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A Appendix

In this supplementary, we offer more details on implementation and experiments
in Appendix B and Appendix C, respectively. We also include more qualitative
comparisons regarding depth and normal on zero-shot test sets and in-the-wild
scenarios, 3D reconstruction, and novel view synthesis in Appendix D. Finally,
we discuss limitations and potential negative impact in Appendix E.

B Implementation Details

B.1 Data Preprocessing

We standardize the resolution at 576×768 to blend samples from various scene
distributions. To maintain the original aspect ratio, we resize the shorter side
of a sample to 576 and randomly crop along the longer side. In the data aug-
mentation strategy, we assign photometric distortion probabilities of 0.05, 0.1,
and 0.05, and greyization probabilities of 0.1, 0.2, and 0.1 for indoor, outdoor,
and object level, respectively. We set the far plane to be 80 meters in both 3D
Ken Burns [12] and our own city dataset for outdoor scenes, and 5 meters in
Objaverse [5] for background-free objects. We also define the normal orientation
in these far (background) regions along the z-axis. In the Replica dataset [18],
we exclude samples with fewer than 50 invalid pixels, designating the invalid
areas to represent distant depths and background normals.

B.2 Our Synthetic Urban Dataset

We first tried to add Virtual KITTI [2] to involve more driving scenarios but ul-
timately decided against it, as the generated normal map is of low quality due to
the limited resolution of depth map (375×1242). As an alternative, we utilize Un-
real Engine to create high-resolution (1440×3840) urban samples (see Fig. S1),
and derive the normal map from depth using the least square algorithm. Our
synthetic data encompasses a wide variety of city entities under different envi-
ronmental conditions. Since the data is clean and complete, it allows our model
to learn high-quality outdoor patterns.

C Experimental Details

C.1 Limitation on Normal GT

During our zero-shot tests on traditional normal benchmarks, we discovered
that a lot of normal GT maps have noise, potentially impacting measurement
precision. As shown in Fig. S2, NYUv2’s normal maps struggle with fine details
such as book outlines, shelf edges, and folds, and even incorrectly represent the
flat wall surfaces. Likewise, the normal maps from iBims-1 (limited resolution)
and ScanNet (unexpected surface undulation and poor fine detail capture) are
also of low quality. Thus, the quantitative comparisons presented in the main
paper may only partially reflect the ground truth.
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Fig. S1: Some samples of our rendered dataset. We mask the regions whose depth
values are larger than 80m as black for better visualization.

C.2 More Ablation Studies

Applying Erroneous Domain Indicator When using the wrong domain-
specific indicator for testing across various domains, we see a decline in both
depth and normal (see Table R1), especially during zero-shot tests on indoor
and outdoor benchmarks with an object indicator (w/ Object Indicator). This
result makes sense since the indicator directs the model to concentrate on a
specific distribution. We also observe that the geometric consistency seems to
remain stable or even improved (14.7→14.4 on indoor test with an outdoor
indicator), suggesting the model’s adaptability and robustness when guided by
an out-of-domain indicator.

Geometric Modeling We also study shared geometry embedding [11] by in-
creasing the dimension of the input in input (‘w/ Shared Geometry’ in Ta-
ble R1). Without the specialized geometry switcher and using the same training
iterations, we observe that this alternative converges more slowly, and the over-
all quality of depth and normal quality both decrease (6.7→7.2, 14.8→15.3),
whereas the geometric consistency remains relatively unchanged.

Model Components When removing the pyramid multi-level noise and adopt-
ing single-level noise (w/o Multi-level Noise), both the depth and normal quality
decreased significantly. Compared to ϵ-pred (w/ ϵ-pred), v-pred enables better
geometry results and faster convergence.

