
Generating 3D House Wireframes with Semantics
(Supplementary Materials)

Xueqi Ma , Yilin Liu , Wenjun Zhou , Ruowei Wang , and Hui Huang⋆

Visual Computing Research Center, Shenzhen University
hhzhiyan@gmail.com

1 Data

3D House Wireframe Dataset: Existing datasets for house models primarily fea-
ture 2D floor plans, which do not suffice for creating 3D house wireframes. Rec-
ognizing this deficiency, we have developed a comprehensive 3D house wireframe
dataset. A typical 3D wireframe of a house encompasses 3 main components: the
roof, exterior walls, and interior rooms. Our methodology initiated with extract-
ing the 2D layout for critical room and exterior wall segments from the RPLAN
dataset [10]. Subsequent steps involved lifting the corner points of these segments
to establish the groundwork for the house’s basic wireframe structure. To com-
plete the wireframe model, we utilized the straight skeleton algorithm [1] on the
exterior walls, facilitating the construction of the roof’s wireframe. Our analysis
focused on wireframes containing fewer than 400 line segments, as depicted in
Fig. 1. This selection process resulted in the accumulation of 78,791 wireframes.
We allocated these wireframes into training and test sets following a 9:1 ratio and
normalized each wireframe to ensure its central alignment at the origin within
a cubic space measured as [−1, 1]3. For more information on downloading and
using the dataset, please visit our GitHub repository: https://github.com/3d-
house-wireframe/3d-house-wireframe-dataset.

Data augmentation: Throughout the training phase, we applied various data
augmentation techniques to improve the model’s generalization ability. Our aug-
mentation strategies included: 1) Rotating the wireframes at predetermined an-
gles, specifically {0◦, 90◦, 180◦, 270◦}, to simulate different orientations; 2) Ap-
plying mirror flips across the YOZ plane to reflect the wireframes, thereby in-
creasing the diversity of the training data; 3) Adjusting the scale and position
of the wireframe vertices in the x, y, and z dimensions. The scaling adjustments
were confined to a range of [0.9, 1.1], and translations were applied within a range
of [−0.1, 0.1]. These transformations were intended to simulate variations in size
and spatial alignment, further contributing to the robustness of the training.

⋆ Corresponding author

https://orcid.org/0009-0004-0203-8501
https://orcid.org/0000-0001-7336-1956
https://orcid.org/0000-0003-1790-4201
https://orcid.org/0009-0003-9112-1712
https://orcid.org/0000-0003-3212-0544
https://github.com/3d-house-wireframe/3d-house-wireframe-dataset
https://github.com/3d-house-wireframe/3d-house-wireframe-dataset

2 X. Ma, Y. Liu, W. Zhou, R. Wang, and H. Huang

Fig. 1: The distribution of the number of line segments in wireframes within the 3D
house wireframe dataset. The horizontal axis represents the count of line segments, and
the vertical axis shows the number of wireframe samples with that count.

Fig. 2: The process of transforming a wireframe into a graph.

Fig. 3: Embedding of angular features between adjacent line segments.

3D House WireFrames 3

2 Method Details

2.1 Autoencoder

Graph construction for feature learning: To facilitate effective feature learning
of individual line segments, we convert the 3D wireframe models into graph rep-
resentations, where nodes represent line segments and edges represent junctions.
As illustrated in Fig. 2, the left part of the figure presents the cube’s wireframe,
indicating each line segment with specific indices. Conversely, the right part dis-
plays the generated graph. Here, a particular line segment from the wireframe,
such as segment 10 depicted in red, aligns with node 10 in the graph. The seg-
ments that connect to it, identified by indices 1, 2, 6, and 7 in the wireframe, are
mirrored as connected nodes in blue within the graph. Furthermore, the graph
visualizes the junctions, shown in yellow on the wireframe, as edges in the graph,
effectively mapping the structural connections between line segments.

Features: Our encoder consists of a graph convolution module and a Local Multi-
Head Attention module. We introduced multiple features for each node in the
graph (representing a line segment). These features include 6 coordinates of the
line segment, its length, its direction, and the 3 coordinates of the segment’s
midpoint. To further enhance the node features, we calculate the angles between
each pair of adjacent line segments and integrate these angular features into the
corresponding line segment features, as shown in Fig. 3.

Network: In constructing our neural network model, we first introduced a 5-layer
Graph Convolutional Network (GCN) [3] as the initial encoder EG. The feature
dimensions of these layers are [64, 128, 256, 256, 384]. Subsequently, we added a
4-layer Local Multi-Head Attention (LMH Attention) module EA [2, 8] to the
encoder, with each layer having a dimension of 384. In the decoder, we first
employed a 2-layer LMH Attention module DA with each layer dimensioned at
384, followed by a 1D ResNet34 [4] as the second module DR. DR comprises four
sets of residual blocks, with the number of blocks in each set being [3, 4, 6, 3],
and the feature dimensions sequentially are [128, 192, 256, 384].

