: Qualitative results of few-shot reconstruction on NeRF-synthetic and
MipNeRF-360 dataset. The improvement brought by G2f R can be considered as obvi-
ous and significant. The noise inside the scene is clearly reduced.

parts, N (0, 0.03I) for rotation parts, and introduce no intrinsic error. The other
settings remain default values. Tab. 2 shows the results of the scene Lego.

5.2 Few-Shot NeRF

Experiment Settings We use NGP to demonstrate the efficacy of G2f R
in Few-shot reconstruction task on both the NeRF-synthetic dataset and the
MipNeRF-360 dataset. In the case of the synthetic dataset, we use 10 images
as inputs, while for real-world scenes, 50 images are employed, constituting ap-
proximately 25% of the total image count. Training spans 200k iterations.

Results Interpretation As evidenced by the results presented in Tab. 3 and
Fig. 5, G2f R demonstrates significant efficacy across various scenarios. By ap-
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plying G2f R, we can effectively reduce the noise caused by overfitting of high
frequency signals. In some outdoor cases from real-world datasets, the impact
of implementing G2f R may not be as significant as in synthetic cases. We leave
the analysis of this issue to Sec. 5.3. Nonetheless, it is noteworthy that the only
technique employed herein is frequency regularization, a method typically com-
patible with other strategies. Consequently, the findings of these experiments
substantiate the validity of G2f R in the few-shot reconstruction task.

5.3 Limitation and Future Work

As demonstrated in Tab. 1, the performance of Mtrf shows a decline after ap-
plying G2f R. This phenomenon reveals a limitation of G2f R: when the model
is relatively small in size, such as Mtrf, it tends to fail to model the scene at the
beginning of the optimization. Given constrained ability to capture only low-
frequency signals, it is unsurprising that it struggles to accurately model the
scene, thereby yielding suboptimal directions for pose optimization and exacer-
bating camera pose inaccuracies. These erroneous camera poses then continue to
adversely affect scene modeling, culminating in the failure of pose optimization.
On the other hand, if the model still possess enough memorization capability at
coarse stages, this problem might not be critical. NGP is a good example that
can model the scene properly using only low resolutions.

A similar phenomenon has been reported by Gao et al ., emphasizing the
importance of accurately aligning frequency bands in PE with the target sig-
nals [10]. The findings regarding outdoor scenes presented in Tab. 3 can also be
explain through their theory. Gao et al . propose the implementation of adaptive
frequency bands within PE as a solution [10]. While adjusting frequency bands
during training in PE NeRFs is straightforward, it poses a greater challenge in
GFE methods. Therefore, one of our forthcoming research targets will be the
integration of adaptive frequency bands into GFE methodologies.

6 Conclusion

In this paper, we present a theoretical analysis concerning the expressive capac-
ity of grid-based feature encoding (GFE) methods, which are widely employed
in NeRF applications. To the best of our knowledge, this study represents the
initial endeavor to explain the distribution of frequency components within the
GFE system. Additionally, we propose the adoption of frequency regulariza-
tion techniques based on this analysis in two distinct tasks: concurrent camera
pose optimization and few-shot reconstruction. We conduct experiments on both
simulated and real-world data. The experiment results convincingly validate the
efficacy of the proposed G2f R, thereby advocating for the generalizability of the
frequency regularization approach across diverse tasks.
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