C.3 Comparison with 3D&Video Generation Methods

For object-level geometry estimation, other alternatives are to resort to per-
scene optimized 3D generation methods, such as Magic123 [13] and Dream-
Craft3D [19], or amortized video generation methods [21]. However, they rely
on multi-view images generated from diffusion models to optimize 3D represen-
tation but result in object-level 3D reconstruction with poor geometry, unsta-
ble optimization and lengthy processing. As shown in Table R2, ours, trained
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Fig. S2: Effect of noisy GT normal map. Our normal maps here display the best visual
effect but are inferior in quantitative comparison with Omnidata v2 or DSINE.

Method Indoor Outdoor Object Overall
AbsRel ↓ Mean ↓ GC ↓ AbsRel ↓ Mean ↓ GC ↓ AbsRel ↓ Mean ↓ GC ↓ AbsRel ↓ Mean ↓ GC ↓

w/ Indoor Indicator 5.5 12.6 14.7 10.1 22.8 23.9 3.7 15.8 17.7 6.8 15.0 16.4
w/ Outdoor Indicator 5.8 13.1 14.4 9.6 22.1 23.5 3.9 15.9 18.2 7.0 15.2 16.4
w/ Object Indicator 6.4 13.7 14.9 10.8 23.5 23.7 3.5 15.4 17.6 7.5 15.5 16.6

Shared Geometry [11] 6.1 13.2 14.6 10.4 23.6 23.8 3.6 16.4 17.8 7.2 15.3 16.3
w/o Multi-level Noise 7.3 13.9 15.1 10.8 24.6 24.0 4.3 16.4 18.0 8.3 17.1 16.5

w/ ϵ-pred 5.7 12.9 14.9 10.1 22.3 24.0 3.7 15.8 17.9 6.9 15.2 16.4

Full Model 5.5 12.6 14.7 9.6 22.1 23.5 3.5 15.4 17.6 6.7 14.8 16.2

Table R1: Quantitative ablation studies on different scene types.

on 3D data, directly produces accurate and efficient geometric representation,
depth&normal. Moreover, ours can be applied beyond object scenarios, e.g., out-
door and indoor.

C.4 GeoWizard V2

We additionally train a v2-model with architecture modifications (replace image
CLIP embedding with three types of text embeddings (‘indoor geometry’, ‘out-
door geometry’, and ‘object geometry’). Now it can generate more realistic and
three-dimensional normal maps on some rare images (e.g., cartoon style).
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Magic123 [13] DreamCraft3D [19] SV3D [21]+NeuS [22] Ours

AbsRel ↓ 2.9 3.4 3.7 1.9
δ1 ↑ 25.4 23.7 27.9 20.3

Time Cost (min.) 54.3 45.5 10.3 0.16

Table R2: Quantitative comparison on Omniobject3D benchmark (50 samples).

Fig. S3: Qualitative comparison on GeoWizard v1/v2 models.

D More Qualitative Comparisons

D.1 Testset Depth and Normal

We include additional qualitative comparisons across 7 zero-shot test datasets
[4, 6, 10, 15, 17, 20, 23], where our model is evaluate against Marigold [8] and
DepthAnything-L [24] for depth, and agins Omnidata v2 [7] and DSINE [1] for
normal. These comparisons, visualized in Fig. S4 to Fig. S10, cover both depth
and normal maps. To enhance visual contrast, we initially math the inverse
relative depth from DepthAnything with the inverse GT depth. Following this
affine alignment, we further convert it into actual depth. Note that the GT
normal maps are shown in default grey when unavailable. For outdoor scenes, the
‘sky’ in our normal maps is colored in pure blue [0,0,255] to denote the standard
orientation [0,0,1]. In comparison on iBim-1, we mask out the erroneous parts in
GT with red boxes. Overall, Geowizard consistently outperforms in generating
detailed high-frequency details across all datasets, although the difference might
not be as discernible in OmniObject3D due to its simplistic object structures.
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D.2 In-the-Wild Depth and Normal

We collect in-the-wild images that are publicly available and allow for disclosure
from the Internet, our daily life, or AI-generated pool to test the generalizabil-
ity. For examples in the main paper, we carefully transform each inverse relative
depth to relative depth with manually estimated scale and shift for clearer differ-
entiation. To prevent any confusion regarding this transformation, we maintain
the original color bar in the disparity depth maps in the supplementary, and
this still demonstrates obvious differences in high-frequency details. As shown
from Fig. S11 to Fig. S21, GeoWizard consistently produces high-fidelity details
and correct spatial layout compared to baselines, i.e., Marigold and DepthAny-
thing for depth, and Omnidata v2 and DSINE for normal.