Our decoder is designed to map the features of line segments into a 1283

cubic space, facilitating the generation of discretized line segments. The output
comprises the logits of 6 discrete coordinates for each line segment in this cubic
space. For the LMH Attention, we use a window size of 64 and a dimension of
32 for each head. Additionally, the size of our codebook is set at 8192.

For the transformer model, we implemented a phased strategy that progresses
from coarse to fine [5] for autoregressively predicting the indices in the codebook.
In this process, the transformer at the coarse stage is configured with 12 layers,
a feature dimension of 512, and 8 heads. Following this, the transformer at the
fine stage consists of 2 layers with a feature dimension of 512 and 8 heads. Both
MeshGPT and our model have a maximum sequence length of 1624, whereas
PolyGen’s maximum is 816 for both vertices and segments due to its two-stage

4 X. Ma, Y. Liu, W. Zhou, R. Wang, and H. Huang

generation process. The temperature of all methods is set to 1.0, and the gener-
ation process stops when the termination symbol is predicted or the maximum
sequence length is reached.

2.2 Residual LFQ

As shown in MeshGPT [9], the quantized feature is crucial for the transformer
model to predict high-quality 3D models. We used Residual LFQ [5,11] to quan-
tize the vertex features of the line segments. Residual LFQ quantizes vertex
features by treating them as Cartesian products of single-dimensional variables.
Specifically, for a vertex feature vector z, its quantized representation f(z) is de-
fined as the value closest to each dimension of z in the codebook Ci. Since each
Ci only contains two values, -1 and 1, the quantized result for each dimension
f(zi) can be directly determined by the sign of zi:

f(zi) = sign(zi) =

{
−1 if zi ≤ 0

1 if zi > 0,
(1)

where zi is the ith dimension of z.
LFQ eliminates the need for the codebook lookup step typically required

in traditional quantization, as each dimension’s quantization index is obtained
simply by f(zi) = sign(zi). The token index for f(z) is then calculated by

Index(z) =
n∑

i=1

2i−1 · I{zi > 0}, n = log2K, (2)

where K is the codebook size, and I{zi > 0} is the indicator function, which
equals 1 if zi > 0, and 0 otherwise.

We adopt commit loss [5] to impose constraints on the quantization process.
Additionally, to enhance the utilization of the codebook, we employ an entropy
penalty [11]. This not only aids the network in making more confident predictions
but also encourages using more codes from the codebook.

2.3 Loss Function for Autoencoder

In our method, a line segment consists of two vertices, A and B, with each
vertex’s coordinate predicted from a discrete set of possible values ranging from
0 to 127. We use the cross-entropy loss function to optimize the autoencoder,
which measures the discrepancy between the predicted probabilities and the
ground truth discrete coordinates.

The predicted coordinate is represented as a probability distribution across
the possible coordinate values for a given vertex on a line segment. The proba-
bility that the model predicts the coordinate c of vertex j (with j = 1 for vertex
A and j = 2 for vertex B) of line segment i to be a particular value k is denoted

3D House WireFrames 5

by pi,j,c,k. We uses smoothed one-hot encoding for true vertex coordinates, re-
ducing penalties for physically closer coordinates. The true coordinate for this
vertex is represented by yi,j,c,k.

The cross-entropy loss for each vertex is calculated using the formula:

Li,j = −1

3

3∑
c=1

127∑
k=0

yi,j,c,k · log(pi,j,c,k),

Since each line segment has two vertices, the loss for line segment i is calcu-
lated as the average of the losses for both vertices A and B, Li =

1
2 (Li,1 +Li,2).

The overall reconstruction loss for the model is the average of the total losses
for each segment:

Lrecon =
1

N

N∑
i=1

Li,

where N is the total number of line segments in the wireframe and Lrecon is the
reconstruction loss function for the autoencoder.

2.4 Loss Function for Transformer

Our method uses a 2-layer residual quantization, representing each vertex by two
tokens corresponding to indices in the codebook. Each line segment comprises
two vertices, therefore being represented by 4 tokens. With a total of N line
segments, this equates to 4N tokens. Our codebook size, |C|, is 8192, allowing
each token to have |C| possible values.

The model predicts a probability for every possible value of each token. The
probability that the model assigns to the jth token (where j ∈ {1, 2, 3, 4}) of
the ith line segment being the cth token in the vocabulary is denoted as pi,j,c.
The ground truth token is represented by yi,j . Hence, the overall loss function
is defined as:

Lt = − 1

4N

N∑
i=1

4∑
j=1

|C|∑
c=1

I{yi,j = c} · log(pi,j,c),

where I{yi,j = c} is the indicator function, which equals 1 if the true token yi,j
is equal to c, and 0 otherwise, Lt is the loss function for the transformer.

2.5 Baselines

For PolyGen [7], we utilize the official TensorFlow implementation provided by
the authors. Regarding MeshGPT [9], we replicate it based on the detailed de-
scriptions provided in the paper. Given that MeshGPT was initially designed to
generate triangular meshes, and we aim to generate wireframes, we adapt the
MeshGPT during the replication process to shift its focus from predicting trian-
gular faces to predicting line segments. We employ the same dataset for training
and testing purposes for all methods under study.

6 X. Ma, Y. Liu, W. Zhou, R. Wang, and H. Huang

3 Experiment Details

3.1 Metric Details

Following previous works on 3D generative models [6, 12,13], we adopted COV,
MMD, and 1-NN as our evaluation metrics. COV stands for Coverage, measuring
the extent to which generated samples cover the real samples. MMD, or Max-
imum Mean Discrepancy, quantifies the difference between the generated and
real samples. Lastly, 1-NN, meaning Nearest Neighbor, assesses the similarity
between generated samples and their nearest real counterparts.

The definitions of these metrics are as follows:

COV(Sg, Sr) =
|{argminy∈Sr

D(X,Y)|X ∈ Sg}|
|Sr|

,

MMD(Sg, Sr) =
1

|Sr|
∑
Y ∈Sr

min
X∈Sg

D(X,Y),

1-NN(Sg, Sr) =

∑
x∈Sg

I[Nx ∈ Sg] +
∑

y∈Sr
I[Ny ∈ Sr]

|Sg|+ |Sr|
,

where Sg and Sr represent the generated and real samples, respectively, and D
denotes the distance function.

We utilized Chamfer distance and Earth Mover’s Distance (EMD) as met-
rics to measure the similarity of wireframes. Chamfer distance, a method for
quantifying point cloud similarities through nearest point distances, and EMD,
which assesses the minimal effort required to transform one point cloud into an-
other, were both applied to evaluate the wireframe comparisons effectively. All
the metrics are computed on 8192 generated samples, each with 4096 sample
points on their segments. The generated samples are compared with normalized
augmented data, including rotation and axis flip.

To evaluate the structural validity of our generated 3D wireframes, we ana-
lyzed the relationships between the vertices and the line segments. This analysis
is based on the following assumptions: if a vertex is only connected to a sin-
gle line segment, it may indicate that one end of the segment is not connected
to any other segment, resulting in the segment floating in space; if a vertex is
connected to two line segments, it could suggest that the segments are located
within the interior of the model’s edges; whereas a vertex connected to three or
more line segments typically indicates a structurally plausible wireframe vertex.
Based on this understanding, we designed two metrics for quantifying the analy-
sis: the Two-Line-Connected Vertex Proportion (2L-CVP), which measures the
proportion of vertices connected to at least two line segments, and the Three-
Line-Connected Vertex Proportion (3L-CVP), which is the proportion of vertices
connected to at least three line segments. These two metrics collectively aid in
evaluating the wireframes’ structural validity, ensuring the generated wireframes’
accuracy and realism.

3D House WireFrames 7

Fig. 4: User study interface.

3.2 User Study

As depicted in Fig. 4, we present the interface for our user study. Initially, we
generated 1024 samples using various methods, and for comparison, we also
randomly selected 1024 real wireframes from the dataset.

Since we have 4 methods (including ground truth), there are 6 possible pair-
ings. For each pairing, we randomly selected 4 groups of samples, resulting in a
total of 24 sample sets for our study.

These samples are shuffled before the presentation to ensure the display order
does not influence the users’ evaluations. Users could click on the images of each
wireframe to view more details. We recorded the users’ choices and calculated
the win rates for each method. 60 participants were invited to participate in
the survey, with each user evaluating 24 sets of samples. To assess the effects of
different methods, we first calculated the proportion of user preferences between
two methods. Taking our method and PolyGen [7] as examples, 92% of users
preferred our method, while 8% preferred PolyGen. Calculating the score differ-
ence revealed that our method outperformed PolyGen by 0.84 points, which is
0.84 = 0.92 (our selection rate) - 0.08 (PolyGen’s selection rate).

3.3 Wireframe Novelty Analysis

We conducted another novelty analysis on the wireframes generated by our
method. As demonstrated in Fig. 5, we compare these generated wireframes
with the 3 most similar real wireframes from our training dataset. Our findings
reveal a significant difference between our generated wireframes and those from
the dataset, indicating that our method can produce diverse wireframes.