D.3 In-the-Wild 3D Reconstruction

We provide more 3D reconstruction results as visualized in Fig. S22, comparing
Ours with DSINE [1] and Omnidata v2 [7]. For a fair comparison, we exclusively
use only normal maps as input for the BiNI algorithm [3]. The meshes recon-
structed by GeoWizard generate enhanced high-frequency details, including hair,
clothing folds, metal and wood textures, and thin handrails. Meanwhile, it deliv-
ers superior predictions of the 3D structural layout that align more closely with
the original input image.

D.4 Depth-aware Novel View Synthesis

We present more novel view synthesis results as shown in Fig. S23. Our approach,
GeoWizard, outperforms Midas V3.1 [14] to guide the generation of more co-
herent and believable structures for objects that pose challenges in monocular
depth estimation, including AI generated cars, buildings with unusual shapes,
slender lampposts, and white bed under sunlight. Since this method [16] takes
inverse depth in pretraining, thus the manual transformation of our depth into
its inverse form will cause accuracy loss. And we find the difference in the novel
views generated by our model compared to DepthAnything is relatively minor.

E Limitation and Potential Negative Social Impact

GeoWizard serves as a foundation model for estimating geometry in both real-
world and artificially created images. Despite its strengths, the current frame-
work still has some limitations. First, the iterative denoising process is time-
consuming when applied to large-scale collections. Since the depth and normal
maps are generated from randomly initialized noise, this diffusion leads to in-
consistencies when applied to video sequences. In terms of the reconstruction,
the pseudo scale and shift derived from the combined depth and normal maps
may exhibit accuracy issues in some cases. Meanwhile, some concerns exist when
making our models publicly available. It model can be extended to create fake
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but realistic 3D assets. Depth and normal maps play important roles in scene
understanding, and our model could be incorporated into surveillance systems
to identify regions that are not clearly distinguishable to the human eyes. To
mitigate these issues, we will include stipulations in the license agreement for
the code limiting its applications only to academic research.
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Fig. S4: Qualitative comparison on KITTI [6].
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Fig. S5: Qualitative comparison on DIODIE [20].
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Fig. S6: Qualitative comparison on ETH3D [15].
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Fig. S7: Qualitative comparison on NYUv2 [17].
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Fig. S8: Qualitative comparison on ScanNet [4].
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Fig. S9: Qualitative comparison on iBims-1 [10]. The red box marks the part where
GT is erroneous.
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Fig. S10: Qualitative comparison on OmniObject3D [23].
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Fig. S11: Qualitative geometry comparison on in-the-wild images (1/11).
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Fig. S12: Qualitative geometry comparison on in-the-wild images (2/11).
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Fig. S13: Qualitative geometry comparison on in-the-wild images (3/11).
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Fig. S14: Qualitative geometry comparison on in-the-wild images (4/11).
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Fig. S15: Qualitative geometry comparison on in-the-wild images (5/11).
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Fig. S16: Qualitative geometry comparison on in-the-wild images (6/11).
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Fig. S17: Qualitative geometry comparison on in-the-wild images (7/11).
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Fig. S18: Qualitative geometry comparison on in-the-wild images (8/11).
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Fig. S19: Qualitative geometry comparison on in-the-wild images (9/11).
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Fig. S20: Qualitative geometry comparison on in-the-wild images (10/11).
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Fig. S21: Qualitative geometry comparison on in-the-wild images (11/11).
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Fig. S22: Qualitative comparison on 3D reconstruction. We segment out the fore-
ground objects using SAM [9]. The meshes rotate left and right along the z-axis.
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Fig. S23: Novel view synthesis comparison on more scenes.
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