3.4 More Visual Results

Fig. 6 presents additional wireframe segmentation results. These wireframes are
divided into multiple components, such as walls, roofs, and different rooms, based

8 X. Ma, Y. Liu, W. Zhou, R. Wang, and H. Huang

Fig. 5: Novelty analysis of generated wireframes. We present a comparison of a wire-
frame produced by our method against its 3 nearest neighbors from the 3D house
wireframe training dataset, determined by Chamfer Distance (CD).

Fig. 6: The reconstructed wireframe model can be easily split into several components.
We also show their corresponding mesh on the right.

Fig. 7: The resulting wireframe can be easily converted into a mesh model.

3D House WireFrames 9

on the connectivity of the line segments. Fig. 7 shows more results of converting
wireframes into mesh models. These results further demonstrate that our wire-
frames can be easily converted into mesh models. Additionally, we utilize our
method to generate a variety of 3D house wireframes, as shown in Fig. 8 and
Fig. 9. We showcase the geometric characteristics of the wireframes and illustrate
the diversity in different house layouts.

Acknowledgements

We thank all the anonymous reviewers for their insightful comments. This work
was supported in parts by NSFC (U21B2023, U2001206, 62161146005), Guang-
dong Basic and Applied Basic Research Foundation (2023B1515120026), DEGP
Innovation Team (2022KCXTD025), Shenzhen Science and Technology Program
(KQTD20210811090044003, RCJC20200714114435012, JCYJ20210324120213036),
Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), and
Scientific Development Funds from Shenzhen University.

References

1. Aichholzer, O., Aurenhammer, F., Alberts, D., Gärtner, B.: A novel type of skeleton
for polygons. Springer (1996)

2. Beltagy, I., Peters, M.E., Cohan, A.: Longformer: The long-document transformer
(2020)

3. Hamilton, W.L., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. In: Adv. Neural Inform. Process. Syst. pp. 1024–1034 (2017)

4. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: IEEE Conf. Comput. Vis. Pattern Recog. pp. 770–778 (2016)

5. Lee, D., Kim, C., Kim, S., Cho, M., Han, W.S.: Autoregressive image genera-
tion using residual quantization. In: IEEE Conf. Comput. Vis. Pattern Recog. pp.
11523–11532 (2022)

6. Luo, S., Hu, W.: Diffusion probabilistic models for 3d point cloud generation. In:
IEEE Conf. Comput. Vis. Pattern Recog. pp. 2837–2845 (2021)

7. Nash, C., Ganin, Y., Eslami, S.A., Battaglia, P.: Polygen: An autoregressive gen-
erative model of 3d meshes. In: Int. Conf. Mach. Learn. pp. 7220–7229 (2020)

8. Roy, A., Saffar, M., Vaswani, A., Grangier, D.: Efficient content-based sparse at-
tention with routing transformers. Trans. Assoc. Comput. Linguistics 9, 53–68
(2021)

9. Siddiqui, Y., Alliegro, A., Artemov, A., Tommasi, T., Sirigatti, D., Rosov, V., Dai,
A., Nießner, M.: Meshgpt: Generating triangle meshes with decoder-only trans-
formers (2023)

10. Wu, W., Fu, X., Tang, R., Wang, Y., Qi, Y., Liu, L.: Data-driven interior plan
generation for residential buildings. ACM Trans. Graph. 38(6), 234:1–234:12 (2019)

11. Yu, L., Lezama, J., Gundavarapu, N.B., Versari, L., Sohn, K., Minnen, D., Cheng,
Y., Gupta, A., Gu, X., Hauptmann, A.G., Gong, B., Yang, M.H., Essa, I., Ross,
D.A., Jiang, L.: Language model beats diffusion – tokenizer is key to visual gener-
ation (2023)

10 X. Ma, Y. Liu, W. Zhou, R. Wang, and H. Huang

12. Zeng, X., Vahdat, A., Williams, F., Gojcic, Z., Litany, O., Fidler, S., Kreis, K.:
LION: latent point diffusion models for 3d shape generation. In: Adv. Neural In-
form. Process. Syst. (2022)

13. Zhou, L., Du, Y., Wu, J.: 3d shape generation and completion through point-voxel
diffusion. In: Int. Conf. Comput. Vis. pp. 5826–5835 (2021)

3D House WireFrames 11

Fig. 8: Unconditionally generated 3D house wireframes from our method.

12 X. Ma, Y. Liu, W. Zhou, R. Wang, and H. Huang

Fig. 9: Unconditionally generated 3D house wireframes from our method.

	Generating 3D House Wireframes with Semantics

